The Representer Theorem

Theorem 4 Given: a p.d. kernel k on X X X, a training set

(21,11), - - -5 (Zm, Ym) € X XR, a strictly monotonic increasing
real-valued function Q on [0, 00|, and an arbitrary cost function
¢ (X xR - RU{oo}

Any [ € F minimizing the reqularized risk functional

(@1, 91, f(@1)), - - (@my ym, flam) + QS B)

admits a representation of the form
m

FO) =) . k().



Mercer’s Theorem

If k 1s a continuous kernel of a positive definite integral oper-
ator on Lo(X) (where X is some compact space),

/ k(x, o) f(z)f(2)) dz dz’ > 0,
X

it can be expanded as
o0
k(z, ') = Nbi(a)g(a)
i=1

using eigenfunctions 1; and eigenvalues \; > 0 [41].



The Mercer Feature Map

In that case
\/_ ul 1‘
satisfies (D(x), D(2’)) = k(z, ).
Proof:
V@) VAzk)
(3(z), B(x)) < T | [ Vasaie)
=) Nthi(x)y k(o)



Positive Definite Kernels

It can be shown that (modulo some details) the admissible class
of kernels coincides with the one of positive definite (pd) kernels:
kernels which are symmetric, and for

e any set of training points 1, ...,Tm € X and
®any aj,...,am € R

satisfy
Z%%‘Kz‘j > 0, where K;; == k(x;,z;).
1]



Elementary Properties of PD Kernels

Kernels from Feature Maps.
If & maps X into a dot product space H, then (®(z), &(z')) is a
pd kernel on X x X.

Positivity on the Diagonal.
k(x,z) > 0foralxz e X

Cauchy-Schwarz Inequality.
k(z,2')? < k(z,z)k(z',2") (Hint: compute the determinant of
the Gram matrix)

Vanishing Diagonals.
k(z,z)=0forallz € X = k(z,2')=0forall 2,2’ € X



The Feature Space for PD Kernels [4, 1, 48]

¢ define a feature map
O: X — RY
r = k(. x).

E.g., for the Gaussian kernel: /TD\

X x' d(x) D(x’)

Next steps:
e turn $(X) into a linear space

e endow it with a dot product satisfying
(Ko ), k(- ) = K2, 25)
e complete the space to get a reproducing kernel Hilbert space



Endow it With a Dot Product

<f7 g> = Z Z a'iﬁjk(xi? xj)

=1 9=1

= > aiglz;) =) B;f(a})
1=1 7=1

e This is well-defined, symmetric, and bilinear.

e It can be shown that it is also strictly positive definite (hence
it is a dot product).

e Complete the space in the corresponding norm to get a Hilbert
space Hp..



The Reproducing Kernel Property

Two special cases:

e Assume

In this case, we have

e [T moreover

we have the kernel trick

(k(.,2),k(.,2")) = k(z, 2.

k is called a reproducing kernel for Hj.



Turn it Into a Linear Space

Form linear combinations

f(> — Z a'ik('? x'i)a
i=1

97=1

(m,m’ €N, a;, B € R, $i,$§- c X).



The Reproducing Kernel Property

Two special cases:

e Assume

In this case, we have

e [f moreover

we have the kernel trick

k(. z), k(.. 2")) = k(z, ).

k is called a reproducing kernel for Hj..



Kernels

Recall that the dot product has to satisfy

For a Mercer kernel
Np
k(z,2") = 3 Ajwj(@)i;(a)
j=1

(with A; > 0 for all i, Np € NU {oo}, and {4/, wJ’>L2(X) = 0j),
this can be achieved by choosing {.,.) such that

(Vi sy = b5/ Mi-



ctd.

To see this, compute
(k(z,.) <Z Aithi(a wz,z,\ i
= Z/\ Ajebi(a)(a ><w.z.,wj>
= ZA Nty (a’)dii /N

_ inwi(x)wz:(xﬁ

1
= k(x, ).



Some Properties of Kernels [53]

If k1, ko, ... are pd kernels, then so are

e ok, provided o« > 0

o L1+ ko

o fky-ko

o k(xz,2") := limp_s00 kn(x, '), provided it exists

¢ k(A,B) =3 ,cA/ep ki1(z, o), where A, B are finite subsets
of X -
(using the feature map ®(A) := > _,.- 4 P(x))

Further operations to construct kernels from kernels: tensor prod-
ucts, direct sums, convolutions [28].



Computing Distances in Feature Spaces

Clearly, if k is positive definite, then there exists a map @ such
that

|D(x) — <I>(:17/)||2 = k(z,z) + k(2 2") — 2k(z, 2

(it is the usual feature map).

This embedding is referred to as a Hilbert space representation
as a distance. It turns out that this works for a larger class of
kernels, called conditionally positive definite.

In fact, all algorithms that are translationally invariant (i.e. inde-
pendent of the choice of the origin) in H work with ¢pd kernels
[53].



