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Abstract

We have measured the relationship between image contrast, perceived contrast, and BOLD fMRI activity in human early visual

areas, for natural, whitened, pink noise, and white noise images. As root-mean-square contrast increases, BOLD response to natural

images is stronger and saturates more rapidly than response to the whitened images. Perceived contrast and BOLD fMRI responses

are higher for pink noise than for white noise patterns, by the same ratio as between natural and whitened images. Spatial phase

structure has no measurable effect on perceived contrast or BOLD fMRI response. The fMRI and perceived contrast response

results can be described by models of spatial frequency response in V1, that match the contrast sensitivity function at low contrasts,

and have more uniform spatial frequency response at high contrasts.
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1. Introduction

Because image contrast strongly modulates neural

response in early visual areas, any study of visual re-

sponse to a particular set of images requires an under-

standing of the underlying contrast response. Contrast

response and perceived contrast are well understood for
simple stimuli such as sine gratings, but these results

cannot easily be extended to more natural images. As

the contrast of a sine wave grating is increased, indi-

vidual neurons in cat and monkey striate cortex show no

increase in firing rate up to a threshold contrast, and

then show a rapid increase with increasing contrast be-

yond the threshold at a rate that slows and saturates at

high contrasts (Albrecht & Hamilton, 1982). Thresh-
olds, rates of increase, and saturation points vary across

the neural population, but the averaged supra-threshold

neurophysiological measurements can be fit by a power

law (response/ contrastc) and are consistent with con-
trast response functions inferred from psychophysical
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measurements of contrast discrimination thresholds

(Boynton, Demb, Glover, & Heeger, 1999; Heeger, Huk,

Geisler, & Albrecht, 2000; Legge, 1981) 1. However,

physiological measurements show that nonlinearities in

the visual system (see, for example, Vinje & Gallant,

2001) preclude the prediction of contrast response by

simple summation of responses to isolated sinusoidal
and Gabor patterns. Neural responses in early visual

areas are affected by the responses of neighboring neu-

rons, conveying a dependence on image regions and

properties outside the classical receptive field.

A key issue in understanding contrast response to

complicated images is the interaction of contrast re-

sponse with spatial frequency. In psychophysical mea-

surements, contrast detection thresholds vary
systematically with spatial frequency, with peak sensi-

tivity (lowest threshold) near 4 cycles per degree

(Campbell & Robson, 1968). This spatial frequency
1 Interestingly, EEG measurements of visually evoked potentials in

response to sine gratings of increasing contrast find a contrast response

that is linear with log contrast (DiRusso, Spinelli, & Morrone, 2001),

perhaps implying a log relationship between the EEG signal and firing

rates or the BOLD signal.
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dependence of threshold is referred to as the contrast

sensitivity function (CSF). However, for contrasts well

above detection thresholds, perceived contrast does not

vary with spatial frequency, a phenomenon referred to

as contrast constancy (Cannon & Fullenkamp, 1991;

Georgeson & Sullivan, 1975). Contrast constancy would

imply that cortical activity in early visual areas is the

same over a range of spatial frequencies at high contrast,
but one fMRI study (Singh, Smith, & Greenlee, 2000) as

shown a dependence of cortical activity on spatial fre-

quency that more resembles the contrast sensitivity

function than the predictions from contrast constancy.

It is not known how the BOLD response depends on

contrast for broadband images.

Contrast in broadband images can be described or

quantified in many ways. One common metric is the
root-mean-square (RMS) contrast (i.e. the square root of

the average of the squared pixel intensity deviation from

the mean luminance normalized by the mean), and per-

ception of contrast in broadband images is better pre-

dicted by RMS contrast than by other contrast metrics

such as Michelson contrast (Bex & Makous, 2002).

However, RMS contrast conveys no information about

the distribution of contrast power across spatial fre-
quency (or space), and is not consistent with the known

spatial frequency dependence of both neural and per-

ceptual visual responses. Models in which response is

distributed across multiple spatial frequency channels do

a better job in predicting human observers’ discrimina-

tion performance on natural images and perception of

contrast (Graham & Nachmias, 1971; Peli, 1990, 1997;

Tolhurst & Tadmor, 1997). In these models, images are
processed by an array of spatial frequency channels, each

with a bandwidth of one to two octaves. This type of

multiple channel model for spatial frequency response is

consistent with both electrophysiological measurements

(DeValois, Albrecht, & Thorell, 1982) and psychophys-

ical measurements (Wilson, McFarlane, & Phillips,

1983). It has also been demonstrated that a set of chan-

nels like this can maximize efficiency in coding natural
images by more evenly distributing responses to natural

images across the population of neurons (Field, 1987).

To study the dependence of perceived contrast and

activity in early visual areas on the distribution of image

contrast across spatial frequency, we have combined

psychophysics and fMRI to study visual response to

natural and whitened images. Whitening images pro-

duces a spatial frequency spectrum with a flattened
slope, thus reducing the strength of low spatial fre-

quency components relative to natural images, and

increasing power at high spatial frequencies. The struc-

ture of whitened images is similar to that of their natural

counterparts in that edges are left intact, and objects are

recognizable (Fig. 1).

In this work, in addition to quantifying the effect of

whitening on perceived contrast and contrast response
in V1, we also test the power of several models of spatial

frequency processing in early visual cortex to predict the

observation that, for a given RMS contrast, apparent

contrast of whitened images and white noise is lower

than apparent contrast of natural images and pink

noise. The simplest explanation for the observed differ-

ence is the prediction made by the CSF: lower sensitivity

to high spatial frequencies, which are more strongly
represented in whitened images, predicts lower response

to whitened images. Both single- and multiple-channel

models, matched to the CSF of V1, predict significant

decreases in the response to whitened images, compared

to natural images, but the ratio of these responses does

not depend on image contrast. Two additional models

are tested: one in which multiple spatial frequency

channels have different contrast response thresholds and
gains; and one based on the divisive normalization

model (Carandini, Heeger, & Movshon, 1997; Heeger,

Simoncelli, & Movshon, 1996; Wilson & Humanski,

1993), with multiple spatial frequency channels that are

mutually inhibitory. Both of these models predict a large

difference between responses to natural and whitened

images at low contrasts (regardless of whether images

are structured or phase-scrambled noise). The predicted
response ratio decreases with increasing contrast––an

effect very similar to contrast constancy and one that fits

the BOLD fMRI and psychophysical data in this study.

The imaging studies were performed at high field (7

T), where the spatial specificity of the BOLD signal is

increased over lower fields (Yacoub et al., 2001), and the

increased magnitude of BOLD signal changes (increased

contrast-to-noise ratio) allows higher resolution with a
good signal-to-noise ratio. This high contrast-to-noise

ratio also permits quantification of response to even low

contrast images in single scans. We compared psycho-

physical measurements of the perception of contrast in

natural and whitened images and noise patterns against

both the observed (BOLD fMRI) and the predicted

reduction of contrast response to images with flat

amplitude spectra.
2. Methods

2.1. Images

Digitized, calibrated natural images were down-

loaded from the van Hateren database (van Hateren &

van der Schaaf, 1998), and 42 images with predomi-

nantly unimodal pixel intensity histogram distributions

were selected. Pixel intensity values were reassigned so

that the intensity distribution was Gaussian. This

manipulation did not significantly affect the appearance
of the images, but did ensure that comparisons of RMS

contrast between images would correlate well with other

contrast metrics, such as Michelson contrast.



Fig. 1. Examples of stimuli used in experiments. (A) Natural images typically have a spatial frequency amplitude spectrum that drops off as 1=f ,
where f is spatial frequency. (B) A whitened image is identical to a natural image in every respect except the relative amplitude of different spatial
frequency components: all are represented with equal power. The presence of edges and image structure remain unaffected because the phase portion

of the complex spatial frequency spectrum is not manipulated. (C) Pink noise has a 1=f spectrum, but none of the original image structure, due to
randomization of the Fourier phase spectrum. (D) White noise has a flat amplitude spectrum and no structure.
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From each natural image, a whitened image was

generated by multiplying the amplitude, Af , at each
spatial frequency (in the 2D Fourier transform of each

image) by 1=Af , then performing the inverse transform

and scaling the pixel intensity values to equate the RMS

contrast. Noise images were generated either by scram-

bling the Fourier phase spectrum of each natural image

by adding random perturbations to each component of

the phase spectrum (for pink noise), or by drawing pixel

intensity values from a normal distribution (white
noise). All images (whitened and natural) were saved as

zero mean, unit variance matrices, and image contrast

was adjusted at the time of display.
2.2. Image presentation

Images were 256 · 256 pixels, displayed to subtend
14� of visual angle, so the highest spatial frequency
present was approximately 9 cycles per degree (cpd).

Both whitened and natural images were vignetted by an

8-pixel cos2 function to eliminate effects from the image
edges. Imperfections in the projection path for the fMRI

experiments resulted in image blurring. The blurring was
quantified by measuring a normal observers’ contrast

sensitivity function with and without the blur, finding
10% attenuation at 4 cpd, and 50% attenuation at 8 cpd.

Therefore, spatial frequency spectra of the images were

attenuated at high spatial frequencies before being pre-

sented for the psychophysics study, in order to match

conditions as closely as possible between the fMRI and

psychophysics experiments.
2.3. Psychophysics

Psychophysical measurements of contrast perception

were performed on a Macintosh G3 computer, running
MATLABMATLAB (The Mathworks Inc., Natick, MA, USA) with

the Psychophysics Toolbox extensions (Brainard, 1997;

Pelli, 1997). Images were displayed on a CRT monitor

using a video card with 8 bit input resolution, 10 bit

output resolution. The PsychToolbox VisualGamma

function was used to generate an 8-bit linear contrast

look up table. To display images with greater contrast

resolution, the range of the table was restricted, and
then interpolated to generate an 8-bit look up table with

finer resolution that could take advantage of the 10-bit
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display range of the video card. For high contrast trials

(12% and 24% RMS contrast), the full lookup table was

used (finest contrast increment �0.5%), but the table
could be halved and interpolated (up to two times) to

increase the contrast resolution for contrast discrimi-

nation or contrast matching trials at low pedestal con-

trasts. Four subjects participated, two of the authors,

and two experienced volunteers na€ıve to the purposes of
the experiment.
2.4. Preliminary contrast discrimination measurements

Two of the authors participated in measurements of

contrast discrimination thresholds at 3%, 6%, 12%, and

24% pedestal contrasts, which were used to select images

for the contrast matching experiment (see below) and to

set the contrast increments for the attention-controlling

task in the magnet. A two interval forced choice (2IFC)

paradigm was used to determine contrast discrimination

thresholds for the whitened and natural images. For
each trial, the same image was presented in both inter-

vals (at either the pedestal contrast or the pedestal

contrast plus an increment), but different images were

selected for each trial. At each of four pedestal contrasts

(for both image sets), a Quest algorithm was used to find

contrast discrimination thresholds (82% correct) in

blocks of 50 trials.
2.5. Contrast matching experiments

A subset of eight images was selected for the contrast

matching experiments. These representative images were
selected from the preliminary contrast discrimination

measurements as the images for which measured con-

trast discrimination thresholds were most consistent.

Images were displayed using a temporal 2IFC paradigm,

in which subjects responded whether the contrast of the

whitened image needed to be increased or decreased to

match the natural image. Matches were performed at

four pedestal contrasts, and contrast of the whitened
image was adjusted either up or down, according to the

subject’s response, by a fixed ratio after each trial.

Images for each trial were drawn randomly; within each

trial the natural and whitened image were the same

image except for the spatial frequency spectrum

manipulation. For each combination, six matches were

made at each of four pedestal contrasts; an average of

eight trials was required for each match.
An additional set of contrast matching experiments

was performed to test the effect of image structure

(phase coherence) on perceived contrast. For these

experiments, either pink noise or white noise patterns

were used as the match images; otherwise experimental

conditions were identical.
2.6. fMRI scans

Five healthy subjects (all female, ages 21–30) partic-

ipated in the first series of experiments (natural and

whitened image contrast response, six scans); one sub-

ject who participated in the first series, plus three addi-

tional subjects (one male) participated in the second

series of experiments (white noise and pink noise re-
sponse measurement). All subjects provided informed

consent in accordance with institution guidelines and

were paid for their time.

For stimuli, the full set of 42 images was used, gen-

erated by a Macintosh G4 computer running MATLABMATLAB

with PsychToolbox and back-projected by a NEC

MT1050 projector (NEC Solutions (America), Itasca,

IL, USA) housed outside of the magnet room, using a
modified lens (Buhl Optical, Pittsburgh, PA, USA) to

focus the output beam through a waveguide into the

magnet room, at the appropriate size and focal plane. In

the magnet, subjects viewed the image screen behind

their head through a mirror. In the first two sessions of

the first experiment, subjects were instructed to fixate

passively on a fixation mark at the center of the screen

as images, randomly selected, were presented at a rate of
10 Hz. In the latter half of the first set of experiments

(four sessions), subjects were engaged in a contrast dis-

crimination task during the experiment. Images were

presented at a slower rate, in a temporal 2IFC para-

digm. Each image in a trial was randomly selected and

presented for 0.45 s with 0.05 s blank (mean gray) be-

tween images, and then a noise image (with appropriate

amplitude spectrum, to match the image set being tes-
ted) was displayed for 1 s. Typical experiments of this

type would use a blank gray screen between trials in-

stead of a noise image, but preliminary studies had

indicated that there could be a difference in the hemo-

dynamic response to the two image sets, so a matched

noise image (same spatial frequency spectrum) was dis-

played during the response period to maintain a con-

sistent level of neural activity throughout the block. It
would have been preferable to present an image during

the inter-trial blank, but this made the task too difficult.

Subjects maintained fixation on the fixation mark and

were provided with a button box, instructed to press the

left button if the first image was at higher contrast, and

the right button if the second image was higher contrast.

Performance was monitored, and contrast thresholds

were set so that discrimination performance was at
approximately 80% during the scan for all image sets.

The basic stimulus paradigm was a block paradigm,

with 24 s of image presentation (240 images at 10 Hz for

the first two subjects, 12 2 s 2IFC trials for the last four),

followed by 24 s of blank. Blocks of each image type

(whitened and natural) were presented at five pedestal

RMS contrasts: 3.3%, 6.6%, 9.9%, 19.7%, and 33%, in

random order. For the first two subjects, the two types
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of images were presented in different scans, repeated

three times each, for a total of six scans. For the last

four experiments, all ten image conditions were com-

bined into one scan, which was repeated three times.

The second series of fMRI experiments presented

only four blocks of images: natural images at 20% RMS

contrast, pink noise at 20% RMS, whitened images at

33% RMS, and white noise at 33% RMS. For these
blocks, noise patterns and images were not mixed, so the

contrast discrimination task was much more demanding

(inexperienced subjects performed only slightly better

than chance), but subjects saw only one image type

during each block.

2.7. Data acquisition and pre-processing

All MR images were acquired with gradient echo EPI

(TR/TE 2.4 s/20 ms) at 7 T (Magnex scanner, Varian

console), using a quadrature surface coil with 14 cm

loops. Slices were axial or oblique (parallel to the cal-

carine sulcus) and 2 mm thick. Field of view was 19.2

cm · 14.4 cm with matrix size of 128 · 96 voxels (4 seg-
ment acquisition), yielding a nominal resolution of 1.5
mm · 1.5 mm · 2 mm. One, three, or five slices were
acquired in the first set of experiments. The only pre-

processing applied to these data sets was automated

correction for phase errors and global B0 fluctuations
due to respiration (Pfeuffer, Van de Moortele, Ugurbil,

Hu, & Glover, 2002). Five timepoints were acquired

before the onset of the stimulus in each scan (the first

two were discarded as the signal reached steady state);
10–15 volumes were acquired after the stimulus offset

(24–36 s). Scan durations were therefore 264 s for the

short block scans, 504 s for the long block scans. In the

second series of experiments, a single slice (either ob-

lique or coronal, through the calcarine sulcus) was ac-

quired, with either 1 mm or 1.5 mm in-plane resolution,

and a repetition time of 2 s (170 s for each scan, con-

taining four 20 s blocks of image, separated by 20 s).

2.8. Data analysis

All analysis was performed with code written in

MATLABMATLAB specifically for this project and with Stimulate

analysis software (Strupp, 1996). Visually activated
voxels were identified by cross correlation between the

BOLD signal and a boxcar representing the blocks of

stimulus presentation. For the sessions in which the

natural and whitened images were presented in separate,

short movies, the first natural image block scan was used

to identify active voxels; this scan was not included in

further analysis. For the later experiments, in which

natural and whitened images were interleaved in a long
block paradigm, active voxels were identified by cross-

correlation between the first five (first half) of the blocks

and a box car with identical height during each epoch.
This procedure was adopted because subject motion

between scans precluded the independent selection of

voxels from different scans. The threshold for the cor-

relation coefficient was set at r ¼ 0:3, yielding on aver-
age of 125 activated voxels in each slice. Because at most

a 1 cm slab of cortex was imaged, functional localization

of V1 by field sign mapping was not performed. Voxels

clearly located in the calcarine sulcus and directly pos-
terior to it on the occipital pole were selected as V1. All

other visually activated voxels were grouped together as

extrastriate cortex.

After each group of voxels was delineated (V1 and

extrastriate), a quadratic trend was removed from the

baseline portions (pre- and post-stimulus) of the data

from each scan; this is the only detrending applied to the

data. Each voxel intensity was then normalized by the
mean baseline value; all numbers are reported as percent

change from baseline. Voxels were then averaged across

the visual area selected, and the percent increase in

BOLD signal (averaged across five to seven timepoints

during the stimulus) was used to quantify the response

to each block of images.
3. Results

3.1. Psychophysics: apparent contrast

A contrast-matching task was used to test the rela-

tionship between the apparent contrast of a natural
image and the apparent contrast of the same image with

a flat amplitude spectrum. Results are shown in Fig. 2.

Subjects consistently increased the RMS contrast of the

whitened images to match the apparent contrast of the

natural image (Fig. 2A). To test whether the same

relationship held for unstructured images, pink noise

(Gaussian noise with a frequency spectrum in which the

amplitude of the Fourier component decreases as the
inverse of spatial frequency) and white noise patterns

(flat amplitude spectrum) were then used for the match

images. For matching the apparent contrast of pink

noise patterns to natural images, RMS contrast was

equal when apparent contrast was matched (Fig. 2B).

Subjects increased white noise RMS contrast by the

same amount as whitened image contrast to match the

perceived contrast of natural images (Fig. 2C), indicat-
ing that spatial frequency amplitude spectrum plays a

significant role in determining apparent contrast,

regardless of the presence of edges and image features.
3.2. BOLD fMRI contrast response functions

Having measured the reduction in perceived contrast
for whitened images, we tested whether activity in early

visual areas corresponds better to RMS image contrast

or to perceived contrast. BOLD activity was measured



Fig. 2. Results of the contrast matching experiments, showing the effect of spatial frequency amplitude spectrum on perception of global image

contrast. Images were displayed in a 2IFC paradigm, 0.5 s each, after which subjects responded whether the apparent contrast of the second image

was higher or lower than the target image. Contrast was adjusted accordingly, by a fixed ratio, until subjects indicated a match in perceived contrast.

Contrast of test images was adjusted to match the perceived contrast of natural images at 3%, 6%, 12%, and 24% RMS contrast. Four subjects

participated: two authors, and two na€ıve observers. (A) When the RMS contrast of whitened images was adjusted to match the perceived contrast of
natural images, subjects increased the contrast of whitened images by as much as a factor of two. Red dashed line indicates a 2:1 ratio between RMS

contrast in whitened images and RMS contrast in natural images; red dotted line indicates 1:1 match. One observer’s results were consistently

different from the rest of the subjects, so this data (shown in open circles) was not included in the calculation of the average response. (B) When

contrast of pink noise images was adjusted to match the perceived contrast of the natural images, the relationship between perceived contrast and

RMS contrast was the same, in spite of the lack of similarity in the appearance of the images. (C) When white noise is adjusted to match the apparent

contrast of natural images, the RMS contrast of the noise is increased by the same amount as the contrast of whitened images.

Table 1

Fitted gamma parameters for each subject, V1 and extrastriate voxel

clusters

Subject Natural images Whitened images

1 0.38±0.60 0.41±0.44

2 0.40±0.10 0.56±0.26

3 0.23±0.08 0.66±0.30

4 0.42±0.29 0.60±0.50

5 0.50±0.28 0.67±0.91

6 0.38±0.15 0.41±0.14

Average 0.38±0.14 0.52±0.18

Extrastriate

1 0.31±1.1 0.28±1.2

2 0.25±0.66 0.07±1.0

3 0.10±0.16 0.32±0.18

4 0.22±0.24 0.65±0.75

5 0.46±0.15 0.45±0.72

6 )0.01± 0.16 0.09±0.23

Average 0.18±0.15 0.34±0.29

Error estimates are 95% confidence intervals for the fit of the line slope

in log–log coordinates.
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in primary visual cortex while subjects viewed blocks of

either natural or whitened images at several different

RMS contrasts (see Section 2). Because the results from

scans acquired from subjects engaged in a task designed

to control attention matched the results from earlier

scans in which no task was employed, all scans were

analyzed together (Table 1). Exemplary raw data from
one scan, averaged across selected voxels in anatomi-

cally delineated striate (red box, Fig. 3A) and extras-

triate voxel groups in one subject are shown in Fig. 3C

and D.

Measured contrast response functions, calculated

individually for each subject and then averaged across

six subjects, are shown in Fig. 4. The power law,

R ¼ ACc, was fit to the data from each subject; the
exponent c from the power law describes the saturation
of the contrast response and is shown in Table 1 for each

subject. For both striate and extrastriate voxel groups,

the amplitude of the contrast response function was

greater and was lower (faster saturation) for natural

images, which combined to result in significantly larger

BOLD signal for natural images than for whitened

images at any given RMS contrast. As expected, the
amplitude of the response in extrastriate voxel groups

was smaller, and response saturation with increasing

contrast was more rapid (Avidan et al., 2001). (This

result is only qualitative; standard error on fits in ex-

trastriate regions is large, due to the small number of

voxels included in the averages, and the fact that aver-

ages are across many different visual areas.) The mea-

sured reduction in the V1 response to whitened images
matched the results from the contrast matching experi-

ments (Fig. 5), indicating that the amplitude of the
BOLD fMRI contrast response in V1 was correlated

with perceived contrast rather than RMS image con-

trast.
3.3. BOLD fMRI measurement of response to noise

patterns

To test whether V1 activity was more strongly af-

fected by the presence of edges (phase coherence) in the

images, or by the spatial frequency spectrum of the



Fig. 3. (A) Representative fMRI images are shown (EPI images, axial slices, covering a 1cm slab of visual cortex centered on the calcarine sulcus),

with the calculated activation map overlaid. Red box indicates voxels selected as V1. (B) For the main experiment, stimuli were presented in a block

paradigm, interleaving different image types at several different pedestal contrasts. (C) Representative raw data is shown (average activity in 200

voxels in V1, one subject, one scan), plotting relative strength of BOLD signal as a function of time. No baseline detrending or normalization has

been performed. (D) Representative raw data from extrastriate regions, same scan.

Fig. 4. Contrast response functions measured in striate and extrastriate visual areas. Individual estimates (six experiments) of the contrast response

functions for natural and whitened images were combined to generate an average contrast response function. Errorbars show standard error of the

mean, (n ¼ 6). (A) Contrast response functions in striate cortex for natural (black circles) and whitened (red open circles) images. Dashed lines
represent fit to power law: BOLD / Cc. (B) The same contrast response functions as in (A), plotted on log–log coordinates to visualize the difference

in contrast response saturation. The calculated value of c (with 95% confidence intervals) is indicated in the legend for each image set. (C) Extrastriate
contrast response, exhibiting the expected rapid saturation and lower amplitude. (D) Log–log plot of extrastriate contrast response. Estimates of

contrast response exponent, c, are again indicated in the legend.
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Fig. 5. Perceived contrast for the two image classes matches the

relationship between BOLD fMRI measurements of contrast response

functions in V1. Scaled against measured contrast response to natural

images (black dashed line, showing fit to BOLD data), the lower

perceived contrast of whitened images predicts lower contrast response

in V1: the green dotted line is generated by scaling the response to

natural images by the perceived contrast ratio measured in the contrast

matching experiments. The results show good agreement with mea-

sured contrast response to whitened images (red dashed line shows fit

to BOLD data).

Fig. 6. Response to pink noise and white noise, compared against

response to natural and whitened images. For each subject, response

was normalized by the response to natural images. Errorbars indicate

standard error of the mean (n ¼ 4 subjects) for the ratio of whitened
image, pink noise, and white noise response to natural image response.

Psychophysical measurements of perceived contrast in noise images

predict that pink noise should match natural image contrast response

(100%), and white noise should match whitened image contrast re-

sponse (and response to whitened images at 33% RMS contrast should

be 80% of the response to natural images at 20% RMS).
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images, we also measured the BOLD fMRI response to

pink noise and white noise images. Because the psy-

chophysical measurements of perceived contrast indi-
cated that pink noise and natural images had the same

perceived contrast for a given RMS contrast, these two

images were displayed at 20% RMS contrast, and

compared against whitened images and white noise

displayed at 33% RMS contrast. If spatial frequency

content were a sufficient indicator of contrast response,

then the response to pink noise should match the re-

sponse to the natural images, and the response to
whitened images and white noise should be 80–90% of

the response to natural images. (Using the results in Fig.

5, a whitened image at 33% RMS contrast produced a

4.6% change in the BOLD signal at 7T, while a natural

image at 20% RMS contrast produced a 5.5% change in

the BOLD signal.) Results, shown in Fig. 6, indicated

that the prediction was successful, and the relationship

between RMS contrast and perceived contrast measured
for whitened and natural images held for noise patterns.

The local energy model of feature detection and visual

response would not have predicted this finding, a topic

that will be taken up in the discussion.

3.4. Results––models of spatial frequency processing

We compared our results to predictions from three

types of models: one model that simply matched the

contrast sensitivity function, and two that accounted for
more uniform spatial frequency response in V1 at high

contrasts. Model details are discussed in Appendix A.

The goal was to understand whether our results could be
described by what is known of V1 spatial frequency

response and neural behavior in response to simple sine

wave gratings.

The first type of model predicted the contrast re-

sponse simply as the variance of an image filtered by the

contrast sensitivity function (Campbell & Robson,

1968), raised to an exponent (c ¼ 0:6) that modeled
neural response saturation. This model was tested with

both a single spatial frequency channel and with multi-

ple channels (Brady & Field, 1995; Peli, 1997). For

multiple channel models, response was calculated in

each channel, and then pooled by an appropriate pool-

ing mechanism (see e.g. Wilson & Bergen, 1979). The

highest spatial frequency represented in the images in

this study was around 9 cycles per degree, at which point
contrast sensitivity is approximately 15% below peak. A

single-channel model (matching the contrast sensitivity

function for images presented at 2 Hz) predicted that the

response to whitened images would be 70% that of the

response to natural images at all RMS contrasts; a

multiple-channel model using a reasonable set of spatial

frequency channels (centered at 1, 2, 4, and 8 cycles per

degree, with 1.5 octave bandwidth and Gaussian spatial
frequency profiles) predicted a uniform 80% difference.

This type of model was therefore able to predict differ-

ences in perceived contrast as large as the measured

ratios, but both models failed to capture a significant

aspect of the measured contrast response: the difference

between the two types of images decreased at high

contrasts. A summary of the various model predictions

is shown in Fig. 7, plotting, as a function of increasing
contrast, the ratio of predicted whitened image response

over predicted natural image response.

The second type of model tested in this study used

sigmoidal functions to provide for both different



Fig. 7. Predictions from several models of spatial frequency process-

ing. Single- and multiple-channel models with point nonlinearities

predict a consistent difference in perceived contrast or contrast re-

sponse, independent of contrast (green dotted and dashed line and blue

dotted line). A second model uses different contrast response thresh-

olds and gains to produce a spatial frequency response that matches

the CSF at low contrasts but is more uniform at high contrasts. This

produces predicted ratios of whitened image response to natural image

response that match the data (black dotted line). The divisive nor-

malization model also captures the measured behavior of the system

(black dashed line), with a larger difference in perceived contrast at low

contrasts, and more closely matched responses at higher contrasts.

FMRI and psychophysical data are shown in red (solid line and X’s).
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contrast response thresholds for each channel and

smooth contrast response functions. Each channel had a

different contrast response gain, so that contrast re-

sponse saturation occurred at a similar point in each
channel, even though thresholds were different. The re-

sult was a spatial frequency response, summed over all

channels, which matched the contrast sensitivity func-

tion at low image contrasts, but was more uniform at

high contrasts. Because this model was based on the

same spatial frequency channels modeled in Model 1,

the spatial frequency response was not flat at high

contrasts, so the ratio of whitened to natural images
reached a maximum value of 0.7.

Another way to build a model that matched the CSF

at low contrasts but had a flat spatial frequency response

at high contrasts was by incorporating a divisive nor-

malization (contrast gain) stage into the multiple chan-

nel model (Heeger et al., 1996; Wilson & Humanski,

1993). Such a model has been successfully used to de-

scribe the visual phenomena such as the White effect and
grating induction, and the appearance of more compli-

cated patterns (Blakeslee & McCourt, 1999, 2001). The

measured contrast response was matched by appropriate

selection of a pooling weight, or normalization strength,

in a model with filters identical to those used in the

simpler multiple-channel model (four filters, Gaussian

spatial frequency profile, 1.5 octave bandwidth). This

model did not explicitly model the different gains in each
channel; response saturation arose from inhibition by

other spatial frequency channels. At low contrasts, the
impact of divisive normalization was low, and the model

response was very similar to that of the multiple channel

model in Model 1. At high contrasts, the impact of

divisive normalization was to equalize the modeled re-

sponse in each channel, producing a result similar to

contrast constancy.

For each of these models, reasonable modeling

parameters were selected, but they were not optimized to
fit the data or to show perfect congruence with known

physiology (e.g. the low contrast response of Model 2

was a more aggressive filter than the contrast sensitivity

function, and the high contrast response was less uni-

form than it should be, because the model was based on

the same four spatial frequency channels as the other

models, for the sake of simplicity). However, the fact

that Models 2 and 3 came close to matching the mea-
sured data confirmed the goal of the modeling effort: to

demonstrate that any model that accounts for both the

low contrast sensitivity function and high contrast

constancy could explain the measured contrast response

functions for natural and whitened images.
4. Discussion

The strongest findings in this study are that BOLD

fMRI measurements of contrast response in early visual

areas correspond to lower perceived contrast for whit-

ened images than for natural images, and that the ratio

of the two responses changes with increasing image

contrast. Understanding how this neural activity de-

pends on both spatial frequency spectrum and contrast

power requires a working model for spatial frequency
processing and perceived contrast. Models of spatial

frequency response that succeed in describing both

contrast sensitivity at low contrasts and contrast con-

stancy at high contrasts will also successfully describe

our data.

4.1. Linearity and nonlinearity in the BOLD response

The interpretation of these results relies heavily on

the assumption of a linear relationship between under-

lying neural activity and the measured BOLD fMRI

response. This linear relationship has been shown to
hold for isolated sine wave gratings presented in blocks

of images, as long as the block presentations are longer

than 6 s in duration (Boynton, Engel, Glover, & Heeger,

1996). However, it is still possible that a nonlinearity

exists between the neural response and the BOLD re-

sponse, particularly in the context of natural images.

Indeed, some of our early data showed the following

nonlinearity: whitened images, which elicited a weaker
BOLD response when presented in blocks, produced a

response modulation as strong as that from natural

images when presented in continuous movies (image
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contrast was modulated according to a sinusoidal

function with the same period as the block paradigm).

As noted earlier, the amplitude of the response to block

presentation of all stimulus types was not affected by

adding an attention-controlling task (and reducing the

rate of image presentation from 10 to 2 Hz), but the

apparent difference in the hemodynamic response (an

enhanced undershoot, explaining the discrepant results
with continuous image presentation) was eliminated.

Therefore, we conclude that nonlinearities are indeed

present in the relationship between the neural response

and the BOLD response, but that they can be avoided

when stimuli are presented slowly in a block paradigm.

The comparison between natural, whitened, and

scrambled images was judged fair for this particular

paradigm, but care must be taken in interpreting these
results, or extending them. For example, these results

should do not predict the result of presenting natural

and scrambled (or whitened) images back-to-back,

without intervening blank gray patch. Under those

conditions, the expected difference in response to natural

and scrambled images (discussed below in the context of

local energy models) may be more apparent.

4.2. The effect of phase coherence on perceived contrast

and contrast response

The well-established contrast energy model (Morrone

& Owens, 1987) predicts decreased activity in V1 due to
the lack of phase coherence in the scrambled images.

Many psychophysical measurements of the effects of

phase coherence in image viewing match this model and

are in keeping with a picture of V1 in which edges have a

profound effect on neural activity (Morrone & Burr,

1988), even though sensitivity to phase coherence is not

evident in this particular study. One possible reason for

this is the low sensitivity of the experiment to response
modulation driven by changes in phase coherence,

which are small relative to the strong effect of changes in

spatial frequency amplitude spectrum. Previous work in

anesthetized monkeys has found that activity in V1 is

lower for phase scrambled or scrambled images than for

natural images (Rainer, Augath, Trinath, & Logothetis,

2001, 2002). In the first of these studies, phase coherence

was varied from 0% (pink noise) to 100% (natural im-
age), leaving spatial frequency amplitude spectra unaf-

fected. The measured points on the continuum may be

subject to an artifact that affects the statistical properties

of the images (Dakin, Hess, Ledgeway, & Achtman,

2002), but the 0% and 100% points should be free of

artifact, and the response to scrambled images (noise) is

clearly lower than the response to natural images.

The divisive normalization model used to describe the
results in this paper is based on the local energy model,

in that each channel is represented by a quadrature pair

of filters (sine-phase and cosine-phase). Simple cell re-
sponses can be approximated by the responses of indi-

vidual filters; complex cells can be approximated by the

sum of the squares of the individual filter responses

within a channel. Since the BOLD response will be re-

lated to summed activity over simple and complex cells

in a given region of cortex, the model used here is built

to predict the neural population response as a weighted

sum of simple and complex cells in a given region of
cortex. At low contrasts, the model generates the pre-

diction of the local contrast model: lower response to

scrambled images. However, just as the modeled nor-

malization step equalized responses across spatial fre-

quency channels, the normalization also equalizes the

responses to natural and scrambled images as contrast is

increased. The BOLD fMRI measurements at high

contrast, showing the same activity in V1 for natural
and phase-scrambled images, are consistent with this

modeling result. However, the psychophysical mea-

surements (pink noise control in the contrast matching

task) covered a range of contrasts, and there both

models would predict a difference. The sensitivity of this

particular psychophysical technique for quantifying

contrast response is poor, so an existing difference could

be missed, but further work is required to understand
this discrepancy, as well as the difference between fMRI

measurements in the human and anesthetized monkey.

4.3. Connection with natural image contrast perception

literature

The broadband models discussed in this paper do a

good job of predicting perceived contrast for these

images, but previous studies have suggested that con-

trast perception can be modeled by a single spatial fre-

quency band, centered near 2 cpd (Bex & Makous, 2002;

Tolhurst & Tadmor, 1997). When whitened and natural

images are matched for RMS contrast, contrast power is
approximately equal in a frequency band centered well

above 4 cpd. But when the RMS contrast of a whitened

image is increased so perceived contrast matches the

perceived contrast of the comparable natural image, the

point of equivalence is moved below 4 cpd. Therefore,

the reduction of perceived contrast for whitened images

could be explained simply by the lower power in a

spatial frequency band located around 2 cpd. This is in
good agreement with Bex and Makous’ (2002) finding

that the visual system is most sensitive to perturbations

of the spatial frequency spectrum in the 0.5–2 cpd range,

a finding similar to that of Tolhurst and Tadmor (1997),

although the latter was in the context of discrimination

of changes in the slope of the spatial frequency ampli-

tude spectrum. The present study therefore does not

definitively distinguish between a perceived contrast
judgment based on average activity across all spatial

frequency bands in V1, and a single-channel discrimi-

nator centered below 4 cpd. But even a single channel
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discriminator would need to be based on a model like

the divisive normalization model to fit the measured

dependence of perceived contrast ratios on image con-

trast (see Parraga & Tolhurst, 2000 for a similar dis-

cussion).

Apparent contrast of natural images has also been

successfully modeled using the contrast sensitivity

function as a nonlinear threshold function (the inverse
of the sensitivity function). This function masks all

spatial frequency components that do not reach

threshold and passes (without attenuation) spatial fre-

quency components that exceed the threshold (Peli,

2001). This type of model can fit our data, predicting a

stronger reduction in response to whitened images at

low contrast, since the thresholding function eliminates

the high spatial frequency components that are more
strongly represented in whitened images. However, the

abrupt transition from subthreshold to detectable is not

neurophysiologically realistic, and the model used in

Model 2 is considered as a physiologically plausible

implementation of this model.
4.4. An appropriate contrast metric for structured images

A consistent difficulty in predicting visual response to

natural images is the spatial heterogeneity of the images.

Local contrast varies significantly across the images

(Brady & Field, 2000) and needs to be taken into ac-

count when predicting perceived contrast (Peli, 1990).

Local features can also have a strong effect on perceived

contrast and brightness (Chubb, Sperling, & Solomon,

1989; Morrone & Burr, 1988). In this work, we have
chosen to study contrast response averaged across a

group of natural images, so that the particular features

of any one image are unimportant. In fact, we have seen

that both our contrast matching and fMRI results are

insensitive to the spatial phase structure of natural

images. However, the divisive normalization model used

to predict this contrast response does permit study of

local variations in contrast in different spatial frequency
bands. A potentially fruitful test of the model developed

here would be an investigation of localized responses to

particular image features and the concomitant effect on

contrast perception.
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Appendix A. Model calculations

In each of these model descriptions, calculations are

performed in the spatial frequency domain, where the
complex-valued two-dimensional Fourier transform of

the image, Ið~kÞ is filtered by a spatial frequency re-
sponse, F ð~kÞ. The image created by the inverse Fourier
transform of the filtered image transform can be inter-

preted as a ‘‘neural image’’, or a map of how activity in a

channel with a particular spatial frequency response

would be distributed across visual cortex. One metric for

the neural population response is the standard deviation
of activity across this neural image. Because of the

equivalence between variance in the image domain and

the integrated power spectrum in the frequency domain,

modeled responses are calculated as the integrated

amplitude spectrum (square root of the power spectrum,

thus equivalent to the RMS of the image). For com-

paring responses between image sets, response to each

image at each contrast was normalized by the response
to the comparable natural image at the highest contrast.

To generate quantitative predictions with these models,

images were modeled as subtending 8�, containing spa-
tial frequencies up to 16 cycles per degree.
A.1. Model 1a: Single-channel model for spatial fre-

quency response

A neural image can be generated simply by attenu-

ating high (and very low) spatial frequencies according
to the measured contrast sensitivity function, CSF(~k),
which describes the sensitivity of the visual system at

each two-dimensional spatial frequency vector, ~k. The
response, R0, to an image with unit RMS contrast is

R0 ¼
Z
d~k Ið~kÞCSF ð~kÞ

The power law describing the saturation of the contrast

response can be modeled by raising the modeled re-

sponse to an exponent c, which is generally close to 0.6
for sine wave gratings. A scalar multiplier, c (taking
values between 0 and 1) specifies the contrast of an

image; therefore the contrast response function can be

described by,

RðcÞ ¼
Z
d~k cIð~kÞCSF ð~kÞ

� �c

¼ ðcR0Þc

and the ratio between the response to natural and
whitened images, as a function of contrast, will be de-

scribed by

RWðcÞ
RNðcÞ

¼
ccRc

0;W

ccRc
0;N

¼ R0;W
R0;N

� �c

This ratio is constant and independent of contrast.



680 C.A. Olman et al. / Vision Research 44 (2004) 669–683
A.2. Model 1b: Multiple-channel model for spatial fre-

quency response

Instead of a single spatial frequency response

function, a combination of spatial frequency channels

can be used. For this particular study, we selected

channels with a Gaussian spatial frequency profile,

each with a bandwidth of approximately one and a
half octaves:

FiðkÞ ¼ e�ðk�liÞ2=ð2r2i Þ

The functions are defined to be radially symmetric (i.e.

no orientation tuning), so k ¼ j~kj; li is the center fre-

quency (peak sensitivity) of a channel; ri describes the

bandwidth of a channel. (To maintain constant band-

width in octaves, ri=li is a constant.) The model was

tested with both Gaussian and lognormal filters, with
little difference in results.

Individual filter responses are first calculated, and

then the total response is calculated as the sum of the

activity in the channels:

RðcÞ ¼
X
i

Ri ¼
X
i

Z
d~k cIð~kÞFið~kÞ

� �c

¼ cc
X
i

ðR0;iÞc
Fig. 8. Single- and multiple-channel linear filter models. (A) Spatial frequen

defined as the envelope of the spatial frequency channels in the multiple-c

presented at 2 Hz, only four of the channels were used in the calculation;

frequency profiles of the filters in the multiple-channel model: l ¼ 0:25, 0.5, 1
in octaves (1.5 octaves, measured as full width at half-maximum). Channels i

black line) and whitened images (red line) calculated by the single channel mod

the output of the model (standard deviation of the filtered image raised to an

the multiple-channel version of Model 1. Contrast response saturation is add

calculated as the average across the channels. The dashed red line indicates

instead of Gaussian.
The point nonlinearity to approximate the contrast re-

sponse saturation is applied in each channel, before the

average response is calculated. In this form, it is again

clear that the ratio of the response to whitened images

and natural images will be constant and independent of

contrast.

The single-channel model is illustrated in Fig. 8,

Panels A and C. So this model could be compared
against the other models, the filter used was the envelope

of the multiple channels. Therefore, the shape is some-

what different from the classical CSF, but if a CSF

appropriate for the extent of the images and the rate of

presentation (2 Hz) is used, the result is not substantially

different from the plot shown in Fig. 8. Because so much

of the power of natural images is found at low spatial

frequencies, model predictions using the single channel
are sensitive to assumptions about the shape of the CSF

at very low spatial frequencies. The abrupt stimulus

presentation used in this study should further increase

sensitivity to low spatial frequencies, increase the mod-

eled difference in responses to natural over whitened

images. Ideally, the CSF should be measured under the

same experimental conditions (image size, luminance,

and temporal characteristics of image presentation) to
cy response in the single channel, which for the sake of comparison is

hannel model. To match the contrast sensitivity function for images

the two lowest spatial frequency channels were dropped. (B) Spatial

, 2, 4, 8 cycles per degree, Gaussian profile, with a constant bandwidth

ndicated by dashed lines were not used. (C) Response to natural (bold

el. The contrast response saturation is added as a point nonlinearity on

exponent). (D) Response to natural and whitened images calculated by

ed as a point nonlinearity in each channel before the total response is

the difference if the model had been built with lognormal filter profiles
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maximize model accuracy. Yet the relatively low sensi-

tivity of model predictions to the two different CSF’s

tested (from the literature and as the envelope of the

multiple channel model) indicates that resulting changes

should be relatively small. The most important feature

of this model is that the ratio of whitened image re-

sponse to natural image response is independent of im-

age contrast.
For the multiple channel model (Fig. 8, Panels B and

D), four filters were selected with l equal to 1, 2, 4, and
8 cycles per degree, and ri=li equal to 0.3, which pro-

duces a constant bandwidth of �1.5 octaves. (Two
additional channels with lower values of l could be
added to match the human CSF for higher temporal

frequencies, as shown in Panels A and B.) The appro-

priate method for combining the channel responses is
still an open question; a simple mean has been chosen

for this calculation, since neither the method of combi-

nation nor the exact values of li and ri changes the basic

finding that the ratio between the responses to natural

images and whitened images is independent of contrast.
A.3. Model 2: Multiple channels, with different contrast

response gain and threshold

To model the dependence of contrast response

threshold on spatial frequency, the Naka–Ruston for-
mula,

R ¼ cpþq

cq þ rNR
ð1Þ

can be used to generate sigmoidal functions that de-

scribe observed neural contrast response functions

(Boynton et al., 1999): no measurable response up to a
Fig. 9. Model of spatial frequency response with different contrast response

formula (given in text), contrast sensitivity functions were generated for each

lowest thresholds in the 2 and 4 cpd channels. Parameters were selected so al

channel are indicated in the legend in the order (p, q, sigma). (B) Spatial frequ
sensitivity function at low contrasts, but is more uniform at higher contrast
threshold contrast, then rapidly increasing response with

increasing contrast, and finally saturation at high con-

trasts. By changing the p, q and rNR parameters for each

channel, the threshold and gain can be balanced to

produce channels with different thresholds but similar

saturation points. For the purposes of this study, a set of

filters was built to have an envelope function roughly

matched to the contrast sensitivity function at low image
contrasts, but with a more uniform spatial frequency

response at high contrasts (Fig. 9).

To calculate the spatial frequency response at each

contrast, the Fourier transform of the image is multi-

plied by each of the spatial frequency filters:

FiðkÞ ¼
cpiþqi

cqi þ rNR;i
e�ðk�liÞ2=ð2r2i Þ

The response of the model is then:

RðcÞ ¼
Z
d~k cIð~kÞ

X
i

Fið~kÞ
 !

The envelope function is dependent on contrast, as

shown in Fig. 9, becoming more uniform at higher
contrast. An analytical expression for the dependence of

the whitened image response to natural image response

is not simply expressed, but the results (shown in Fig. 7)

demonstrate the contrast dependence of the whit-

ened:natural response ratio. As in the measured data,

the ratio increases as contrast increases.

A.4. Model 3: Multiple channel model with divisive

normalization mechanism

Rather than selecting different contrast response

gains and thresholds for each spatial frequency channel,
thresholds and gains in each channel. (A) Using the Naka–Rushton

channel to allow for higher thresholds in the 1 and 8 cpd channels, and

l functions would saturate near 50% RMS contrast; the values for each

ency response (the envelope of the four channels) matches the contrast

s.
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the divisive normalization model uses inhibition between

different neural populations to provide the necessary

contrast gain control. The divisive normalization model

begins with filters identical to the multiple-channel

model. Response is calculated in each channel, and then

a total raw response is summed over these responses:

RrawðcÞ ¼
X
i

Z
d~k cIð~kÞFið~kÞ

� �
¼ cK

with

K ¼
X
i

Z
d~k Ið~kÞFið~kÞ

� �

A normalization factor is defined by

nc ¼ 1þ PRrawðcÞ

where P is a pooling weight that controls the strength of
the modeled inhibitory feedback. This normalization

factor, nc, is used to inhibit each channel simply by
dividing the activity in each channel. At a given con-

trast, the final model output is then the summed activity

across the normalized channels:

Rnorm ¼ RrawðcÞ
1þ PRrawðcÞ

¼ cK
1þ cKP

No point nonlinearity is built into this model, because

the feedback inhibition accomplishes the contrast re-

sponse saturation. The pooling weight, P , controls the
rate of saturation; in this instance, P was chosen to
generate a response saturation for the natural images

that matched the measured data, and then this pooling
Fig. 10. Output of the divisive normalization model. In this case, the

response saturation is not the result of a point nonlinearity, but the

result of the increase in divisive inhibition strength as contrast in-

creases. The pooling weight for generating this normalization factor

has been selected to generate modeled saturation rates that match

measured fMRI data for natural images; the same pooling weight was

then used to predict contrast response for whitened images.
weight was used to calculate the relative contrast re-

sponses for natural and whitened image sets (Fig. 10).
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