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Abstract

When an observer is faced with an ambiguous, occluded or degraded image, the
image will frequently be perceptually completed. In perceptual completion observers
report seeing the presence of features or objects which are actually absent that are
the complement or “completion” of features or objects in the image. We report a
novel completion effect resulting from adding half of a bilaterally symmetric image
to visual noise, which results in an illusory appearance of the missing half-image in
the noise. In this paper we investigate the role of prior knowledge and symmetry in
this perceptual completion stimulus using a signal detection task. The task allows
us to obtain separate measures of the magnitude of the completion effect (via false
alarm rate) and the processing involved in the completion effect (via sensitivity,
d’). With these separate measures, we can begin to distinguish between low-level
and high-level theories of perceptual completion. We contrast low-level theories that
produce differences in sensitivity between completion and no completion conditions
with high-level theories that predict no change in detection sensitivity. Our results
are most consistent with completion in our stimuli occuring as a result of a high-level
perceptual inference or judgement rather than low-level, bottom-up processing. In
addition, we show that additional symmetry information can augment the comple-
tion effect without changing sensitivity.
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1 Introduction

1.1 Perceptual Completion

The visual system is constantly faced with the task of interpreting image data that is ambiguous,

corrupted, or missing (occluded). In the presence of these difficulties, the visual system must

bring to bear prior knowledge to successfully interpret the image, whether explicitly represented

or implicitly built into the visual system’s architecture (Kersten, 1990; Yuille and Bulthoff, 1996;

Kersten and Schrater, 2000). One of the most striking demonstrations of the visual system’s

use of prior knowledge is the phenomenon of perceptual completion. In perceptual completion

observers report seeing the presence of absent features that are the complement or “completion”

of features or objects present in the image (Pessoa et al., 1998).

Common examples of perceptual completion include the Kanizsa Triangle (Kanizsa, 1979), abut-

ted grating illusory contours (Paradiso et al., 1989) and Neon Coloring spreading (van Tuijl,

1975). It is not clear how the visual system effects completion, or whether it is the same phe-

nomenon in each example. On the other hand completion phenomena like illusory contours and

neon-coloring spreading are frequently attributed to a side-effect of the image processing, rather

than the result of a perceptual inference (Grossberg and Mingolla, 1985; Lesher, 1995; Spillman

and Dresp, 1995). Many attempts at determining the conditions for completion have been made,

beginning with the Gestaltists (Wertheimer, 1923; Kofka, 1935). While several attempts have

been centered around formulating general laws or principles like proximity, good continuation,

and common fate (Ullman, 1976; Parent, 1989; Kellman and Shipley, 1991; Heitger, 1993; Yin

et al., 1997), many recent ideas revolve around completion as a result of object or surface in-

ference or fitting (Nakayama et al., 1989; Nakayama and Shimojo, 1992; Sekuler et al., 1994;

Tse, 1999a,b; van Lier, 1999). Stimuli like the Kanizsa Triangle suggest that one of the key

requirements for generating perceptual completion is an adequate explanation for the missing

or corrupted data (Rock and Anson, 1979; Dennett, 1992). For example, in the triangle, the

presence of the “pac-men” can be explained by an occluding triangle, but only if the occluding

surface has the same color as the background.
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However, if completion occurs when the visual system finds an adequate explanation for the

missing or corrupted data then we should be able to create novel stimuli that produce completion

based on this principle. Below we describe a novel class of stimuli that uses a partial image placed

in an ambiguous context to induce a kind of perceptual completion.

One of the simplest contexts that indicates the possibility of missing data is visual noise. Because

all patterns exist on average in white noise, it is possible that the visual system can be biased

toward preferentially extracting a particular signal from the noise. We have found that adding

half of a bi-laterally symmetric image to uncorrelated noise produces an illusory completion for

all observers tested. In this case, familiarity with symmetric objects suggests that the other half

should be present, while the noise provides an explanation for why the data is missing. Examples

are shown in fig. 1a and fig. 1b, half of a face and half of an image of bull’s-eye rings. The

two patterns were used as stimuli in the experiments which follow, and were selected because of

their symmetry and potential familiarity. When additional symmetry information was provided

in the form of symmetric noise, the subjective reports of completion are much higher. Examples

of this are shown in 1c and fig. 1d. These completion effects are to our knowledge novel, and it

is important to point out that there is no reason the visual system should necessarily complete

these images. On the contrary, there is substantial evidence in the image for the absence of the

right half.

The main goals of this paper are to quantify this completion effect and to investigate how it arises.

We distinguish three basic possibilities. First, completion could be the result of an automatic low-

level “filling-in” process, in which missing image data is filled-in via image-based extrapolation

that assumes implicit, generic prior knowledge about mirror symmetry. Second, completion could

be the result of fitting a global template to the image data (e.g. fitting a familiar object, surface

or global pattern model to the image data). Third, completion could be the result of a high-level

decision that a particular global pattern is present, despite the lack of local image evidence.

In the next section we explain how these basic possibilities can be distinguished within the

context of signal detection theory, where low-level and model-fitting processes predict changes in

sensitivity (d′), while high-level processes predict no change in sensitivity, but instead a change
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a) b)

c) d)

Fig. 1. Does the detection of symmetry induce illusory figural completion? The presence of symmetry is

cued by symmetric noise. a) Half image of a face added to noise. Many observers report seeing illusory

completions of the face, particularly close to the midline.b) Half image of a set of concentric rings added

to noise. c) The same face half image as in a), but added to symmetric noise produced by reflecting

the right half of the noise image into the left. d) The half rings image added to symmetric noise. Most

observers report an increase in completion in the presence of symmetric noise.

in the decision criterion.

1.2 Task and Stimuli

In order to study completion within a signal detection framework, we have developed a measure of

completion using a detection task. The benefit of using the signal detection paradigm is that the
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magnitude of the perceptual completion can be measured separately from processing sensitivity.

The idea is straightforward: we add the left-half of a symmetric image to noise. On each trial,

observers were asked to detect the presence of the right-half image added to noise (Green

and Swets, 1974). The right-half was presented 50% of the time at just detectable contrasts,

and was absent half the time. A natural measure of completion is the proportion of times the

observer reports the presence of the right-half of the pattern when the right half-is absent. This

measure is simply the false alarm rate for the detection task. On the other hand, signal detection

theory allows us to simultaneously study sensitivity through the d′ measure of sensitivity. d′ takes

into account both hit and false alarm rates, and remains constant for fixed distributions of the

underlying decision variable. Thus using the detection task allows us to separate the magnitude

of the completion effect from the effect of processing on the stimulus on the right hand.

We performed a set of experiments that addressed three issues: 1) to measure the magnitude of

the completion effect; 2) investigate models of completion and 3) assess the role of additional

symmetry information on completion. The conditions for the experiment are schematically pre-

sented in figures 2&3. The conditions are arranged in a table, columns showing the type of

reference image that was placed in the left hand side, and rows showing the two noise types used:

symmetric and non-symmetric.

The three reference types, “Noise Alone”, “Completion”, and “Signal-Copy” allow us to quantify

the completion effect and control for non-completion changes in false-alarm rate. The difference

between false alarm rates in “Noise Alone” vs. “Completion” reference conditions provide a

natural measure of the magnitude of the completion effect. On the other hand, an increase in

false-alarms could be due to having information about the signal in the left hand side rather than

completion per se. Comparing false alarm rates between the “Completion” and “Signal-Copy”

reference conditions controls for this possibility. The use of symmetric and non-symmetric noise

allow us to investigate the effect of the addition of signal-uncorrelated symmetry information on

completion. Another non-completion use of the signal buried in the left hand side is to decrease

the observer’s uncertainty about which signal is present. In order to minimize this effect, the

signal to be detected was always presented in full contrast above the noise image on the right
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Fig. 2. Experimental stimuli and conditions. Face images.

hand side. This control is based on the results of Burgess (Burgess and Ghandeharian, 1984)

who showed that subjects were able to use this kind of information to reduce the effect of signal

uncertainty.

1.3 Predictions

Low-Level image-based extrapolation

The idea that completion results as a result of low-level processing predicts a change in d′, that in

general will produce a decrease. This is true because processing theories of completion modify the

image data to produce completion. In general it is impossible to modify the input data without

affecting sensitivity (d′).

Intermediate-level Model-based extrapolation
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Fig. 3. Experimental stimuli and conditions. Rings images.

The idea that completion results from a model-fitting process in general predicts a decrease in

d′. This decrease is due to the fact that fitting a complete model or template will result in the

inclusion of more background noise into the decision variable.

High-Level decision

The idea that completion results from a high-level decision process predicts no change in d′.

Here familiarity with the complete image of a face or rings can increase the prior on viewing the

complete image, which in turn biases the decision and changes the false alarm rate. However,

such changes in the decision criterion do not affect d’.
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2 Methods

2.1 Subjects

Twelve subjects (five males and seven females) participated in four sessions of 800 trials each. All

subjects were naive as to the purposes of the experiment except TK (author) and CS. Observers

viewed the stimuli binocularly and had normal or corrected-to-normal vision.

2.2 Stimuli

Stimuli consisted of: a signal image presented in the right half of the display, a reference image

presented in the left half, and both of theses images were added to Gaussian white luminance

noise. The signal image was either the left half of a face or rings, presented at 1.3% contrast.

The reference image was either a translated copy of the signal image, denoted “Signal Copy”

and presented at 20% contrast, a reflected copy (denoted “Completion”) also presented at 20%,

or no image (denoted “Noise Alone”). Noise was either symmetric or non-symmetric and had a

residual mean square contrast of 0.2. Symmetric noise was created by copying the reflected left

half noise image into the right half.

2.3 Apparatus

Stimuli were presented on on a gamma calibrated color monitor in 8 bit grayscale, using Psych-

Toolbox for Matlab display software written by David Brainard and Denis Pelli for the Macintosh.

Viewing distance was 50 cm and screen pixels were 0.6 millimeters in height and width. Stimuli

were 128x128 pixels, and subtended 17.3 degrees visual angle.
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2.4 Procedure

The twelve experimental conditions were randomly presented in 4 sessions of 800 trials each. The

task was to determine whether the right half of the noise image contained the target (either a

face or concentric rings). The targets were presented at a contrast levels of zero or 1.3% randomly

50% of the time. The signal contrast level was chosen to produce a d′ of about 1 in observers TK

and CS. A full contrast copy of the signal was presented immediately above the target (right)

side of the noise image.

The twelve experimental conditions consisted of two different target stimuli x 3 reference types

x 2 types of noise. Subjects responded by pressing the right arrow key for ”yes,” if they saw the

target and the left arrow key for ”no,” if they did not see the target. Subjects were given no

feedback, but were given as much time as needed to respond to each trial. and were given breaks

between trial runs when needed. Before data collection began, subjects performed 128 practice

trials of to provide familiarity with the experimental task.

2.5 Data Analysis

For each condition, false-alarm rates and d′ were measured. False Alarm rates are presented as

normal values,( e.g. FA = Φ−1(p(respondsignal|nosignal)), where Φ−1() is the inverse cumu-

lative normal function). d′ was computed via the relation d′ = Φ−1(p(respondsignal|signal)) −

Φ−1(p(respondsignal|nosignal)).

The data were analyzed both across and within subjects. Standard statistical analyses (T-tests,

one-way ANOVAs) were performed across subjects on the raw d′ and false-alarm normal values.

Individual analyses were performed via parametric bootstrap (equivalent to Monte-Carlo sim-

ulation) by assuming the subject’s response data are binomially distributed random variables.

Standard errors were estimated from the standard deviation of 1000 bootstrap replications. Boot-

strap T-tests follow Efron & TibshiraniEfron and Tibshirani (1993).

In order to test perform ANOVAs across the individual data, we extended the idea for the boot-
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strap T-test to perform a bootstrap ANOVA. Given several conditions (groups), the bootstrap

ANOVA tests whether the within condition means µi are significantly different from the group

mean µg = 1
Ng

∑Ng

i=1 µi, where Ng is the number of groups. The bootstrap ANOVA statistic

computes:

F j
b =

1

Ng

Ng
∑

i=1

(sj
i − µi)

2 − 1

Ng

Ng
∑

i=1

(sj
i − µg)

2

. This statistic is the deviation of bootstrap sample means from grand mean minus the deviation

of the bootstrap sample means from the sample means, where sj
i are the jth bootstrap replicate

from the ith group, and N is the number of bootstrap replicates. If the sample means equal the

group mean, then this quantity is distributed around zero. A test of the significance is given

by the proportion of bootstrap replicates that are less than zero. Essentially, the test uses the

deviations of the bootstrap sample means around the group mean to generate a distribution for

the Null Hypothesis, that the sample means are all equal to the group mean.

3 Results

The results will be presented first pooled across subjects to highlight the main results followed

by a presentation of the individual results.

3.1 Group Results

3.1.1 Completion Effect

A bar graph of the mean false alarm rate averaged across the 12 subjects for faces and rings is

shown in fig. 4. Note that the false-alarm rates are presented as normal values. The false-alarm

rates are highest for the completion condition in both faces and rings in both symmetric and non-

symmetric noise. The fact that the false alarm rates are significantly greater for the ‘Completion’

reference condition than the ‘Signal Copy‘ or ‘Noise Alone’ conditions (T-test, t=7.96, df=22,

p < 0.001) indicates the presence of the completion effect. This result also holds in a within

subjects data analysis, where all subject’s data show the same effect at the p < 0.005 level (see
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Fig. 4. False-alarm normal values averaged across the 12 subjects are shown for the faces and rings

stimuli. Error bars represent the standard error of the mean.

Methods section for the details of individual analysis).

For faces stimuli, there is no effect of the presence of the signal copy reference on false-alarm

rates over Noise Alone. However, for rings stimuli there is a significant increase for signal copy

over no reference, suggesting that there may be some completion in the this condition as well.

Subjectively, the rings in the signal copy condition look that ripples or waves in the presence of

the signal in the right hand side (see figure 3). These waves have a regular appearance that may

allow a kind of completion that is not possible in the signal copy condition for faces stimuli.

3.1.2 Effect of Symmetric Noise

The main effect of symmetric noise on false-rates is to significantly increase the magnitude of

the completion effect for both faces and rings (T-test: p < 0.05). However, this increase is small,

and is only significant in 7 out of 12 subjects analyzed individually for faces and 6 out of 12

subjects for rings. Thus, symmetry information which is unrelated to the signal can still promote

completion. However, symmetric noise alone does not significantly increase false-alarm rates for

9 of the 12 subjects .
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3.1.3 Effects of completion on the d′ measure of performance.

A bar graph of d′ averaged across the 12 subjects shows no significant change in d’ for any

of the conditions for the face stimulus, and only one significant effect for the rings stimulus: a

decrease in performance for the “signal-copy” reference in non-symmetric noise. The condition

that gave rise to the highest false alarm rate, the “Completion” reference in symmetric noise,

gave the highest d’ rate but the results were not statistically significant.This lack of significance

could be due to averaging across subjects with large differences in d′ ranges, which could mask

within subject differences. However, performing the within subjects analysis shows no significant

difference in d′ across the reference types and noise types for all but two subjects at the p < 0.05

level and no subjects at the p < 0.01 level. These results suggest that the completion effect is

due to a high-level inference or judgement rather than a result of bottom-up processing.

Given the results of the d’ rate, the evidence supports a theory of perceptual completion that

produces no change in performance. We will discuss the kinds of completion mechanisms that

could produce these results in the discussion section.

3.1.4 Effects of symmetric noise on performance.

The presence of symmetric noise has no significant effect on performance. For the completion

stimulus, symmetric noise seems to enhance FA rate but not d′.The simplest explanation of

this phenomena is that the presence of symmetric noise acts as a flag which increases the prior

probability of the full face or rings image occurring.

3.2 Individual results

Individual results are presented in tables 1-4.
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Fig. 5. False-alarm normal values averaged across the 12 subjects are shown for the faces and rings

stimuli. Error bars represent the standard error of the mean.

Conditions Subjects

Noise Type Reference CE CY JP ML TC CS TK PC VR WS LL JL

Noise Alone -1.1 -1.0 -1.7 -1.5 -0.9 -0.1 -1.5 -0.1 -1.5 -1.05 -1.43 -1.38

Noise Completion 0.1 0.9 0.8 0.2 -0.2 0.3 0.7 0.6 0.0 0.8 -0.2 0.2

Signal Copy -0.9 -0.6 -1.0 -1.2 -0.7 -0.8 -1.4 -0.3 -0.7 -1.7 -1.2 -1.0

Noise Alone -1.0 -1.1 -1.9 -1.3 -1.2 -1.2 -1.4 -0.7 -1.4 -1.2 -2.1 -0.3

Sym. Noise Completion 0.5 0.8 1.1 1.0 0.2 0.1 0.0 1.2 0.3 0.8 -0.4 1.7

Signal Copy -1.3 -0.8 -1.3 -1.3 -0.9 -1.4 -3.1 -0.9 -1.2 -0.8 -3.1 -0.4

Table 1

Faces stimuli: Table of FA rates expressed as normal values for all subjects.
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Conditions Subjects

Noise Type Reference CE CY JP ML TC CS TK PC VR WS LL JL

Noise Alone -0.9 -1.0 -1.9 -1.1 -1.3 -0.5 -0.6 -1.8 -3.1 -1.3 -1.8 -1.0

Noise Completion 1.0 1.1 1.1 1.3 -0.2 0.3 1.7 1.8 0.5 0.8 1.7 1.3

Signal Copy -0.1 -0.1 -0.9 -1.1 -0.9 0.4 0.6 -0.6 -0.3 -1.4 0.0 1.9

Noise Alone -0.7 -0.9 -1.7 -1.4 -1.4 -0.5 -0.7 -1.5 -2.1 -1.6 -1.8 -0.7

Sym. Noise Completion 0.9 1.0 1.1 1.3 -0.0 0.5 3.1 1.6 0.8 3.1 0.7 1.2

Signal Copy -0.1 0.2 -1.0 -1.1 -1.0 0.1 0.5 -1.0 -0.7 -1.4 -0.2 0.9

Table 2

Rings stimuli: Table of FA rates expressed as normal values for all subjects.

Conditions Subjects

Noise Type Reference CE CY JP ML TC CS TK PC VR WS LL JL

Noise Alone -0.0 0.2 0.8 0.5 0.2 3.2 1.1 0.6 1.6 0.0 0.4 0.3

Noise Completion 0.1 0.5 0.9 0.8 0.1 1.1 0.6 0.5 1.0 0.3 1.3 0.7

Signal Copy -0.1 0.1 0.4 0.4 -0.0 3.9 0.7 0.9 0.3 0.5 -0.2 0.1

Noise Alone -0.0 0.1 0.5 0.3 0.2 1.9 0.8 0.4 1.1 0.8 0.7 0.1

Sym. Noise Completion 0.1 0.5 0.7 0.8 0.2 1.3 1.7 1.9 0.8 0.9 0.7 0.0

Signal Copy 0.3 0.2 0.6 0.5 0.0 1.4 2.1 0.9 0.8 -0.0 0.0 -0.2

Table 3

Faces stimuli: Table of d’ values for all subjects.

4 Discussion

4.1 Completion effect

We have presented a novel completion effect, in which one half of a pattern appears to be

completed when embedded in visual noise. The fact that we found a completion effect for these
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Conditions Subjects

Noise Type Reference CE CY JP ML TC CS TK PC VR WS LL JL

Noise Alone 0.2 0.3 1.0 0.4 0.4 0.9 0.9 1.3 2.6 -0.4 1.0 1.1

Noise Completion 0.2 0.7 1.3 0.7 0.7 1.6 1.4 -0.0 2.6 0.5 -0.5 1.8

Signal Copy 0.1 0.2 1.0 1.1 0.2 -0.1 0.9 0.3 0.6 0.7 0.5 -0.2

Noise Alone 0.2 0.2 0.5 0.9 0.3 1.0 0.6 0.9 1.3 0.7 1.1 0.5

Sym. Noise Completion 1.4 0.8 2.0 1.7 0.8 1.2 0.0 1.5 0.5 0.0 0.6 1.9

Signal Copy 0.2 0.2 0.9 1.0 0.1 0.3 0.8 0.7 1.5 0.7 1.0 2.2

Table 4

Rings stimuli: Table of d’ values for all subjects.

stimuli supports the general idea that perceptual completion is the result of using prior knowledge

to form an interpretation of ambiguous images with missing data. Although our data support a

high-level implementation of the completion for our stimuli, there may be several ways that prior

knowledge can be implemented, and other completion effects may differ in their implementation.

However, the noise completion effect fits the general pattern of completion stimuli: 1) due to

missing or corrupted data the stimulus is ambiguous in the sense that the image information

is not sufficient to form a unique interpretation; 2) the stimulus admits an explanation for the

missing/corrupted data that is consistent with the observer’s prior knowledge.

For our stimuli, the white noise satisfies both conditions. Condition 1 is satisfied because white

noise can be considered as carrying infinitely many signals and hence is fundamentally ambiguous.

Thus, for any sample of white noise, there will always be some evidence for the existence of the

signal in the right half noise. However, the evidence for this signal is no better than the evidence

for any other signal. On the other hand, the presence of noise constitutes positive evidence that

the data has been corrupted/destroyed, hence satisfying condition 2.

For condition 2 to be completely satisfied, however, there must be some prior knowledge that the
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left half signals normally occurs as part of a complete image. In this regard, the signal images

we used can be considered as eliciting the use of two kinds of prior information indicating the

left-half signal usually occurs with its left-half complement: knowledge of the complete signal’s

symmetry and a familiarity with the complete stimuli. We will discuss the use of symmetry and

familiarity to promote completion below.

4.1.1 Symmetry

The term symmetry is generally used to describe the mapping of a pattern onto itself or onto

other patterns (Tyler and Hardage, 1996), and hence connotes a characteristic redundancy of

information. Of the possible symmetries, mirror symmetry plays a special role in vision. Mirror

symmetry is ubiquitous in biological forms, and there is abundant evidence that visual systems

make use of it in many ways, including discrimination and recognition (Delius and Nowak,

1979; Tyler and Hardage, 1996) and mate selection (Moeller, 1992; Swaddle and Cuthill, 1993),

among others. In keeping with the notion of the biological relevance of mirror symmetry, there

is abundant evidence that mirror symmetric images are specially processed by the human visual

system (Wagemans, 1996). Ernst Mach (Mach, 1979), in one of the first experiments on symmetry

perception, found that people can easily perceive bilateral symmetries of simple amorphous

shapes. Since then, a large number of studies have looked at the effects of different factors on the

speed and efficiency of symmetry detection. In general, symmetry detection is best for symmetry

close to a vertical axis (Wagemans, 1996; Barlow and Reeves, 1979; Jenkins, 1982; Tyler et al.,

1995).

In addition, symmetry has a long history as a potential factor in figural completion (Kofka,

1935; Dinnersten and Wertheimer, 1957; Barlow and Reeves, 1979; Kanizsa, 1979; Buffart and

Leeuwenberg, 1981; Buffart et al., 1983; Sekuler, 1994), beginning with Gestalt theory, where

symmetry was one of the factors postulated to affect the organizational Gestalt principles of

closure and good continuation. The common thread in all of this work is that if symmetry is

detected, the characteristic redundancies of symmetric patterns can be exploited to infer missing

or corrupted information in the image. Because symmetry is efficiently detected (Barlow and
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Reeves, 1979), it is plausible that detected symmetry can be used to automatically generate a

completed figure.

4.1.2 Familiarity

Familiarity denotes the recognition that the image includes features that could belong to a

familiar pattern. If the visual system fits object or surface models to the image data, then

familiarity can bias the selection of which model best interprets the data . The reason for studying

familiarity is that it makes clearer the distinction between completion that could arise due to

generic image processing, independent of the objects in the scene, and completion that could

arise from fitting familiar objects to a scene.

5 Theories of completion

The phenomena of completion forms strong empirical evidence that vision involves an inferential

process. There are many ways the visual system might perform completion, but existing theories

fall into three broad categories based on the kind of knowledge the visual system brings to

bear on the completion process. One possibility is that high-level, domain specific knowledge

is used to infer the image should be complete (Gregory, 1972; Rock and Anson, 1979; Durgin

et al., 1995). Another broad possibility is that completion is the result of automatic processes in

which the early visual system constructively “fills in” or interpolates the missing pieces based on

generic principles (e.g. smoothing, or Gestalt mechanisms). The constraints for filling-in could

be implemented using low-level image-based operations (Kellman and Shipley, 1992; Wouterlood

and Boselie, 1992). Alternatively, the filling-in could involve an intermediate-level process that

first indexes a candidate (complete) familiar pattern, object, or surface (Nakayama et al., 1989;

Paradiso et al., 1989; Shimojo and Nakayama, 1990). In this section we investigate and quantify

specific versions of these three completion schemes and compare their predictions to our results.

Low-level completion: Image-based data modification The most common account of completion is

that it is the result of automatic image processing that is not tied to a model of the scene. The
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basic idea is that there are a set of heuristics which the visual system applies to all incoming

images which extract and represent information the organism needs. These heuristics, however,

sometimes generate representations of the image data which have ”filled-in” information not in

the original image.

Heuristics used to explain phenomena like the filling-in of the blind-spot and neon color spread-

ing involve competitions between neurons with inhibitory lateral connections (van Tuijl, 1975;

Grossberg and Mingolla, 1985; Fiorani Junior et al., 1992; Grossberg, 1997). Heuristics for stim-

uli like the Kanisza triangle involve the construction of ”illusory contour detectors” (von der

Heydt et al., 1984), that embody simple rules for detecting line configurations which are likely to

generate the percept of illusory contours. These rules are largely based on Gestalt principles like

good continuation and symmetry, and on the knowledge of the kinds of line configurations (e.g.

T-junction) which would result from occlusion (Ullman, 1976; Parent, 1989; Kellman and Ship-

ley, 1992; Wouterlood and Boselie, 1992; Heitger, 1993; Williams and Hanson, 1994; Williams,

1994).

The basic idea is that the incoming data is automatically modified, and this modified data forms

the substrate of a perception of completion.

Intermediate-level Model Fitting: Indexing a familiar global pattern

A second basic possibility is that completion is the by-product of the visual system fitting a global

pattern, such as an object or surface model, to the image data. Such a process could involve an

“indexing” stage similar to that in models of recognition. Evidence from the left-image is used

to select (the indexing stage) a global template from a library of familiar patterns. This global

template is then applied to the whole image. When there is a constellation of image features that

are consistent with a common or high probability model, the mismatch is ignored and the visual

system makes the inference that the complete surface/object must be there.

High-level: decision-based

Finally, completion could be a consequence of a high level process, like a perceptual judgement

or high-level feedback that “fills-in” the missing information, but only after the decision as to
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the pattern is made. In this view it is a perceptual inference that the completed object is in the

scene that creates the percept of completion.

5.1 Signal detection models of completion

In this section we use a signal-detection approach to quantify and illustrate the predictions of

several general classes of completion model and differentiate between them in light of our results.

The generative model for the task is simple:

!I = !r + !n (1)

A fixed signal !r is added to a sample of gaussian white noise to form an image !I. In the detection

task, !r has a 50% probability of being a signal in the right half image (e.g. face or rings) denoted

by !s and a 50% probability of being zero.

The likelihoods for the task are given by:

P (!I|!r = !s) =
N
∏

i=1

1√
2πσ2

exp(−(Ii − si − Bi)2

2σ2
) (2)

P (!I|!r = 0) =
N
∏

i=1

1√
2πσ2

exp(−(Ii − Bi)2

2σ2
) (3)

where !B is the background luminance that is identical at each pixel, σ2 is the variance of the

image noise and N is the number of pixels in the image.

It is well-known that the log-likelihood ratio comparison is equivalent to comparing !s · !I =
∑N

i=1 siIi with a fixed criterion T . This is called the matched template observer. To compute

the sensitivity (d′) and false-alarm rates of the matched filter observer, we need to compute the

distribution of !s · !I assuming !I is generated by either by the signal plus noise or the noise alone.

Because !I is gaussian distributed and linear combinations of gaussian variables are gaussian

distributed, !s · !I is gaussian distributed and hence is completely described by its mean and

variance (see Appendix).
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Because it is the simplest, we first describe the high-level decision-based model.

5.1.1 Model 1: High-level: Decision-based

We are interested in modelling an observer that performs perceptual completion via a high-level

decision event. In other words, completion results purely from the decision that something should

be in the right half given the presence of the left-half of the image. Because this model involves

only a perceptual decision, we can model the observer completely through the decision threshold

criterion T and assume that data processing is done optimally via the matched template.

One of the simplest assumptions is that the presence of the left-half image effectively increases the

observer’s prior probability for the signal being present by some factor cL(cL > 1): P (signal|left-half) =

P (signal)cL. Thus

TL =
µs − µn

2
+ log(

P (noise)/cL

P (signal)cL
) = T − 2 log(cL)

Predictions

Under these conditions, it is shown in the appendix:

∆d′ = 0 (4)

∆FA = Φ−1(FL(T )) − Φ−1(F (T )) =
2 log(cL)√

σ2!s · !s
(5)

where FA is the false-alarm rate, and Φ() is the inverse cumulative gaussian, and σ2 is the

variance of the background additive noise. Thus we expect no change in d′ with this model, but

an increase in the false-alarm rate.

5.1.2 Model 2: Intermediate-level, Full-template model-fitting

One simple model of completion is that the presence of the left-half image triggers the observer’s

use of a complete template to detect the right-half signal. In the appendix we show how for this

model increases in false-alarm rate are accompanied by decreases in sensitivity.

In this model, we assume that the observer in the presence of the left-half is a matched template
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observer with its template composed of both the right-half signal image !s and the left-half

reflected image !l to form the template !tf = !s + !l. We assume that this observer uses a fixed

threshold T for all its decisions, in order to isolate the effect of using the full-template on false-

alarm rates and sensitivity. Thus the full-template observer computes x = !tf ·!I and decides signal

or noise by comparing x to T . We can determine the properties of this observer by computing

the mean and variance of x on the signal and noise conditions.

Predictions

In the appendix, we show that if we assume T = 2!s · !B + !s · !s/2 in the presence of the left-half,

then we can derive a simple formula for the change in d’ as a function of the change in false-alarm

rate.

This model predicts:

∆FA =
2 log(T )√

σ2!s · !s
(6)

∆d′ =−
√

2∆FA (7)

Thus we expect an increase in the false-alarm rate in the presence accompanied by a decrease in

d′ with this model.

5.1.3 Model 3: Low-Level, Image-based Data Modification

A third basic possibility is that completion results from a low-level process that automatically

completes or fills-in the right-hand side based on the left-half image. Many such strategies have

been proposed () that differ widely in terms of implementation. The essence of the idea, however,

is that the information on the left-hand side is used to complete or fill-in the ’missing’ information

on the right-hand side. A reasonable, simple, and mathematically tractable model of such a

process assumes the completion process effectively adds a reflected copy of the left hand image

to the right hand image to form a new internal representation of the image:

!In = !I + bR(!Il − !B)
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where R() is the reflection function, Il is the left subimage minus the background luminance and

b is a scale factor.

Again, in the presence of the left-half, we assume that the observer is a matched template

observer, and that this observer uses a threshold T = !s · !B +!s ·!s/2 for all its decisions. Thus the

full-template observer computes x = !s · !In and decides signal or noise by comparing x to T . We

can determine the properties of this observer by computing the mean and variance of x on the

signal and noise conditions.

This model predicts:

∆F =

(

b − 1
2√

b2 + 1
+

1

2

)
√

!s · !s
σ

(8)

∆d′ =
2(1 −

√
b2 + 1)√

b2 + 1 + 2b − 1
∆F (9)

Because b > 0, we expect an increase in the false-alarm rate in the presence of the left half

image accompanied by a decrease in d′ with this model. In particular, if b = 1 (copied without

attenuation), then:

∆d′ = −0.34∆F

This value is used in figure 6.

5.1.4 Comparing predictions to data

The three models of completion make simple predictions about how sensitivity changes with

increases in the false alarm rate. In figure 6 we plot the change in d′ between the ’noise alone’

and ’completion’ conditions as a function of the change in false-alarm rate.

Of the three models, the best overall fit is generated by the high-level model which predicts no

change in d′. The ∆d′ for all subjects are clustered around zero except one (CE) for face stimuli

and two (CS,WS) for rings. Although 4 subjects appear to match the low-level (dashed-line)

predictions for faces, none of these subjects show a similar agreement for rings. Thus, parsimony

suggests completion is the result of a high-level decision procedure.
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Fig. 6. Change in d′ between the ’completion’ and ’noise alone’ conditions is plotted as a function of the

change in false-alarm rate for the 12 subjects for faces (left) and rings (right). Subject labels are used

as data points and the error bars represent bootstrap estimates of the standard errors of the estimate.

The solid line represents the prediction of the high level model (model 1), the dotted line represents the

complete template model (model 2), and the dashed line represents the low-level (model 3) predictions.

However, for faces and especially for rings, ∆d′ is greater than zero for several subjects, whereas

all three predict models predict no change or decreases in d′ with increases in ∆FA. What could

produce an increase in d′?

5.1.5 Spatial Uncertainty

One of the simplest ways that ∆d′ could be greater than zero is that the observer has substantial

spatial uncertainty about the location of the signal in the image. Spatial uncertainty would be

expected to reduce sensitivity in the ’noise alone’ over the ’completion’ condition because in the

’completion’ condition the left-half forms a visual landmark that specifies where the signal will

spatially appear.

If spatial uncertainty is driving ∆d′ toward values greater than zero, then a real decrease in ∆d′

with increases in ∆FA could be present but masked, which confounds our conclusion that the

completion effect is likely caused by a high-level decision.

If real decreases in ∆d′ are being masked by spatial uncertainty in the ’noise alone’ condition,

then we would expect that observers with the least spatial uncertainty should show the largest
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Fig. 7. Change in d′ between the ’completion’ and ’noise alone’ conditions is plotted as a function of

’noise alone’ d′ for the 12 subjects for faces (left) and rings (right). Subject labels are used as data points

and the error bars represent bootstrap estimates of the standard errors of the estimate. The dashed

line represents the best straight line fit and dotted lines represent the 50% confidence intervals of the

straight line fit.

decrease in ∆d′. However, observers with the least spatial uncertainty should have the highest

d′ in the ’noise alone’ condition. Thus, if this masking is occurring, we would expect to see a

negative trend in a plot of ∆d′ vs. ’noise alone’ d′, which is shown in figure ??. Instead we observe

no significant trends, suggesting that any masking should not affect our conclusions.

5.2 Symmetry and processing

While there is abundant evidence for the special processing and early detection of bilateral

symmetry, we found little effect of noise symmetry on sensitivity. We found this result somewhat

surprising because there are many ways in which this symmetry could have been used that would

alter sensitivity.

In fact, error-free performance can be achieved on the symmetric noise trials. This is due to

the fact that given one part of the image and the knowledge that the image is symmetric, the

other part can be produced by copying and reflecting. Thus the symmetric noise can be entirely

removed by subtracting off the reflected left-hand image, to perfectly reveal the presence or

absence of the signal (e.g. by setting b = −1 in Model 3).
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In general there are two basic ways that symmetry can be used to improve visual performance

and efficiency, by allowing more efficient codes and (as mentioned above) providing a means to

do noise removal.

5.2.1 Efficient Coding

The redundancy in symmetric images could be used to construct an efficient coding scheme, such

that the redundant data is discarded. The notion that symmetry may be used for efficient encod-

ing was put forward by Barlow (Barlow and Reeves, 1979). In the context of our experiments,

such encoding should decrease the salience of a signal added to the symmetric pattern. If sym-

metry is used to compress the encoding of the image, then a small signal added to the symmetric

noise would also get compressed, and hence less detectable than a signal added to non-symmetric

noise. Thus, this coding idea predicts a decrease in d’ in the presence of symmetric noise which

is inconsistent with our results.

5.2.2 Denoising

Alternately, given the presence of symmetry, the two halves of the image can be compared for

discrepancies. This comparison can be used for denoising corrupted images or the completion of

occluded images. Because the two halves of a symmetric noise image are reflected copies of each

other, a signal buried in one half can be perfectly detected by reflecting and subtracting one side

of the noise image from the other. Thus an observer that uses symmetry to denoise an image

should have substantially better performance detecting a signal added to symmetric noise than

a signal added to non-symmetric noise. Again, this prediction is not consistent with our results.

5.2.3 Filling in missing/occluded data

On the other hand symmetry can be used to fill in missing data. In the presence of symmetry,

unaffected areas of the image can be copied into areas that have missing or occluded data. In the

context of the experiment, the presence of the symmetric noise could cause the copying of the

left hand image noise into the right, obscuring the signal and decreasing sensitivity. This idea is
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not supported by our results.

5.2.4 Changing priors

Another possible use for symmetry information is to adjust prior expectations and/or uncertainty

about the objects in the scene. The presence of symmetry in an image constitutes a substantial

restriction on the kind of scene that could have caused the image. Simply stated, we may want to

detect symmetry because the probability of a symmetric image given a relevant biological cause

(e.g. predator or prey) is high compared the probability of a symmetric image given a generic

cause. Thus the presence of symmetry can be used to indicate the likely presence of a biological

form in the scene. In the context of the experiment, the presence of symmetry could increase

the prior expectation of observing a symmetric image, which in the case of the face and rings

would mean a complete image. This possibility can produce increases in false-alarm rates without

changing sensitivity, consistent with our results.

A similar conclusion has been reached by Vetter et al. ( (Vetter et al., 1994)). They found that

human observers can use a priori information about symmetry to recognize 3-D objects. From

an accidental view of a bilateral symmetric object, humans can recognize novel views. They

explained this effect as a reduction in the required number of model views for the recognition of

symmetrical objects.

6 Conclusions

We have investigated a novel completion phenomenon in which partial patterns are perceptually

completed in visual noise. The phenomenon is consistent with the general idea that completion is

the result of using symmetry to find a viable interpretation of ambiguous image data, irregardless

of whether completion is implemented by high-level global processes or low-level local processes.

However, signal detection theory analysis took us one step further in suggesting that the com-

pletion is not due to low-level image-based processes, nor due to intermediate-level model-fitting

processes. Rather, it may be best explained by a change in an observer’s prior probability of a
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whole pattern being present. This change in prior affects the decision criterion, and thus the false

alarm rate for reporting whole patterns. In contrast to most signal detection tasks, the change

in prior probability is manifest perceptually–rather than as a pure response bias.

7 Conclusions
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Appendix

The ideal observer for the detection task is the simple and well-known matched template ob-

server).

The generative model for the task is simple:

!I = !r + !n (10)

A fixed signal !r is added to a sample of gaussian white noise to form an image !I. In the detection

task, !r has a 50% probability of being a signal in the right half image (e.g. face or rings) denoted

by !s and a 50% probability of being zero.

The likelihoods for the task are given by:

P (!I|!r = !s) =
N
∏

i=1

1√
2πσ2

exp(−(Ii − si − Bi)2

2σ2
) (11)

P (!I|!r = 0) =
N
∏

i=1

1√
2πσ2

exp(−(Ii − Bi)2

2σ2
) (12)

where !B is the background luminance that is identical at each pixel, σ2 is the variance of the

image noise and N is the number of pixels in the image.

The unbiased Bayes optimal decision is to choose signal present (!r = !s) is present if P (!I|!r=!s)

P (!I|!r=0)
>

P (!r=0)
P (!r=!s) and otherwise choose no signal. This decision rule is invariant to monotonic transforms

like the natural logarithm, hence the decision rule can be written: log(P (!I|!r=!s)

P (!I|!r=0)
) > T where

T = log(P (!r=0)
P (!r=!s)).

It is well-known that the log-likelihood ratio comparison is equivalent to comparing !s · !I =
∑N

i=1 siIi with a fixed criterion T . This is called the matched template observer. To compute

the performance and false-alarm rates of the matched filter observer, we need to compute the

distribution of !s · !I assuming !I is generated by either by the signal plus noise or the noise alone.

Because !I is gaussian distributed and linear combinations of gaussian variables are gaussian

distributed, !s · !I is gaussian distributed and hence is completely discribed by its mean and
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variance. Let x = !s · !I. Then:

P (x|signal) =
exp(− (x−µs))2

2σ2
n

)
√

2πσ2
n

=
1√

2πσ2!s · !s
exp(−(x − !s · (!s + !B))2

2σ2!s · !s ) (13)

P (x|noise) =
exp(− (x−µn))2

2σ2
n

)
√

2πσ2
n

=
1√

2πσ2!s · !s
exp(−(x − !s · !B)2

2σ2!s · !s ) (14)

The threshold T is given by T = µs−µn

2 + log( P (noise)
P (signal)).

The formula for d′ and the false-alarm rate are easily derived from the expressions:

d′ =
µs − µn

σn
=

√
!s · !s
σ

(15)

F (T ) =

∞
∫

T

exp(− (x−µn))2

2σ2
n

)
√

2πσ2
n

= Φ(
µn − T

σn
) = Φ(

!s · !B − T√
σ2!s · !s

) (16)

where Φ is the cumulative normal function.

7.1 Model 1: High Level-Decision based

In this model we assume that the presence of the left-half image increases the prior probability

for the signal being present by some factor cL: P (signal|left-half) = P (signal)cL. Thus

TL =
µs − µn

2
+ log(

P (noise)/cL

P (signal)cL
) = T − 2 log(cL)

No Left-Half

In the no left-half condition:

d′ =

√
!s · !s
σ

(17)

F (T ) = Φ(
!s · !B − T√

σ2!s · !s
) (18)

Left-Half present
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In the left-half present condition the template ignores the left-half, thus:

d′
L =

√
!s · !s
σ

(19)

FL(T ) = Φ(
!s · !B − TL√

σ2!s · !s
) (20)

Predictions

This model predicts:

d′
L − d′ = 0 (21)

Φ−1(FL(T )) − Φ−1(F (T )) =
2 log(cL)√

σ2!s · !s
(22)

Thus we expect no change in d′ with this model, but an increase in the false-alarm rate.

7.2 Model 2: Full-template model

In this model, we assume that the observer in the presence of the left-half is a matched template

observer with its template is composed of both the right-half signal image !s and the left-half

reflected image !l to form the template !tf = !s+!l. We assume that this observer uses a fixed thresh-

old T for all its decisions, in order to isolate the effect of using the full-template on false-alarm

rates and performance. Thus the full-template observer computes x = !tf · !I and decides signal

or noise by comparing x to T . We can determine the properties of this observer by computing

the mean and variance of x on the signal and noise conditions.

No Left-Half

In the no left-half condition, x = !s · !I is gaussian distributed with means and variance as before.

Thus:

d′ =
!s · !s
σ

(23)

F (T ) = Φ(
!s · !B − T√

σ2!s · !s
) (24)
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Left-Half present

Similarly, in the left-half present condition:

µx|signal = !tf · (!tf + !B) = (!l + !s) · (!l + !s + !B) = 2!s · !s + 2!s · !B (25)

µx|noise = !tf · (!l + !B) = !l ·!l + (!l + !s) · !B = !s · !s + 2!s · !B (26)

σ2
x = !tf · !tfσ

2 = (!l + !s) · (!l + !s)σ2 = 2!s · !sσ2 (27)

where we have used !s ·!l = 0, !l ·!l = !s · !s, and !l · !B = !s · !B.

Thus:

d′
L =

√
!s · !s√
2σ

(28)

FL(T ) = Φ(
!s · !s + 2!s · !B − T√

2σ2!s · !s
) (29)

Predictions

If we assume T = 2!s · !B + !s · !s/2 in the presence of the left-half, then we can derive a simple

formula for the change in d’ as a function of the change in false-alarm rate.

This model predicts:

∆F = Φ−1(FL(T )) − Φ−1(F (T )) =
(1 +

√
2)
√

!s · !s
2
√

2σ
(30)

d′
L − d′ =

(1 −
√

2)
√

!s · !s√
2σ

= −
√

2∆F (31)

Thus we expect a decrease in d′ with this model, but an increase in the false-alarm rate in the

presence of the left half image.
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7.3 Model 3: Low-Level (Data Modification)

In this model, a reflected copy of the left hand image is added to the right hand image to form

a new internal representation of the image:

!In = !I + bR(!Il − !B)

where R() is the reflection function, Il is the left subimage, !B is the background luminance and

b is a scale factor.

Again, in the presence of the left-half, we assume that the observer is a matched template

observer, and that this observer uses a threshold T = !s · !B +!s ·!s/2 for all its decisions. Thus the

full-template observer computes x = !s · !In and decides signal or noise by comparing x to T . We

can determine the properties of this observer by computing the mean and variance of x on the

signal and noise conditions.

No Left-Half

In the no left-half condition, x = !s · !In is gaussian distributed with means and variance as before.

Thus:

d′ =
!s · !s
σ

(32)

F (T ) = Φ(
!s · !B − T√

σ2!s · !s
) (33)

Left-Half present

Similarly, in the left-half present condition:

µx|signal =!s · ((b + 1)!s + !B) (34)

µx|noise =!s · (b!s + !B) (35)

σ2
x = (b2 + 1)!s · !sσ2 (36)

Thus:
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d′
L =

√
!s · !s√

b2 + 1σ
(37)

FL(T ) = Φ(
!s · !s + 2!s · !B − T√

2σ2!s · !s
) (38)

Predictions

This model predicts:

∆F = Φ−1(FL(T )) − Φ−1(F (T )) =

(

b − 1
2√

b2 + 1
+

1

2

)
√

!s · !s
σ

(39)

d′
L − d′ =

(

1√
b2 + 1

− 1

)
√

!s · !s
σ

=
2(1 −

√
b2 + 1)√

b2 + 1 + 2b − 1
∆F (40)

Because b > 0, we expect a decrease in d′ with this model, but an increase in the false-alarm rate

in the presence of the left half image.
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