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Initialization

In[1]:= Off[SetDelayed::write]
Off[General::spell1]
Needs["BarCharts`"]

Introduction

Last time
A common distinction in neural networks is between supervised and unsupervised learning ("self-organization"). The 
heteroassociative network is supervised, in the sense that a "teacher" supplies the proper output to associate with the input. 
Learning in autoassociative networks is unsupervised in the sense that they just take in inputs, and try to organize a useful 
internal representation based the inputs. What "useful" means depends on the application. We explored the idea that if 
memories are stored with autoassociative weights, it is possible to later "recall" the whole pattern after seeing only part of 
the whole.

‡ Simulations

Heterassociation

Autoassociation

Superposition and interference



Today

‡ Summed vector memories

‡ Introduction to statistical learning

‡ Generative modeling and statistical sampling

Summed vector memories 
We' ve assumed a Hebbian learning rule : DW = fi gj. How could we model a more complex,

or simpler rule? DW Ifi gjM?

Generalized Hebb rule

‡ Taylor series expansion

Recall that a smooth function h(x) can be expanded in a Taylor's series:

In[4]:= Clear@h, g, f, x, i, jD

In[5]:= Series@h@xD, 8x, 0, 3<D

Out[5]= hH0L + h£H0L x +
1

2
h££H0L x2 +

1

6
hH3LH0L x3 + OIx4M

where we've used Series[ ] to write out terms to order 3, and O@xD4 means there are more terms (potentially infinitely 
more), but whose values are fall off as the fourth power of x (and higher), so are small for x<1. hHnL@0Dmeans the nth 
derivative of h evaluated at x=0.

If we only include terms up to first order, this corresponds to approximating h[x] near x=0 by a straight line. What if we 
have a surface h[x,y]? We can approximate it near (0,0) by a quadratic surface:
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In[6]:= Series@h@x, yD, 8x, 0, 2<, 8y, 0, 2<D

Out[6]= hH0, 0L + hH0,1LH0, 0L y +
1

2
hH0,2LH0, 0L y2 + OIy3M + hH1,0LH0, 0L + hH1,1LH0, 0L y +

1

2
hH1,2LH0, 0L y2 + OIy3M x +

1

2
hH2,0LH0, 0L +

1

2
hH2,1LH0, 0L y +

1

4
hH2,2LH0, 0L y2 + OIy3M x2 + OIx3M

Using Normal[ ] to remove the order expressions:

In[7]:= Normal@%D

Out[7]=
1

2
hH2,0LH0, 0L x2 + hH1,0LH0, 0L x + hH0, 0L + y

1

2
hH2,1LH0, 0L x2 + hH1,1LH0, 0L x + hH0,1LH0, 0L +

y2
1

4
hH2,2LH0, 0L x2 +

1

2
hH1,2LH0, 0L x +

1

2
hH0,2LH0, 0L

Note above that the terms with x and y never appear with exponents bigger than 2, hence "quadratic".

But we can approximate h with even fewer terms, as a plane around the origin:

In[8]:= Series@h@x, yD, 8x, 0, 1<, 8y, 0, 1<D

Out[8]= IhH0, 0L + hH0,1LH0, 0L y + OIy2MM + IhH1,0LH0, 0L + hH1,1LH0, 0L y + OIy2MM x + OIx2M

‡ The "generalized Hebb rule": 

In general, we might model the change in synaptic weights between neuron i and j by DW@fi, gjD, where as before 
fi, gjare scalars representing the pre- and post-synaptic neural activities. Then with DW@fi, gjD playing the role of 
h[x,y] in the above expansion, we have that DW@fi, gjDis approximately equal to:

In[9]:= Expand@Normal@Series@DW@fi, gjD, 8fi, 0, 1<, 8gj, 0, 1<DDD

Out[9]= DWH0, 0L + g j DWH0,1LH0, 0L + fi DWH1,0LH0, 0L + fi g j DWH1,1LH0, 0L

(where again we've used Normal[ ] to remove O[ ] terms from the expression, and Expand[ ] to expand out the products). 
By generalizing the learning rule to any smooth function, we see that the Hebbian rule used in the linear associator models 
(both auto and heteroassociation) corresponds to using only the last term.

What if learning depended only on the input strength fi? Is there any useful function for such "strengthening-by-use" 
synapses? Suppose we have a set of normalized input vectors { f k}. The learning rule says that the synaptic weights w,  for 
a single neuron would be
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(1)w = ‚
k

fk

Learning is easy, but it seems that the information about the set of input vectors is pretty messed up due to superposition. 
There are two cases where a template matching operation (i.e. dot product) could pull out useful information in the sense 
of giving a large response to a particular vector, say fl. Consider,

(2)w.fl = ‚
k

fk .fl = ‚
k

fl.fk = fl.fl + ‚
l≠k

fl.fk

We know that fl.fl ¥ fl.fk for l≠k, but potentially we have lots of terms in the sum that could swamp out fl.fl. 
However, if their directions are randomly distributed, we could have many cancellations. Later you'll see that random 
large dimensional vectors tend to be orthogonal. So for example, compare the strength of the response of W to f1, f2, f3, 
f4, f5 as compared to an arbitrary f:

In[10]:= f := Table@RandomReal@8-1, 1<D, 8100<D;

In[11]:= f1 = f; f2 = f; f3 = f; f4 = f; f5 = f;
W = f1 + f2 + f3 + f4 + f5;

In[13]:= 8W.f1, W.f2, W.f3, W.f4, W.f5<

Out[13]= 835.7934, 41.8329, 20.321, 30.1866, 43.8743<

In[14]:= W.f

Out[14]= 3.80766

Further, suppose one of the inputs appears more frequently than the others, say f l, then this term would dominate the sum 
w, and we might expect that a template matching operation ( w. f l) could provide information that a high output neuron in 
effect is saying "yes, this input pattern looks like something I've seen frequently"). Conversely, an unusually low value of 
the dot product would mean that "...mm this is novel, maybe I should pay more attention to this one". One potential 
disdvantage is that a high rate of firing would be the norm, and there is substantial evidence that the cortex of the brain is 
very economical when it comes to "spending" spikes.

How familiar is X, compared to what has been seen before?

‡ Learning: input vector sums

Let's simulate the case where DW@fi, gjD∝ fi.
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In[15]:= Imatrix = {
  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 
  {0, 0, 0, 0, 0, 0, 1, 0, 0, 0}, 
  {0, 0, 0, 0, 0, 0, 1, 0, 0, 0}, 
  {0, 0, 0, 0, 0, 0, 1, 0, 0, 0}, 
  {0, 0, 0, 0, 0, 0, 1, 0, 0, 0}, 
  {0, 0, 0, 0, 0, 0, 1, 0, 0, 0}, 
  {0, 0, 0, 0, 0, 0, 1, 0, 0, 0}, 
  {0, 0, 0, 0, 0, 0, 1, 0, 0, 0}, 
  {0, 0, 0, 0, 0, 0, 1, 0, 0, 0}, 
  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};

In[16]:= Tmatrix = 8
80, 0, 0, 0, 0, 0, 0, 0, 0, 0<,
80, 1, 1, 1, 1, 1, 1, 1, 0, 0<,
80, 0, 0, 0, 1, 0, 0, 0, 0, 0<,
80, 0, 0, 0, 1, 0, 0, 0, 0, 0<,
80, 0, 0, 0, 1, 0, 0, 0, 0, 0<,
80, 0, 0, 0, 1, 0, 0, 0, 0, 0<,
80, 0, 0, 0, 1, 0, 0, 0, 0, 0<,
80, 0, 0, 0, 1, 0, 0, 0, 0, 0<,
80, 0, 0, 0, 1, 0, 0, 0, 0, 0<,
80, 0, 0, 0, 0, 0, 0, 0, 0, 0<<;
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In[17]:= Pmatrix = 8
80, 0, 0, 0, 0, 0, 0, 0, 0, 0<,
80, 1, 1, 1, 1, 1, 0, 0, 0, 0<,
80, 1, 0, 0, 0, 0, 1, 0, 0, 0<,
80, 1, 0, 0, 0, 0, 1, 0, 0, 0<,
80, 1, 0, 0, 0, 0, 1, 0, 0, 0<,
80, 1, 1, 1, 1, 1, 0, 0, 0, 0<,
80, 1, 0, 0, 0, 0, 0, 0, 0, 0<,
80, 1, 0, 0, 0, 0, 0, 0, 0, 0<,
80, 1, 0, 0, 0, 0, 0, 0, 0, 0<,
80, 0, 0, 0, 0, 0, 0, 0, 0, 0<<;

In[18]:= Xmatrix = {
  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 
  {0, 1, 0, 0, 0, 0, 0, 0, 1, 0}, 
  {0, 0, 1, 0, 0, 0, 0, 1, 0, 0}, 
  {0, 0, 0, 1, 0, 0, 1, 0, 0, 0}, 
  {0, 0, 0, 0, 0, 1, 0, 0, 0, 0}, 
  {0, 0, 0, 0, 1, 0, 0, 0, 0, 0}, 
  {0, 0, 0, 1, 0, 0, 1, 0, 0, 0}, 
  {0, 0, 1, 0, 0, 0, 0, 1, 0, 0}, 
  {0, 1, 0, 0, 0, 0, 0, 0, 1, 0}, 
  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};

In[19]:= Tv = N[Normalize[Flatten[Tmatrix]]];
Iv = N[Normalize[Flatten[Imatrix]]];
Pv = N[Normalize[Flatten[Pmatrix]]];
Xv = N[Normalize[Flatten[Xmatrix]]];

Let sv be the weight vector (W). 

In[23]:= sv = Tv+Iv+Pv;

In[24]:= ArrayPlot@Partition@sv, 10DD

Out[24]=

‡  Recall: Matched filter (cross-correlator)
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‡

 Recall: Matched filter (cross-correlator)

Let's look at the outputs of the summed vector memory to the three inputs it has seen before (T,I,P) and to a new input X. 

In[25]:= matchedfilterout = 8sv.Tv, sv.Iv, sv.Pv, sv.Xv<;
BarChart@matchedfilterout, BarLabels Ø 8"T", "I", "P", "X"<D;

BarChartH81.46237, 1.33782, 1.61122, 0.577095<, BarLabels Ø 8T, I, P, X<L

‡ Signal-to-noise ratio

How well does the output separate the familiar from the unfamiliar (X)? We'd like to compare the output of the model 
neuron when the input is the novel stimulus X, vs. the output we might expect for familiar inputs. There are several ways 
of summarizing performance, but one simple formula calculates the ratio of the squared output to the average squared 
input.

We first read in an add-on statistics package that provides us with extra functions, including Mean[ ]. (Mean[ ] is a built-in 
function from version 5 on).

In[26]:= Hsv.TvL^2 ê Mean @8Hsv.TvL^2, Hsv.IvL^2, Hsv.PvL^2<D

Out[26]= 0.983338

‡ Center vectors about zero , i.e. each has zero mean

In the above representation of the letters, all the input vectors lived in the positive "quadrant", so their dot products are all 
positive. What if we center the vectors about zero?

In[40]:= Tv = Tv - Mean@TvD;
Iv = Iv - Mean@IvD;
Pv = Pv - Mean@PvD;
Xv = Xv - Mean@XvD;
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In[44]:= sv = Tv+Iv+Pv;

In[45]:= ArrayPlot@Partition@sv, 10DD

Out[45]=

In[46]:= matchedfilterout = 8sv.Tv, sv.Iv, sv.Pv, sv.Xv<;
BarChart@matchedfilterout, BarLabels Ø 8"T", "I", "P", "X"<D

Out[46]=

Hsv.XvL^2 ê HMean êü 88Hsv.TvL^2, Hsv.IvL^2, Hsv.PvL^2<<L

Out[49]= 80.963376<
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‡ What happens if the summed vector memory has seen many I's and P's, but only one T?

In[50]:= sv = Tv + 20 Iv + 10 Pv; matchedfilterout = 8sv.Tv, sv.Iv, sv.Pv, sv.Xv<;
BarChart@matchedfilterout, BarLabels Ø 8"T", "I", "P", "X"<D

Out[50]=

Side-note: Optimality of matched filter
The field of signal detection theory has shown that if one is given a vector input x, and required to detect whether it is due 
to a signal in noise (s+n), or just noise (n), then under certain conditions, one cannot do any better than to base one's 
decision on the dot product x.s. The conditions are: the elements of the noise vector are assumed to be identical and 
independently distributed gaussian random variables, and s is assumed to be known exactly (i.e. is represented by a vector 
whose elements have fixed predetermined values).
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Learning information about the relative frequencies
We've seen how a very simple form of the generalized Hebbian learning rule can capture useful information about the 
relative frequencies of stimulus occurrence. This is a crude form of self-organization. We know from statistics that there 
are standard devices for estimating frequency of occurrence--namely, histograms. The vector sum has accumulated a kind 
of histogram, in the sense that its response is a function of the number of times a particular synapse has been activated. But 
it is sub-optimal for our function, because what we'd like to have ideally is a device that told us how often Ts, Is, Ps occur, 
in a way that doesn't muddle up their representational elements.

Later we will look at a much more general framework for self-organization and the problem of measuring histograms 
which we can treat as estimates of the underlying probablity distributions or densities. In machine learning and statistics 
this kind of learning is called  "density estimation".

Overview of Statistical learning theory

Statistical learning theory
We've noted that a common distinction in neural networks is between supervised and unsupervised learning. The heteroas-
sociative network was supervised, in the sense that a "teacher" supplies the proper output to associate with the input. 
Learning in autoassociative networks is unsupervised in the sense that they just take in inputs, and try to organize an 
internal representation based on the inputs.

There has been considerable progress in establishing the theoretical foundations of neural networks in the larger domain of 
statistical learning theory. In particular, neural networks can be interpreted as solving several standard problems in statis-
tics: regression, classification, and probability density estimation. Here is a summary:

‡ Supervised learning:

Supervised learning: Training set {fi,gi}

Regression:  Find a function f: f->g, i.e. where g takes on continuous values. Fitting a straight line to data 
is a simple case. The weight matrix W in the generic neural network model is a particular case of f.

                         Below there is a simple exercise to illustrate the how the linear associator deals with 
inputs that it hasn't seen before. 

                         Many problems require discrete decisions. A problem with linear regression 
networks that we've studied so far is that they don't. 

Classification: Find a function f:f->{0,1,2,...,n}, i.e. where the output (gi) takes on discrete values or 
labels. Face recognition is an example.

Next time we will take a look at the binary classification problem 

f: f -> {0,1}
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Next time we will take a look at the binary classification problem 

f: f -> {0,1}

and see how the Perceptron learns to find the weights that determine f.

‡ Unsupervised learning:

Unsupervised learning: Training set {fi}

 Estimate probability density: p(f), e.g. so that the statistics of p(f) match those of {fi}, but generalizes 
beyond the data. 

In general, f is a vector with many elements that may depend on each other, so density estimation is a hard 
problem, and involves much more than compiling histograms of the frequency of the individual vector elements. One also 
needs the histograms for the joint occurrence of all pairs, all triplets, etc.. One quickly runs into so-called combinatorial 
explosion for the number of bins. But the problem is further compounded by the lack of enough samples to fill them. 
(Imagine  you want to build a probability table for all 4x4 patches sampled from on-line digital 8 bit pictures. The pictures 
are really tiny, and there are only 16 pixels for each picture. But your histogram would need 256^16 bins. Calculate it!) 
The solution to this problem is to assume a "parametric form" for the distribution in which just a few parameters (e.g. 
mean and standard deviation) need to be estimated.

Synthesis of random textures or mountain landscapes is an example from computer graphics. 

Generative modeling and Statistical sampling

‡ Generative modeling

Whether and how well a particular learning method works depends on how the data is generated. We spend most of our 
time thinking about how to model learning and inference, i.e. estimation and classification. But it is also important to 
understand how to model the regularities in incoming data. A powerful way to do this is to develop "generative models" 
that when implemented produce artificial data that resembles what the real data looks like. This corresponds to the statis-
tics problem of "filling a hat with the appropriate slips of paper" and then "drawing samples from the hat".

We will begin doing "Monte Carlo" simulations of neural network behavior. This means that rather than using real data, 
we will use the computer to generate random samples for our inputs. Monte Carlo simulations help to see how the struc-
ture of the data determines network performance for regression or classification. It is useful to know how to generate 
random variables (or vectors) with the desired characteristics. For example, suppose you had a one unit network whose job 
was to take two scalar inputs, and from that decide whether the input belonged to group "a" or group "b". The complexity 
of the problem, and thus of the network computation depends on the data structure. The next three plots illustrate how the 
data determine the complexity of the decision boundary that separates the a's from the b's.
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Later we'll see how the simplest Perceptron can always solve problems of the first category, but that we'll need more 
complex models to classify patterns whose separating boundaries are not straight.

‡ Inner product of random vectors

In another application of Monte Carlo techniques, in the problem set you will see how the inner product of random vectors 
is distributed as a function of the dimensionality of the vectors.

The assumption of orthogonality for the input patterns for the linear associator would seem to make it useless as a memory 
advice for arbitrary patterns. However, if the dimensionality of the input space is large, the odds are pretty good that the 
cosine of the angle between any two random vectors is close to zero. In the exercise, you will calculate the histograms for 
the distributions of the cosines of random vectors for dimensions 10, 50 , and 250 to show that they get progressively 
narrower.

‡ Probability densities and discrete distributions

As we noted earlier, most programming languages come with standard subroutines for doing pseudo-random number 
generation. Unlike the Poisson or Gaussian distribution, these numbers are uniformly distributed--that is, the probability of 
the random variable taking on a certain value is the same over the sampling range. 

(Why are they "pseudo" random numbers?)

Later in the course, we'll see that there is a close connection between Gaussian random numbers and linear estimators.

The alternative function to the built-in function RandomReal[], is UniformDistribution[] that generates uniformly distrib-
uted random numbers.
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The alternative function to the built-in function RandomReal[], is UniformDistribution[] that generates uniformly distrib-
uted random numbers.

In[51]:= udist = UniformDistribution[{0,1}];

We can define a function, sample[], to generate ntimes samples, and then make a list of a 1000 values like this:

In[52]:= sample@ntimes_D := RandomReal@80, 1<, ntimesD;

Or like this:

In[53]:= sample[ntimes_] := 
Table[RandomReal[udist],{ntimes}];

The second way is more general, because we can use other distributions in our simulations later.

Now let us do a sampling experiment to get the list. 

In[54]:= z = sample[1000];

Count up how many times the result was 0.5 or less. To do this, we will use two built-in functions: Count[], and Thread[]. 
You can obtain their definitions using the ?? query.

Count[Thread[z<=.5],True]

490

So far, we have good agreement with what we expect--about half (500/1000) of the samples should be less than 0.5. We 
can make a better comparison by comparing the plots of the histogram from the sampling experiment with the theoretical 
prediction. Let's make a table that summarizes the frequency. We do this by testing each sample to see if it lies within the 
bin range between x and x + 0.1. We count up how many times this is true to make a histogram.

bin = 0.1;
Freq = Table[Count[Thread[x<z<=x+bin],True],{x,0,1-bin,bin}];

Now we will plot up the results. Note that we normalize the Freq values by the number values in z using Length[].
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i = 1; theoreticalz = Table@8x, PDF@udist, xD<, 8x, bin, 0.99`, bin<D;

simulatedz = TableB:x,
NB Freq

Length@zDFPi++T
bin

>, 8x, bin, 1, bin<F;

theoreticalg = ListPlot@theoreticalz, Joined Ø True,
PlotStyle Ø 8RGBColor@0, 0, 1D<, DisplayFunction Ø Identity,
PlotRange Ø 880, 1.2`<, 80, 1.5`<<D;

simulatedg = ListPlot@simulatedz, Joined Ø True,
PlotStyle Ø 8RGBColor@1, 0, 0D<, DisplayFunction Ø Identity,
PlotRange Ø 880, 1.2`<, 80, 1.5`<<D;

Show@theoreticalg, simulatedg, DisplayFunction Ø $DisplayFunctionD

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

As you can see,  the computer simulation matches fairly closely what theory predicts.

‡ Central Limit theorem Demonstration

Now we'd like to see what happens when we make new random numbers by adding up several uniformly distributed 
numbers. 

Let's define a function, rv,  that generates random nrv-dimensional vectors whose elements are uniformly distributed 
between 0.5 and -0.5. Try nrv =1. Then try nrv=3.

nrv=1;
udist = UniformDistribution[{-.5,.5}];
rv := Table[Random[udist],{i,1,nrv}];
ipsample = Table[Apply[Plus,rv],{10000}];

ipsample is a list of 10000 elements. 

bin = 0.1;
Freq = Table[Count[Thread[x<ipsample<=x+bin],True],{x,-1,1-bin,bin}];
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i = 1;

simulatedz = TableB:x,
NB Freq

Length@ipsampleDFPi++T
bin

>, 8x, -1 + bin, 1 - bin, bin<F;

simulatedg = ListPlot@simulatedz, Joined Ø True,
PlotStyle Ø 8RGBColor@1, 0, 0D<, DisplayFunction Ø Identity,
PlotRange Ø 88-1.5`, 1.5`<, 80, 1.5`<<D;

Now what is the theoretical distribution? The  Central Limit Theorem states that the sum of n independent random vari-
ables approaches the Gaussian distribution as n gets large. The n independent random variables can come from any 
"reasonable" distribution-- the uniform distribution is reasonable, so is the distribution of the random variable z = x.y, 
where x and y are uniform random variables.

We don't know (although we can do some theory to find out, see below) what the standard deviation of the theoretical 
distribution is, but it should be normal by the Central Limit Theorem. And we know the mean has to be zero, by symme-
try. So we can try out various theoretical standard deviations to see what fits the simulation best:

standdev = 0.5`; ndist = NormalDistribution@0, standdevD;
theoreticalz = Table@8x, PDF@ndist, xD<, 8x, -1 + bin, 1, bin<D;
theoreticalg = ListPlot@theoreticalz, Joined Ø True,
PlotStyle Ø 8RGBColor@0, 0, 1D<, DisplayFunction Ø Identity,
PlotRange Ø 88-1.5`, 1.5`<, 80, 1.5`<<D;

Show@theoreticalg, simulatedg, DisplayFunction Ø $DisplayFunctionD

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.2
0.4
0.6
0.8
1.0
1.2
1.4

Now try nrv = 3 above.

Again, our basic observation--tendency towards a bell-shaped distribution for sums--doesn't depend on the type of random 
number distribution-we'll get a distribution of the new random number that looks like a bell-shaped curve if we add up 
enough of the independently and identically sampled ones (short hand is i.i.d. for independently and identically 
distributed).

Exercises
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Exercises

Exercise

Calculate what the theoretical mean and standard deviation should be using the following rule:

1. The mean of a sum of independent random variables equals the sum of their means

2. The variance of a sum of independent random variables equals the sum of the variances

(And remember that the standard deviation equals the square root of the variance).

Plot up the simulated and theoretical distributions above using your answer for the theoretical distribution.

Answer for the standard deviation is in the closed cell below.

Exercise

Try using LaplaceDistribution@ mu,  beta D instead of the UniformDistribution as the source of the i.i.d. random 
variables.

Linear interpolation interpretation of linear heteroassociative learning and recall

In[56]:= f1 = 80, 1, 0<;
f2 = 81, 0, 0<;
g1 = 80, 1, 3<;
g2 = 81, 0, 5<;

In[60]:= W = Outer@Times, g1, f1D;

W maps f1 to g1:

In[61]:= W.f1

Out[61]= 80, 1, 3<

W maps f2 to g2:
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In[62]:= W = Outer@Times, g2, f2D;
W.f2

Out[63]= 81, 0, 5<

Because of the orthogonality of f1 and f2, the sum Wt still maps f1 to g1:

In[64]:= Wt = Outer@Times, g1, f1D + Outer@Times, g2, f2D;
Wt.f1

Out[65]= 80, 1, 3<

Define an interpolated point fi somewhere between f1 and f2, the position being determined by parameter a:
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In[73]:= Manipulate@
fi = a * f1 + H1 - aL * f2;
ListPointPlot3D@8f1, f2, fi<, PlotStyle Ø PointSize@0.1`D, Axes Ø FalseD,
88a, .4<, 0, 1<D

Out[73]=

a

Now define an interpolated point gt between g1 and g2

In[69]:= gt = a * g1 + H1 - aL * g2;

Show that Wt maps fi to gt:

In[70]:= Wt.fi
gt

Out[70]= 80.6, 0.4, 4.2<

Out[71]= 80.6, 0.4, 4.2<

Next time: Introduction to non-linear models
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Next time: Introduction to non-linear models

‡ Perceptron (Rosenblatt, 1958)

The original Perceptron was a neural network architecture for 

neuron models were threshold logic units (TLU)--i.e. the generic connectionist unit with a step threshold function.

The original perceptron was fairly complicated--input layer ("retina" of sensory units), associator units, and response units. 
There was feedback between associator and response units.

These networks were difficult to analyze theoretically, but a simplified single-layer perceptron can be analyzed. Next 
lecture we will look at classification,  linear separability , the perceptron learning rule, and the work of Minsky and Papert 
(1969).
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