
Introduction to Neural Networks
U. Minn. Psy 5038

Lecture 8
Examples of heteroassociation and autoassociation

Initialization

Introduction

Heteroassociation

Autoassociation
If f=g, then we have an autoassociative system. There is only one set of units, and each element potentially connects to
each other element. Later we will see how this architecture is used in non-linear networks. Autoassociation stores informa-
tion about the relationships between the elements or features of a stimulus pattern (vector). We can show how this kind of
knowledge can be used to predict or reconstruct missing information. Neural networks of this sort build internal models of
the statistical structure of the ensemble they are exposed to.

Reconstructive property

‡ Autoassociation can reconstruct missing parts of a stimulus.

(6)x =

f1
f2
.
.
fm
g1
.
.
.
gn

Suppose a whole pattern x, consists of two parts {f1,f2,f3}, and {g1,g2,g3,g4}, and the association of vector x with itself is
represented by the outer product in matrix W:

In[28]:= f={f1,f2,f3,0,0,0,0};
g={0,0,0,g1,g2,g3,g4};
x=f+g;
W=Outer[Times,x,x];

In[32]:= x = f + g

Out[32]= 8f1, f2, f3, g1, g2, g3, g4<

Sometime later, we input a version of x, but with "missing" elements--i.e. x with some elements set to zero--namely,
vector f. What do we get in response?

In[33]:= Simplify[W.f]

Out[33]= 9f1 If12 + f22 + f32M, f2 If12 + f22 + f32M, f3 If12 + f22 + f32M,
If12 + f22 + f32M g1, If12 + f22 + f32M g2, If12 + f22 + f32M g3, If12 + f22 + f32M g4=

So if f is normalized, each sum of squared elements of f is equal to 1, and W.f is equal to x. In general, the matrix W
restores f to the pattern x up to a scale factor a:

In[34]:= % ê. Hf1^2 + f2^2 + f3^2L Ø a

Out[34]= 8f1 a, f2 a, f3 a, g1 a, g2 a, g3 a, g4 a<

Exercise

What does it mean to have a "missing" part of a pattern?

‡ Autoassociation includes heteroassociation

At first it may seem that an autoassociative system is a more restrictive type of association than heteroassociation. But if
we form a new vector f' in which we stack f on top of g, then autoassociation outer product matrix contains within it, the
heteroassociation between f and g.

Question:

What can you say about the eigenvectors of the weight matrix from autoassociative learning?

2 Lect_8_HeterAuto.nb

Autoassociative example with TIP pictures

‡ Learn about T, learn about I, and store the associations together by superimposing their weight

matrices

In[35]:= Clear[Weights];
Weights = Outer[Times,Tv,Tv] + Outer[Times,Iv,Iv];

‡ Sometime later, stimulate the network with an impoverished T, missing some bits

Let's delete the 2nd row of T:

In[37]:= forgettingTmatrix = Partition@Tv, sizeD;
forgettingTmatrix@@2DD = Table@0, 810<D;
forgettingT = Flatten@forgettingTmatrixD;
ArrayPlot@Partition@forgettingT, sizeDD

Out[40]=

Lect_8_HeterAuto.nb 3

‡ Recall of the original T, from the missing bits

In[41]:= rememberingT = Weights.forgettingT;
ArrayPlot@Partition@rememberingT, sizeDD

Out[41]=

‡ Interference: Corrupt T again, this time with some other random bits missing

Let's do something a little more drastic to T. We'll randomly "delete" pixels of the picture:

In[42]:= pepper = RandomInteger@1, Dimensions@TvDP1TD;
peppermatrix = DiagonalMatrix@pepperD; forgettingT = peppermatrix.Tv;
ArrayPlot@Partition@forgettingT, sizeDD

Out[42]=

In[43]:= rememberingT = Weights.forgettingT;
ArrayPlot@Partition@rememberingT, sizeDD

Out[43]=

4 Lect_8_HeterAuto.nb

In[44]:= ListPlot@Partition@rememberingT, sizeDP5T, AxesOrigin Ø 80, -0.25<,
PlotRange Ø 8-.5, maxi<, Joined Ø TrueD

Out[44]=

2 4 6 8 10

-0.5
-0.4

-0.1
0.0
0.1
0.2

‡ Recall that you can get information about the options as well as the functions with a ?? query:

In[45]:= ??AxesOrigin

AxesOrigin is an option for two-dimensional graphics
functions which specifies where any axes drawn should cross. à

Attributes@AxesOriginD = 8Protected<

‡ Interference: Corrupt T, with added noise

In[46]:= forgettingT = Tv; forgettingTP59T = 0.27;
ArrayPlot@Partition@forgettingT, sizeDD

Out[46]=

Lect_8_HeterAuto.nb 5

In[47]:= rememberingT = Weights.forgettingT;
ArrayPlot@Partition@rememberingT, sizeDD

Out[47]=

Although the memory looks pretty good, it is not perfect because although Tv and Iv were almost orthogonal, with a
cosine of about .09, they were not perfectly orthogonal. In fact, we can get a measure of how close rememberingT is to
Tv in terms of the cosine of the angle between them:

In[48]:= Tv.Normalize[rememberingT]

Out[48]= 0.995682

‡ Interference with more autoassociations: I, T, and now P too

If we have the connection matrix, Weights store another letter, P, then we will begin to get even more interference when
we try to recall T from a fragment of T:

In[49]:= Weights = Weights +
Outer[Times,Pv,Pv];

In[50]:= rememberingT = Weights.forgettingT;
ArrayPlot@Partition@rememberingT, sizeDD

Out[50]=

This is because the patterns we've stored are not mutually orthogonal, and in particular, P is too close to I and T:

6 Lect_8_HeterAuto.nb

In[51]:= {Iv.Pv, Tv.Pv, Tv.Iv}

Out[51]= 80.243332, 0.367884, 0.0944911<

We can picture the range of values that rememberingT takes on:

In[52]:= ListPlot@rememberingTD

Out[52]=

20 40 60 80 100

0.05

0.10

0.15

0.20

Include a threshold. Applying a function over a list
Define a non-linear threshold, step[x_], which when applied to rememberingT removes the interference. A critical
parameter is the threshold.

Note: When you define a new function, it is not necessarily "Listable". If not, here are two solutions.

In[53]:= step@x_, t_D := If@x > t, 1, 0.0D;

‡ Change the function attributes

As we saw earlier, you can define your function to be listable with

In[54]:= SetAttributes[step,Listable]

Then you can apply step directly to the list rememberingT, and then the function will be applied successively to each
element of the list:

In[55]:= step[rememberingT,0]

Out[55]= 80., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1, 1, 1, 1, 1, 1, 1, 0., 0., 0., 1, 0., 0., 1, 0., 1, 0., 0., 0., 0., 1, 0., 0., 1,
0., 1, 0., 0., 0., 0., 1, 0., 0., 1, 0., 1, 0., 0., 0., 0., 1, 1, 1, 1, 1, 1, 0., 0., 0., 0., 1, 0., 0., 1, 0., 1, 0.,
0., 0., 0., 1, 0., 0., 1, 0., 1, 0., 0., 0., 0., 1, 0., 0., 1, 0., 1, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.<

‡ Map the function over the list

Lect_8_HeterAuto.nb 7

‡

Map the function over the list

This means that to apply step[] to rememberingT, you would have to use the Map[] function:

The Map[] function is used often enough, that Mathematica has a short-hand:

In[56]:= Clear[f,a,b,c];
Map[f,{a,b,c}]

Out[57]= 8 f HaL, f HbL, f HcL<

In[58]:= f /@ {a,b,c}

Out[58]= 8 f HaL, f HbL, f HcL<

If the function has multiple arguments, then use # to identify which function slots get the variable, with the function end
defined by &:

In[59]:= Map[step[#,0]&,rememberingT];

Using the short-hand version:

In[60]:= step@Ò, 0D & êü rememberingT;

We'll put it all in one line, together with a slider to adjust the threshold:

8 Lect_8_HeterAuto.nb

In[61]:= Manipulate@ArrayPlot@Partition@step@Ò, tD & êü rememberingT, sizeDD,
8t, 0, 1<D

Out[61]=

t

The threshold choice is clearly important. How could you make the threshold automatic?

Autoassociation with pictures

Autoassocation with some other patterns: Einstein or Shannon
Get einstein64x64.jpg:

In[62]:= ieinstein = Import@SystemDialogInput@"FileOpen"D, "Data"D;

In[63]:= size2 = Dimensions@ieinsteinD@@1DD;

Lect_8_HeterAuto.nb 9

In[64]:= geinstein = ArrayPlot@ieinstein, ColorFunction Ø GrayLevelD
einstein = N@Normalize@Flatten@ieinsteinDDD;

Out[64]=

Get shannon64x64.jpg:

In[66]:= ishannon = Import@SystemDialogInput@"FileOpen"D, "Data"D;

In[67]:= gshannon = ArrayPlot@ishannon, ColorFunction Ø GrayLevelD
shannon = N@Normalize@Flatten@ishannonDDD;

Out[67]=

Autoassociatively store einstein

In[69]:= Weights = Outer[Times,einstein,einstein];

In[70]:= Dimensions@einsteinD

Out[70]= 84096<

10 Lect_8_HeterAuto.nb

How big is Weights?

Get einsten with some blacked out regions, einstein64x64missing.jpg

In[71]:= forgettingeinstein = einstein;
Table@forgettingeinstein@@RandomInteger@81, 4096<DDD =

RandomReal@80.0, Max@einsteinD<D, 81000<D;
gforgettingeinstein = ArrayPlot@Partition@forgettingeinstein, size2D,
ColorFunction Ø GrayLevelD

Out[73]=

Recall einstein, with only a partial einstein, i.e. with forgettingeinstein as input:

In[74]:= rememberingeinstein = Weights.forgettingeinstein;
grememberingeinstein = ArrayPlot[Partition[rememberingeinstein,size2], ColorFunction Ø GrayLevel];

In[76]:= Show@GraphicsRow@8geinstein, gforgettingeinstein, grememberingeinstein<DD

Out[76]=

Now superimpose the outerproduct weight matrices for einstein and shannon:

Lect_8_HeterAuto.nb 11

In[77]:= deltaWeights = Outer[Times,shannon,shannon];

In[78]:= Weights = Weights + deltaWeights;

In[79]:= rememberingeinstein = Weights.forgettingeinstein;
grememberingeinstein = ArrayPlot[Partition[rememberingeinstein,size2], ColorFunction Ø GrayLevel];

In[81]:= Show@GraphicsRow@8geinstein, gshannon, gforgettingeinstein,
grememberingeinstein<DD

Out[81]=

Next time
© 1998, 2001, 2005, 2007 Daniel Kersten, Computational Vision Lab, Department of Psychology, University of Minnesota.

12 Lect_8_HeterAuto.nb

