
CSCI 5521: Pattern Recognition
Fall 2009, Prof. Schrater

Problem set 3:
11/12/09 Due: Sat. 11/26/09

We will be using a reduced MNIST handwritten digit database for this assignment. The
data has already been brought into MATLAB. Please load the files: digitimagesred.mat
and digitlabels.mat from the HW3 directory. These files contain images for the digits 8,
9 and 0 in a matrix: digitims, that is 28x28x3000, which is a stack of 3000 28x28 images
of handwritten digits. To view the imnumberth one of these, use

imagesc(digitims(:,:,imnumber)); colormap(gray(256));
The vector labels encodes the actual class labels for each of these images. This data
consistutes the training data for the task.

1) Visualizing High Dimensional Data (10%): Use Fisher’s LDA to help
visualize the data. Recall that Fisher’s linear discriminant results in an equation

!

S
w

"1
S
B
w = #w , for finding a w that optimizes Fisher’s error criterion. This

equation can be solved for the best w, resulting in the equation:

!

w = S
w

"1
(µ
1
"µ

2
) .

Do the following.
Start with classes 8 vs. 0. Reshape the data:

Compute the means and scatter matrices for X_ω1 and X_ω2 {scatter is equal to
S1 = num_ω1*cov(X_ω1,1)}. Form the average within class scatter

Sw = 1/(num_ω1+num_ω2 - 2)*(S1 + S2)
 Similarly, compute the means m1 & m2

 We need to form the vector w = Sw-1(m1-m2). Try inverting Sw. What
happens? The matrix is singular: Try: rank(Sw)
Why is the matrix singular? Look at the mean images (reshape to 28x28 and use
imagesc). There are regions around the border for which all the images have zero
intensity. Because each pixel forms an axis, this means that there are many axes
in which the data do not live. Thus the data do not span the entire space, which
results in the matrix being singular.

% number of positive and negative examples
num_ω1 = length(find(labels==8));
num_ω2 = length(find(labels==0));

% stretch out images into vectors
X_ω1 = reshape(digitims(:,:,find(labels==8)),[28^2 num_ω1])';
X_ω2 = reshape(digitims(:,:,find(labels==0)),[28^2 num_ω2])';
% rescale values for numerical stability
X_ω1 = X_ω1/256;
X_ω2 = X_ω2/256;

One simple solution is to remove the set of boundary pixels from our analysis and
work in a reduced space. To visualize the boundary pixels:

imagesc(reshape((m1==0 | m2==0),28,28))

However, regularizing the inverse works better:
Id = 0.2*eye(size(Sw));
% small multiple of the identity
Sinv = inv(Sw+Id);

a) Compute the best w vector for another class comparison as well. (0 vs 9 or 8
vs 9). Project all the images into the 2-D space given by the two class
comparisons (e.g. w0vs8 and w0vs9). Hint: Form a matrix W of the two
vectors, and perform a matrix multiplication of W on the image data for each
class, resulting in 2x1000 matrices for 0, 8, and 9. Plot these projected points
using plot or scatter so that all three classes can be simultaneously viewed
using different colors for each class. Label the axes using xlabel, ylabel
according to the discriminant used (e.g. 0 vs. 8). You should see three
distributions of points with some degree of overlap.

2) Logistic Regression (25%)

Write a program to implement Logistic regression. Apply logistic regression
to the 8 and 0 digit data. Use the first 900 points from each class for training.
Test the classifier on the remaining 100. You will need to transform your
data. Augment each data vector to include a 1 (for the bias). Compute test
error rates and compare to the average probability of error you can compute
by evaluating the logistic formula on the test set.

3) SVM (30%):
a) Train a SVM linear classifier for the digit problem 8 vs. 0. Use the first

900 points from each class for training. Test the classifier on the
remaining 100.

b) Kernel SVM: For kernel SVMs, the problem is modified to:

!

maximize -
1

2
yiy j" i" jK(x i ,x j)

i, j
+ " i

i
. Train the SVM with

the kernel function

!

K(x i ,x j) = (x i
T
x j)

4 . Test as in a).
c) Reshape and display the support vectors.

HINTS AND GUIDANCE

You could use the standard Matlab quadratic programming solver, which I will
discuss first, or you can download the free software given below, which I
recommend.

Solving Quadratic Programming problems using Matlab’s toolbox functions,
Matlab like many other QP solvers, requires that the objective function and constraint

functions are expressed as canonical matrix equations in the following way:

!

minimize
1

2
"T

H" + f
T"

such that A" # b and C" = d

!

Recall the Dual Problem:

maximize -
1

2
yiy j" i" j (x i

T
x j)

i, j
+ " i

i
#

such that " i $ 0, for all i

and yi" i

i=1

n

= 0

!

Putting this in canonical form yields the correspondences:

H =

h11 L h1n

M M M

hn1 L hnn

"

$
$

%

&

'
'

hij = yiy j (x i
T
x j)

f =
(1
M

(1

"

$
$

%

&
'
'

A = (I
n

(nxn Identity matrix)

b =
0
M

0

"

$
$

%

&
'
'

C = y1 L yn[]

d =
0
M

0

"

$
$

%

&
'
'

Unfortunately, this straightforward approach is very inefficient, and the algorithm
may not terminate well. Instead, I suggest you use the following free SVM package:

http://ida.first.fraunhofer.de/~anton/svm_v251.tar.gz
 URL http://ida.first.fraunhofer.de/~anton/software.html

Using Matlab to solve the SVM dual problem.
epsilon = (choosesomesmallnumber);
num = size(X,2);
H = (X' * X) .* (y * y') + epsilon*eye(num);
f = -ones(1,num);
A = -eye(num);
b = zeros(num,1);
C = y';
d = 0;
alpha = quadprog(H,f,A,b,C,d);

 Download and unpack the software. Within matlab, either add the created
directory to matlab’s search path, or use the ‘Current Directory’ toolbar to make Matlab’s
working directory the new directory. Within matlab, type
 mex –v loqo.c pr_loqo.c

Matlab will then compile c-code for a fast quadratic programming solver.
Next we need to set up our problem for the solver. Type
help svm, help svmtrain, help help svmfwd

You will need to stack all of your training data into a single matrix X that will be
1800x784. In addition, rescale your data by dividing X by 256. Create a column vector
Y of 1800 class labels using 1 for the first class and –1 for the second. The calls you
need to make for the non-linear kernel case will look something like:

polysvm = svm(28^2, ‘poly’, 4, 1, 0, 'loqo');
polysvm = svmtrain(polysvm , X, Y,[],1);
[labels, outputs] = svmfwd(net,testX);

I was able to train in about 2 minutes, resulting in 216 support vectors, and a test error
rate of 1%.

4) Regression (35%):

For the regression problem, we will be working with a dataset called
“galaxy”, described in Hastie, Tibshirani and Friedman. I have
constructed a tutorial script that shows how to run simple linear
regression, ridge regression, support vector regression and lasso
regression. You will run regression in several feature spaces, including a
radial basis function space, and we will assess performance using cross
validation. Run
galaxyData.m, which will load into memory a 2x323 predictor matrix X
and y: a 1x323 vector of output values. Use
plot3(X(:,1),X(:,2),y,'k.')
to visualize the data set. The data set is difficult to predict due to the way
the data was sampled (along radial arms-see the plot).
First run regressionTut.m, to learn how to use the methods. Answer the
questions that follow for credit.

1) Fit a general cubic equation to the galaxy data using least squares.
2) Fit a general cubic equation to the galaxy data using ridge

regression. Vary the regularization parameter and compute the
leave-one-out cross validation error (CV error) on for a series of
regularization parameter values. Plot CV error against the
regularization parameter values. Find a value that (approximately)
minimizes error.

3) Fit radial basis functions to the galaxy data using three methods –

a. Ordinary least squares
b. Lasso
c. Support vector regression

4) Compare CV error for each of the three methods in problem 3).
For both the Lasso and SV regression, search for values of the
regularization parameter C that perform well. (Basically I am
asking you to experiment with these values to see their effects,
however SV regression takes a long time, so I don’t expect you to
try to systematically minimize CV error).

Tutorial - Read about how to map the lasso to a quadratic program below.

!

Given a matrix Z of with m observations (rows) and n predictors,

the lasso regression estimate is the solution to :

ˆ w = min
w

y " Zw()
T

y " Zw()

subject to

w j

j=1

n

#

Lets rewrite this as a quadratic program

!

ˆ w = min
w

y " Zw()
T

y " Zw()

= min
w

1

2
2 y

T
y " 2y

T
Zw + w

T
Z

T
Zw()[]

= min
w

w
T
Hw + f

T
w[]

where H = 2Z
T
Z,

f
T = "4 y

T
Z,

and y
T
y doesn't affect the minimization

The sum of absolute values can be converted into a set of linear inequalities. For
example, in a 2D problem, we have a quadratic loss function, and a constraint that

the coefficient vectors have to lie inside a diamond
around the origin.

Note that
 |w1|+ |w2|<c is the same as:

!

w
1

+ w
2

< c

w
1
" w

2
< c

"w
1

+ w
2

< c

"w
1
" w

2
< c

if w
1

> 0 & w
2

> 0

if w
1

> 0 & w
2

< 0

if w
1

< 0 & w
2

> 0

if w
1

< 0 & w
2

< 0

$

%
%

&

%
%

1 1

1 "1

"1 1

"1 "1

'

(

)
)
)
)

*

+

,
,
,
,

w
1

w
2

'

(
)

*

+
, < c

In general we can find a set of linear constraints equivalent to the sum of
absolute values and express them as a linear inequality similar to the
example above, and there are other tricks for doing this conversion. For
large dimensional problems, the number of inequalities gets large, and it
is computationally simpler to use a different optimization procedure, like
the one included in the homework (lasso.m).

EXTRA CREDIT-10%.
There are many good Pattern Recognition Toolboxes out there. Download and install one
of the toolboxes below. Apply a method to the digit data. For example, download
SPIDER (below) and run the multi-class svm. Email code and results figures for credit.

Here are a few:
MATLAB based

Netlab functions, a free Pattern Recognition toolbox available here:
http://www.ncrg.aston.ac.uk/netlab/index.php
SPIDER, a free machine learning toolbox available here:
http://www.kyb.tuebingen.mpg.de/bs/people/spider/

Non-MATLAB based
 Rapidminer
This is a java-based data mining GUI with a large set of methods implemented. It is
relatively easy to use

