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How to compute initially unknown reward values makes up one of
the key problems in reinforcement learning theory, with two basic
approaches being used. Model-free algorithms rely on the accumu-
lation of substantial amounts of experience to compute the value of
actions, whereas in model-based learning, the agent seeks to learn
the generative process for outcomes fromwhich the value of actions
can be predicted. Here we show that (i) “probability matching”—
a consistent example of suboptimal choice behavior seen in humans
—occurs in an optimal Bayesian model-based learner using a max
decision rule that is initialized with ecologically plausible, but incor-
rect beliefs about the generative process for outcomes and (ii) hu-
man behavior can be strongly and predictably altered by the
presence of cues suggestive of various generative processes, despite
statistically identical outcome generation. These results suggest hu-
man decisionmaking is rational andmodel based and not consistent
with model-free learning.
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Given a limited set of data about the world, what is the best thing
todo?Thisquestion liesat theheart of all decisionmaking, from

simple everyday errands to elaborate and complex scientific experi-
ments. If the reward amount for each possible action is known in
advance, it is a straightforward process to make choices that maxi-
mize reward. In the real world, however, reward values are nearly
always initially unknown and computing them is not trivial. Thus,
understanding how to learn and compute reward is one of the key
problems in reinforcement learning theory. Computing the optimal
policy (i.e., determining the “best thing to do”) requires acquiring
one of two types of knowledge. Inmodel-free learning, an agentmust
accumulate a substantial amount of experience regarding the con-
sequences of taking various actions in various states, from which the
average value of the states can be learned. Inmodel-based learning,
an agent must acquire a “world model,” which constitutes beliefs
about how the world generates outcomes in response to actions.
Although bothmodel-free andmodel-based reinforcement-learning
algorithms have been the subject of much study in computer science
and machine learning, model-free algorithms have been primarily
used as models of human choice behavior.
Whereas it is clear that our survival depends on the ability to

make appropriate decisions from incomplete and ambiguous in-
formation, numerous studies in economics, psychology, and neu-
roscience have consistently found highly suboptimal behavior in
seemingly simple decision tasks. Why is this? Consider the se-
quential binary decision task, which involves a choice between two
options, one with a higher probability of success than the other
(e.g., 70% vs. 30% of trials). The optimal strategy for this task is to
determine which option has a higher probability of success and
then choose only that option. Humans, however, tend to sample
the alternatives in proportion to the options’ respective probabil-
ities of being correct. This is an exceptionally consistent effect
known as “probability matching.” It has been replicated in dozens
of laboratories, under myriad task conditions, and is extremely
robust, persisting for thousands of trials (1–15).Most theories treat
this behavior as a fundamental failure of rational decision making.
In contrast, we propose that humans typically engage in rational

decision making arising frommodel-based, rather than model-free
learning. From this perspective, nonoptimal decision making, such
as probabilitymatching, emerges as a consequence of a poormatch
between the model used by human subjects to interpret the data
and the generative model used in a typical experiment.
Here we show that (i) probability matching behavior occurs in

even an optimal Bayesian model-based learner that is initialized
with ecologically plausible, but incorrect beliefs about the genera-
tive process for outcomes and (ii) human behavior can be strongly
and predictably altered by the presence of cues suggestive of various
generative processes, despite statistically identical outcome gener-
ation. These results suggest human decision making is rational and
model based and not consistent with model-free learning.
In the sequential binary decision task, the goal is to make

choices that maximize the number of successes. There are three
key facts about the generative process for outcomes that the sub-
ject must learn or infer to compute the optimal strategy. First, the
probability of success is greater for one of the two options (e.g.,
choosing “option A” leads to success 70% of the time, whereas
choosing “option B” leads to success 30% of the time). Second,
outcomes are independent across time (i.e., if option A was suc-
cessful on the previous trial, it does not increase or decrease the
probability that option A will be successful on the next trial). And
third, the outcomes are coupled, or, in other words, something can
be inferred about one option’s reward probability from observing
the other.Given this model for outcome generation, the normative
optimal strategy is simply to always choose the option with the
higher probability of success.
Although the true generative model in the binary choice task is

one in which outcomes are temporally independent and coupled,
this is not necessarily the most ecologically plausible generative
process. Thus, it would be surprising if subjects naturally posit such
a model. Instead, we suggest that subjects may initially consider
a model in which outcomes are temporally dependent and uncou-
pled. As a purely illustrative example, imagine a person who is
faced with the choice between hunting and gathering. On day 1 he
chooses to gather and is pleased to find an orchard bearing ripe
fruit (“a success”). On day 2, he reasons that because there was
ripe fruit in the orchard yesterday, it is likely that there is ripe fruit
there again today and thus the probability of success if he chooses
to gather is high (temporal dependence). It is also intuitive that his
success at gathering yesterday taught him nothing about what
would have happened, had he attempted to hunt instead of gather
(uncoupled outcomes). The two key insights should be apparent:
(i) Processes that generate outcomes in the external world tend to
change slowly and thus the outcomes that they generate have
a high degree of temporal dependence and (ii) it is rarely the case
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that the outcome of one’s actual choice offers any real information
about what would have happened had another choice been made.

Results
Probability Matching in an Optimal Bayesian Learner. According to
our hypothesis, trial-by-trial errors in decision making such as
probability matching are a simple consequence of a rational agent
initializing learning with a more general, but incorrect model of the
world,whichbiases theway it interpretsoutcomesandselects actions
(Fig. 1A). In Fig. 1 B and C, we show that human-like errors in de-
cision making can emerge from an optimal Bayesian learner ini-
tialized with the erroneous, but ecologically plausible assumptions
mentioned above (temporal dependence, uncoupled outcomes—
Methods and SI Appendix S1 and S2).
In addition to exhibiting probability matching (Fig. 1B), the

Bayesian model shows other trends characteristic of human be-
havior. Of particular note is that the cumulative histogram of
choice run lengths is well fit by a power function (Fig. 1C) that
demonstrates a clear temporal dependence in choices (i.e., sub-
jects make more and longer runs of the same choice than would be
predicted if choices were temporally independent; see also refs. 16
and 17 for examples of temporal structure in choice behavior).
Critically, these behaviors emerge despite the fact that the model
employs a strictly maximizing decision rule (i.e., the agent chooses
the option with the highest expected value on every trial). This is in
contrast with other current models in the field that produce hu-
man-like behavior via the use of stochastic (soft-max) decision

rules along with parameters that enforce a certain degree of
“stickiness” in choices (18). The model results are also consistent
with the known fact that probability-matching behavior in humans
can last for thousands of trials (13), as the pattern of observed
outcomes does not allow the initial assumptions to be quickly
“unlearned.” It is important to note that this model is not meant to
provide a trial-by-trial account of human behavior. Instead, it is
simply meant to demonstrate that a fully “rational” agent can pro-
duce seemingly “irrational” behavior as a simple consequence of
using an incorrect world model. And although these results cer-
tainly do not prove that humans are making the assumptions ini-
tially provided to the model (and in fact we believe it is likely that
subjects posit a range of possible temporal dependence models
running the gamut between state persistence and state transience),
they suggest that human choice behavior should be determined not
just by the outcomes that are observed, but also by themodel of the
world used to interpret the outcomes.

Experimental Manipulations of World Model.Given our hypothesis it
should be possible to provide experimental cues that alter themost
likely world model and thus substantially affect subject behavior
without changing the outcome statistics themselves. Of particular
interest to us was to compare choice behavior in tasks analogous to
those used throughout the binary choice literature, but where we
alter the environment in such a way as to be suggestive of different
generative models for the task. To this end, we embedded a stan-
dard sequential binary choice task within two environments that

Fig. 1. (A) Graphical representation of task. At each time step the two choice options (x0 and x1) are in one of two states (win/lose). However, the subject is
only allowed to observe the state (z) of one of the options through their choice (a). After each choice, the options have some probability of transitioning from
their current state (win/lose) to the opposite state, according to a transition matrix θ (which implicitly contains information regarding the overall success
probabilities of the two options, whether or not the options are coupled, as well as the degree of temporal independence of outcomes over time) (Methods).
(B and C) Choice behavior in humans and optimal Bayesian agent with incorrect world model. (B) The percentage of choices to the better target in 15-trial
moving windows in humans and Bayesian agent. Qualitatively similar probability matching behavior (the better option is successful in 60% of trials in this
task) is seen in both humans and an optimal Bayesian agent that is initialized with an incorrect world model. (C) The percentage of runs that are of the given
length or longer (e.g., – ≈60% of runs are ≥2 trials and ≈4% of runs are ≥10 trials). Both humans and the Bayesian agent show a function that is linear in log–
log coordinates (power law), which indicates temporal dependence in choices (more long runs than would be expected if subjects were making choices
according to a biased coin flip).
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allowed us to easily and predictably manipulate subjects’ beliefs
about the proper world model. In particular, we manipulated be-
lief in temporal dependence and coupling, factors that were im-
portant in generating a rational observer model for probability
matching. To manipulate belief in temporal dependence, we var-
ied whether outcomes would be interpreted as caused by factors
external to the observer or as consequences of the observer’s
motor behavior. The rationale for this choice is that most external
processes have temporal dependence, but outcome sequences
generated by motor behavior are well modeled as independent
(19). To manipulate belief in coupling, we provided cues to the
similarity and ordering of the outcome probabilities, without af-
fecting the actual outcomes.
In the first set of experiments, subjects played a series of “rou-

lette games” (Fig. 2A). In the first condition (“even pieces, com-
puter stops” condition), subjects viewed a “roulette wheel” with
evenly sized colored slots. Subjects were instructed to choose one
of the two colors, after which a black line rotated around the wheel
before stopping on one of the two colors. A success was when the
subject’s choice matched the color upon which the line stopped. As
in all standard sequential choice tasks, the colors had different
associated probabilities (one color was correct on 67%of trials and
the other on 33%of trials). In this condition, because the outcomes
were generated externally (i.e., the computer program determined
when and where the line would stop) and there was no good cue to
coupling (i.e., the subjects were unable to correctly infer one
option’s success probability by simply looking at the other; if any-
thing, because the pieces were evenly sized, it would promote the
inference that they have equal probabilities of success), this envi-
ronment was not suggestive of the true generative process and thus
probability-matching behavior was predicted. In the second con-
dition (“uneven pieces, subject stops” condition), two changes were
made. First, the size of the colored pieces was no longer equal (one
color’s pieces were twice as large as the other). Second, subjects
were led to believe that outcomes were dependent on their own
motor behavior. To accomplish this, rather than having the com-
puter determine exactly where the line would stop, subjects were
instructed to press a key when the line was over a piece of their
chosen color to “stop the line” (the actual outcomes were under
complete experimental control; i.e., unbeknownst to the subjects
the line could move one extra tick as necessary, thus ensuring the

outcome-generating process was normatively identical across
conditions) (SI Appendix S3).
Because subjects believed that success and failure were de-

termined exclusively by their own motor skill, it should drastically
change the world model they use to interpret the outcomes (see SI
Appendix, Table S1 A–C for subject debriefing responses). In
particular, motor behavior is one case where subjects are willing to
posit temporally independent outcomes. Furthermore, whereas
the task does not imply perfect coupling, it should foster the belief
that what is learned from an attempt to stop on one color is at least
partially informative about the probability of stopping on the other
color (e.g., the probability of stopping on the big pieces should not
be less than the probability stopping on the small pieces). Given
these (correct) assumptions about the generative process for out-
comes, the predicted behavior is therefore near maximizing.
As expected, probability-matching behavior was observed in the

even pieces, computer stops condition, whereas near optimal be-
havior was observed in the uneven pieces, subject stops condition
(Fig. 2B; average choice behavior significantly different in the two
conditions, t(11) = 2.9, P = 0.016; even pieces, computer stops
condition not significantly different from probability matching,
66%, P= 0.75; uneven pieces, subject stops condition significantly
different from probability matching, 66%, P < 0.001; not signifi-
cantly different from maximizing, 90%, P = 0.37—although we
note that 90% is a somewhat arbitrary threshold). One possible
alternative hypothesis is that subjects are actually probability
matching in both conditions with the added supposition that sub-
jects dramatically misestimate the probabilities of success in the
uneven pieces, subject stops condition (i.e., they believe the
probability of success for the better option is near 100%). Al-
though this cannot be conclusively ruled out, it does appear to be
inconsistent with subjects’ reported beliefs (SI Appendix S8).
Furthermore, the origins of such a belief would be unknown (and
its persistence would be rather surprising) because it is inconsistent
with the observed outcome statistics (to which subjects are quite
sensitive; SI Appendix S3).
Multiple control conditions (SI Appendix S4, Fig. S1) demon-

strated that optimizing behavior depended upon providing a
model that was consistent with the true generative process (e.g., in
conditions where subjects were also allowed to make a motor re-
sponse if the pieces were evenly sized or if the probability of out-

Fig. 2. Roulette experiment. (A) Experimental tasks. The basic visual stimulus was a roulette wheel made of pie pieces of alternating colors. In the even pieces,
computer stops condition, the pieces were equally sized, thus giving no cue to the relative probability of success for the two options. In the uneven pieces, subject
stops condition, the pieces for the high-probability color were twice as a large as the pieces for the low-probability color. In both conditions, the trial began with
the subject selecting one of the two colors (here gray/white). A black line would then spin clockwise until, in the even pieces, computer stops condition, the
computer stopped the line, or in the uneven pieces, subject stops condition, the subject stopped the line with a key press (the actual stop position being partially
under experimental control). If the line stoppedona pieceof the chosen color, thiswas considered a “success” and the subjectwonpoints. (B) Choicebehavior. The
percentage of choices to the better target in 15-trial moving windows is shown. In the even pieces, computer stops condition subjects show typical sequential
binary choice behavior, starting near chance, and gradually reaching a plateau just above probability matching (i.e., probability matching+). Conversely, in the
uneven pieces, subject stops condition, behavior is immediately maximizing. This difference in behavior can be attributed only to differences in subjects’ beliefs
about the generative process for the task, as the outcome statistics they observed were identical across conditions.
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comes was reversed such that the bigger pieces were stopped on
less frequently, then reasonably predictable suboptimal behavior
emerged). Of particular note is the uneven pieces, computer stops
control condition wherein, as in the uneven pieces, subject stops
condition, subjects were given an explicit representation of the
overall reward probabilities. However, despite this explicit repre-
sentation, subject behavior was similar to that in the even pieces,
computer stops condition, with significantly fewer choices toward
the better option than in the uneven pieces, subject stops condi-
tion. This failure to maximize is consistent with previous work
by Fantino and Esfandiari (4), which demonstrated suboptimal
choice behavior even when subjects were explicitly told the overall
reward probabilities, and also with the general fact that knowledge
of the overall reward probabilities is typically insufficient to com-
pute the optimal policy (i.e., it is only in the very special case where
options are perfectly coupled and outcomes are completely in-
dependent across time that the overall reward probabilities are
sufficient to compute the optimal policy).
Although the roulette task did effectively pit subjects’ beliefs

about the world model against the true generative process, we
wished to demonstrate similar effects could be observed within the
context of a more realistic and immersive environment and given
more natural visuo-motor behaviors, in our case, aiming and
shooting. Such an environment and task should elicit rich
expectations about the world. In this series of experiments subjects
piloted a “jet fighter” down a long tunnel (Fig. 3A and Methods)
and at regular intervals they encountered pairs of colored targets.
For each pair they were to select one target, aim their ship, and fire
a bullet at the target. The target could either explode (success) or
not (failure). In the first condition (“shield” condition), which was
meant to be somewhat analogous to the standard binary choice
task, when the subjects’ bullet struck a target it either exploded or
put up a previously invisible shield (with the better color rigged to
explode on 70% of trials and the shield on 30% of trials). In
a second condition (“different movement” condition), subjects
were informed that if their bullet struck a target, it would explode
(i.e., no shields). Instead, the targets were moved randomly (“jit-
tered”) in the tunnel, thus creating the illusion that motor skill
determined whether a target was “hit” or “missed.” Furthermore,
one of the two targets jitteredmore rapidly than the other (and was
also visually slightly smaller), which in the real world would tend to
suggest it would be more difficult to hit than its slower, larger,
partner. In reality, whether a target was hit or missed was de-

termined experimentally via scripts attached to the target that ei-
ther moved the target into the bullet (on trials where the target was
the correct choice) or dodged the bullet (on trials where the target
was the incorrect choice), thus ensuring that the conditions were in
fact normatively identical (SI Appendix S6).
As in the roulette tasks above, the jet-fighter conditions were

designed to be suggestive of either the wrong world model (ex-
ternally generated outcomes = temporal dependence + poor/in-
correct cue to coupling) or the correct world model (outcomes
generated by motor behavior = temporal independence + cue to
proper coupling) and, as was seen in the roulette tasks, these
manipulations led to clear differences in behavior (Fig. 3B; aver-
age choice behavior significantly different in the two conditions,
t(11) = 3.2, P = 0.009; shield condition not significantly different
from probability matching, 70%, P = 0.7; different movement
condition significantly different from probability matching, 70%,
P = 0.005; not significantly different from maximizing, 90%, P =
0.1). Discrepancies in behavior from the roulette conditions may
be due to the number of task-irrelevant factors inherent to the jet-
fighter game that may nonetheless have affected behavior (i.e., the
jitter could lead one target to be closer to the jet fighter than the
other, thus affecting the value computation). Control conditions
verified that the improvement in choice behavior required that the
implied world model match the true generative process and was
not a simple consequence of the targets moving and the shield
being removed (e.g., if the targets appeared to move identically,
or if the targets moved differently, but the success probabilities
were reversed such that the “fast” target was actually “easier to
hit,” behavior was consistently suboptimal and, in fact, matched
what would be expected given these erroneous world models;
SI Appendix S6 and S7, Fig. S2, and Table S2 A and B).

Discussion
Human sequential choice behavior depends on both the outcomes
that are observed and beliefs about the process that generates
those outcomes. When a task (such as the binary choice task as it
has been traditionally implemented) provides poor cues to the true
nature of the generative process, an erroneous model may be
posited, which can lead to suboptimal and apparently irrational
behavior. Other well-known irrational behaviors—such as the hot
hand and gambler’s fallacies (20)—also fit this pattern. These
behaviors have often been explained via the “representativeness
heuristic” (21), which can be qualitatively described as an incorrect

Fig. 3. Jet-fighter experiment. (A) Experimental tasks. In both the shield and the different movement conditions, subjects flew in a jet fighter down an
endless tunnel and past pairs of colored targets. In the shield condition the targets were stationary with respect to the tunnel, thus giving no cue to the
relative probability of success for the two options. In the different movement condition, the targets jittered relative to the tunnel, with the high-probability
target jittering a smaller amount relative to the low-probability target. In both conditions, the subject was to choose one of the two targets, align their jet
fighter with the target, and fire a bullet. In the shield condition, when the bullet struck a target it either exploded (success) or a previously invisible shield was
deployed (failure). In the different movement condition, the bullet either struck the target (success) or missed (failure—again, although subjects believed
success or failure was a function of motor skill, it was actually experimentally determined). (B) Choice behavior. The percentage of choices to the better target
in 15-trial moving windows—first 150 trials. In the shield condition subjects show typical sequential binary choice behavior, starting near chance and gradually
reaching a plateau just above probability matching (i.e., probability matching+). Conversely, in the different movement condition, choice behavior is im-
mediately closer to optimal (although it does not reach optimal). This difference in behavior can be attributed only to differences in subjects’ beliefs about the
generative process for the task, as the outcome statistics they observed were identical across conditions.
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belief about generative processes and, in particular, the temporal
dependence of outcomes. Interestingly, individuals who demon-
strate a propensity toward gambler’s fallacy also show an in-
clination toward hot hand beliefs, suggesting that a strong belief in
temporal dependence can manifest itself as a belief in either state
transience or state persistence models depending on the circum-
stances (22). Conversely, when a task provides good cues to the true
generative process, the advantages of a model-based system are
immediately apparent. For instance, such a system allows one to
make accurate predictions given relatively small amounts of actual
outcome data. This fact is clearly observed in Fig. 2B, where sub-
jects are able to determine the optimal policy almost immediately
—certainly well before sufficient outcome data have accrued to
warrant such a policy. Although learning a generative model from
scratch is computationally taxing (which is one of the primary
reasons model-free algorithms have risen to prominence in artifi-
cial intelligence/robotics applications), humans have a vast amount
of prior knowledge that allows the flexible construction of plausible
models. To illustrate, subjects did not need to “learn” that out-
comes were generated independently; they could combine their
belief that outcomes were generated via motor behavior with their
knowledge that motor behavior is reasonably independent across
time to reach the proper conclusion.Given the vast amount of prior
knowledge acquired by every adult brain, it is sensible for humans
to always be model-based decision makers (and thus individuals
studying human decision making need to not only be aware of the
data they make available to the subject, but also probe subjects’
beliefs about the process generating the data).
Model-free reinforcement learning agents bypass the generative

process for outcomes and instead derive policies from the ob-
served rewards (23). Thus, such an agent could not produce the
observed pattern of results (because the outcome statistics were
identical across conditions and thus the agent’s behavior would be
identical across conditions as well). This evidence formodel-based
decision making poses a challenge for the most popular theories
regarding the neural bases of human choice behavior, which have
focused on the correspondence between activity in various ana-
tomical areas, such as the ventral striatum, and values, such as
prediction errors, calculated viamodel-free algorithms (18, 24, 25).
It has been suggested (26) that twodifferent systems are involved in
choice behavior, one that computes a model-free estimate of value
(striatum) and another that is involved in model-based/predictive
computations (prefrontal cortex). Although it is certainly possible
that depending on the exact task subjects will behave more like
model-free than model-based learners, our data suggest that it is
actually the latter, rather than the former, that is primarily driving
choice behavior in the sequential binary choice task.

Methods
Bayesian Model (See SI Appendix S1 for More Details). Most experiments in-
volving two-option sequential choice tasks generate a sequence of in-
dependently sampled binary outcomes x from a Bernoulli distribution—i.e.,
binary outcomes (success/failure)withfixedoutcomeprobabilities (p and1−p).
A learning agent that does not know this generative process has uncertainty
about both the coupling and the temporal dependence of outcomes. To illus-
trate, consider an example card task. On each trial the agent chooses one of the
two cards and either winsmoney for selecting the right option (success) or wins
nothing (failure). For a learning agent, the observable signal is the payoff.
Whereas the experimenter knows that the options are coupled, such that
when one yields a payoff the other yields nothing, a learning agent cannot
be sure what would have happened if the other option had been selected.
In addition, without prior knowledge, a learning agent cannot know that
outcomes are temporally independent. The learning agent needs to represent
all these possibilities. Moreover, to make intelligent choices, it must be able
to predict the reward probabilities for the next trial.

The base of the model is a one-step transition matrix that encodes the
probability that an optionwill have a certain outcome given the outcome that
wasobservedon theprevious trial. For instance, assume that theagent selected
option 1 and the observed outcomewas a success. The next decision is affected
by the probability that option 1 switches to failure on the next trial given that

it was a success on the current trial—Pðx1tþ1 ¼ 0 j x1t ¼ 1Þ—and the probability
that option 2 becomes a success, given that it could have been a success or
a failure on the current trial (because option 2 was not selected and thus no
outcome was observed)—Pðx2tþ1 ¼ 1 j x2t ¼ 1Þ or Pðx2tþ1 ¼ 1 j x2t ¼ 0Þ. The
model keeps track of all possible next outcomes given any current observation.
There are four possible hypotheses about the next outcome of the twooptions
(neither option is a success, only option 1 is a success, only option 2 is a success,
and both options are a success). These possibilities can be written in matrix
form, given the four possible states of the current options,

P
!
x1t j x

1
t− 1

"
¼

#
1− α10→1 α11→0
α10→1 1− α11→0

$

P
!
x2t j x

2
t− 1

"
¼

#
1− α20→1 α21→0
α20→1 1− α21→0

$
;

where αi0→1 is shorthand notation for Pðxitþ1 ¼ 1 j xit ¼ 0Þ: the probability of
switching from failure at time t to success at time t + 1, and similarly
αi1→0 ¼ Pðxitþ1 ¼ 0 j xit ¼ 1Þ. In this form, different possible structural
assumptions about the environment can be expressed as dependencies be-
tween the parameters. For example, if trials are independent, then
αi0→1 ¼ 1− αi1→0—the probability of an option transitioning from failure to
success ðαi0→1Þ is the same as that from success to success (αi1→1, which is equal
to 1− αi1→0). In other words, if trials are independent, then the probability of
success does not depend on what occurred on the previous trial. If options
are perfectly coupled, the probability of transitioning from success to failure
for one option is 1 − the other: α20→1 ¼ 1− α10→1 and α21→0 ¼ 1− α11→0. In other
words, on every trial, one option is a success and one is a failure and thus if
one transitions, the other has to as well.

We adopt a Bayesian frameworkwhere the agent learns the value of these
parameters, andmodel assumptions are built into priors on these parameters
(SI Appendix). In the model presented in Fig. 1, the model was initialized
with the belief that outcomes were “sticky” (i.e., successes tend to transition
to successes and failures tend to transition to failures) and that the options
were uncoupled (i.e., observing an outcome after selecting option 1 says
nothing about what would have occurred had option 2 been selected).
Bayesian learning in the model is extremely simple; it amounts to incre-
menting the appropriate parameter after each observed transition. How-
ever, which transitions are observed depends on the way actions are
selected. We assume that action selection is based on a one-step look-ahead
prediction of the reward state for both options, where actions are selected
deterministically on the basis of the option with the highest expected value
(i.e., a max decision rule).

The data presented in Fig. 1 are the result of 10 such agents performing
the same sequential task that is described in SI Appendix S2 [450 trials,
p (better option) = 0.6].

Roulette Decision Task (See SI Appendix S3 for Outcome Statistics). Subjects.
Twelve subjects (fourmales, mean age = 20.1 y) participated in both conditions
describedbelow(aswell asanadditional conditiondescribed inSIAppendixS4).
Run order of the task conditions was counterbalanced. Subjects provided
written informed consent to participate and were paid $10/h.
Apparatus. The apparatus consisted of a Dell XPS running Windows XP and
MATLAB (Math Works) and the Psychophysical Toolbox (http://psychtoolbox.
org) (27, 28). The stimuli were displayed on a 20-in Dell LCD monitor at
a resolution of 1,680 × 1,050 pixels by a NVIDIA GeFORCE 8800 GTX video
card. Subjects were seated ≈59 cm from the screen.
Stimuli/conditions. Roulette condition 1: Even pieces, computer stops condition. The
roulette wheel consisted of a large circle (15° diameter) divided into individual
colored wedges (3° each for a total of 120 wedges). On each trial (150 total
trials) the subject was instructed to choose one of the two possible colors
(orange or purple) afterwhich a solid black line rotated around the circle (180°/
s) before stopping on one of the two colors (with the probability of landing on
thehigh-probability color being67%). If the chosen colormatched the color on
which the line stopped, the outcome was considered a success and, if not, it
was considered a failure. Subjects received auditory feedback as well as +10
points on successful trials, with their instructions being to gain as many points
as possible.

Roulette condition 2: Uneven pieces, subject stops condition. The task was the
same as above with two changes. First, the size of the colored wedges was no
longer equal. The wedges for the low success probability wedges remained
3°; however, the high-probability wedges were increased in size to 6°. Sec-
ond, subjects were instructed that after they made their color choice and the

Green et al. PNAS | September 14, 2010 | vol. 107 | no. 37 | 16405

PS
YC

HO
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1001709107/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1001709107/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1001709107/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1001709107/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1001709107/-/DCSupplemental/sapp.pdf
http://psychtoolbox.org
http://psychtoolbox.org


line began moving, they were to press the spacebar when the line was over
a piece of their chosen color to “stop” the line on that piece. Whereas
subject motor behavior did determine the approximate area in which the
line stopped, the specific wedge was determined experimentally such that in
67% of trials the line would stop on a high-probability wedge (if necessary,
the line would move one additional tick beyond where the subject actually
responded—this deception was not noted by any subject).

Jet-Fighter Decision Task (See Also SI Appendix S5, S6, and S7). Subjects. Thir-
teen subjects participated in both conditions described below (as well as an
additional condition described in SI Appendix S7). One female subject was
removed before data analysis for not following instructions (did not attempt
to gain as many points as possible). The final group therefore consisted of 12
subjects (three males, mean age = 21.3 y). Run order of the task conditions
was counterbalanced. Subjects provided written informed consent to par-
ticipate and were paid $10/h.
Apparatus. The apparatus consisted of a Dell XPS running Windows XP and
Virtools Dev 3.5.0.24, which was used to display stimuli and collect the data.
The stimuli were displayed on a 50-inch Panasonic HD plasma television
model TH-50PZ700U driven at a resolution of 1,680 × 1,050 pixels by a NVIDIA
GeFORCE 8800 GTX video card. Subjects were seated 1.7 m from the screen.
Stimuli/conditions. General jet-fighter environment. In each of the following
experiments subjects flew a simulated jet fighter through an endless tunnel.
For ease of exposition, all units are given in units native to the game envi-
ronment [Virtools units (vu); at a simulated depth of 0 cm, 1 vu ≈0.4 cm].
Subjects could move the jet fighter from side to side and up and down (x and
y directions, respectively) using the arrow keys on the keyboard, but their
speed through the tunnel (z direction) was kept at a constant of 900 vu/s. As
the subjects flew through the tunnel, they encountered pairs of colored
target spheres, 30 vu in size. The subjects’ task was to align the ship with one
of the two targets and once properly aligned and within range, they were to
fire a “bullet” at the target using the spacebar (only one bullet could be
fired per target pair). The outcome of this action depended on both their
alignment accuracy and the task conditions (see below). The next target pair
was loaded a simulated depth of 1,350 vu at positions equidistant from the
position of the jet fighter at load time (ensuring that relative proximity
should not be a factor in the subjects’ decisions) and became visible after the
ship passed the plane of the previous target pair. Subjects therefore en-
countered a target pair approximately once every 1.5 s.
Experimental task conditions. Beforetheexperimental tasks, subjectsweretrained
to navigate and shoot in the environment (SI Appendix S5). A total of 450 trials

were completed in shield condition. In the different movement condition, 600
trials were completed due to concerns that poor accuracy could leave too few
trials to analyze if only 450 trials were completed. However, this fear proved
unfounded and all analyses consider only the first 450 trial conditions. Subjects
were given a short break at the halfway point of each condition.

Jet-fighter condition 1: Shield condition. In the stationary target condition, on
each trial one of the two targets (better target, orange; worse target, sky
blue) was selected to “explode” upon a hit by a bullet and the other was
selected to shield upon a hit. The hit outcome was determined by a biased
coin flip such that in 70% of trials the better target was selected to explode
upon a hit by the players’ bullet, and in the remaining 30% of trials the
worse target was selected to explode.

Jet-fighter condition 2: Different movement condition. The targets in this
condition (better target, red; worse target, sea green) jittered randomly in
the x and y directions with the constraints that they stay on their own side of
the tunnel and avoid close contact with one another. In addition to color,
the targets could also be differentiated by size and by movement charac-
teristics. The visual size of the low success probability target was decreased
by one-third as compared with the better target (20 vu vs. 30 vu). Note that
because the explode radius remained the same, this change in visual size did
not actually affect the ability of a subject to hit the target. Second, the
degree of jitter was different for the two targets. Specifically, the low suc-
cess probability target moved much faster with greater amplitude jumps
(jitter drawn from a uniform distribution between −1.5 vu and 1.5 vu in both
x and y directions on every frame) than the high success probability target
(distribution between −1 vu and 1 vu).

Importantly, thesevisualdifferenceswerenotactually causally related to the
probability of hits andmisses.On each trial, oneof the two targetswas selected
to “intercept” afired shotwithin the script activation zone (within 70 vu of the
target center) and explode upon bullet impact, and the other was selected to
“dodge” any shot fired within the script activation zone (with the two targets
differing in the probability of an intercept/dodge as above—high-probability
target = 70% intercept, 30% dodge). Shots fired outside of either target’s
script activation zone always led to a miss. The scripts were weaved into the
random jittering in such a way that no subjects reported observing anything
other than random movement from the targets.
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