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In biological cognition, specialized representations and

associated control processes solve the temporal prob-

lems inherent in skilled action. Recent data and neural

circuit models highlight three distinct levels of temporal

structure: sequence preparation, velocity scaling, and

state-sensitive timing. Short sequences of actions are

prepared collectively in prefrontal cortex, then queued

for performance by a cyclic competitive process that

operates on a parallel analog representation. Successful

acts like ball-catching depend on coordinated scaling of

effector velocities, and velocity scaling, mediated by the

basal ganglia, may be coupled to perceived time-to-

contact. Making acts accurate at high speeds requires

state-sensitive and precisely timed activations ofmuscle

forces in patterns that accelerate and decelerate the

effectors. The cerebellum may provide a maximally

efficient representational basis for learning to generate

such timed activation patterns.

An important strategy in cognitive science is to choose the
representation and associated algorithms/heuristics that
are best suited to rapid solution of a problem type. A
cognitive system that solves many types of problems needs
many kinds of representations. In cognitive neuroscience,
there is a consensus that the brain uses many types of
representations and associated heuristics. Brain theorists
seek to characterize these types and explain how they
cooperate to solve animals’ cognitive problems.
Three levels of temporal structure in skilled performance

A surprisingly demanding problem is the genesis of skilled
behavior using complex effectors like a human’s arm or
speech articulators. Skilled behavior emerges in tem-
porally structured episodes, and brain areas that use
distinct representations contribute to this temporal
structuring. This review examines computational models
of neural circuits contributing to three levels of temporal
structure in behavior. Level one is the fluent succession of
acts prepared collectively as a sequence. This feature is
noticeable during breakdowns, for example, stuttering, in
which familiar sequences fail to emerge fluently. Level two
is coordination of rates across parallel processes, such as
planned joint rotations contributing to a reach. To catch a
ball, reach dynamics are coordinated with event
dynamics: the global rate, and thus the duration, of an
interceptive reach is scaled to the ball’s approach time.
Corresponding author: Daniel Bullock (danb@cns.bu.edu).
Available online 3 August 2004

www.sciencedirect.com 1364-6613/$ - see front matter Q 2004 Elsevier Ltd. All rights reserved
Such scaling is compromised in basal ganglia disease.
Level three is timed anticipatory responses, such as the
braking contractions that our muscles generate to pre-
empt movement ‘overshoots’. Loss of such responses in
cerebellar patients severely degrades movements. What
neural representations and processes enable fluent suc-
cession of acts, act-event coordination, and timed antici-
patory responses? And what is the proper analysis of
particular cases? In reaching to grasp, the hand opens to
an aperture larger than the object and then closes, just as
the reach completes. Does this require explicit preparation
of a sequence of apertures in prefrontal cortex (level one),
or may the sequence emerge at lower levels?
Fluent succession of acts via competitive queuing

Fifty years ago, Lashley [1] used data on sequencing
errors – in which early and later elements of a sequence
mistakenly exchange positions – to infer that neural
representations for all elements of a planned sequence are
simultaneously active before sequence production. The
proposal that sequences are represented by simultaneous
parallel activation of representations of their elements
differs from many classical and contemporary proposals.
In most recurrent-state network models [2–4], represen-
tations of all the elements of a well-learned sequence are
never simultaneously active. Instead, the generating
system traverses a series of context-states, each of which
activates a representation of just the current element.
This transiently active representation guides that
element’s performance and updates the state represen-
tation to create the distinctive context needed to recall the
next element. The sequence and the sequence represen-
tation are emergent and serial, not parallel as Lashley
proposed.

In many cases examined by Lashley, for example,
typing familiar words, the elements of a sequence are few,
routine, and knowable in advance. Thus, parallel acti-
vation is feasible. Some neural models that take this
approach exemplify Lashley’s inference that links
between successive elements are unnecessary in a
sequence representation. Grossberg [5] constructed the
first of this class of neural network models (see Fig. 1), now
often called ‘competitive queuing’ (CQ) models [6,7].
Neurophysiological evidence for the CQ model

Until 2002 there was no compelling electrophysiological
evidence that the brain used the parallel sequence code
and iterative choice cycle postulated by CQ theorists. New
Review TRENDS in Cognitive Sciences Vol.8 No.9 September 2004
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Figure 1. A competitive queuing (CQ) network and a comparison of simulated CQ dynamics with cellular data from area 46 of prefrontal cortex. (a) All CQ models have at least

two layers, a parallel planning layer and a competitive choice layer. The planning layer contains nodes representing possible sequence elements, such as letters of the

alphabet A.Z. To plan a sequence, a desired subset of these nodes is activated in parallel (e.g. nodes representing letters that spell the Australian greeting ‘GIDAY’) and the

relative degree of activation (signaled by the relative heights of bars placed above the nodes) is used to specify the relative priority of performance. At the onset of a gating

signal, the active representations begin to compete for output via the choice layer. If the competition is fair, the most active plan-layer node will win the competition and

thereby generate a corresponding output from the choice layer, which initiates the action. A second effect of this output, mediated by an inhibitory pathway from each output

node to its corresponding plan-layer node, is deletion of activity at whatever plan-layer node has just won. Iteration of this choose–perform–delete cycle assures that an

element’s initial relative activation level in the planning layer implicitly codes its relative priority in the forthcoming sequence, and that after the iteration, the plan layer will be

empty, and ready for preparation of further sequences. If nothing interrupts the feedback and iterated choice processes, then production of a planned sequence is very fluid.

(b) A simulation of cellular dynamics in the plan layer of a normalized CQ model [10] during production of a 5-letter sequence, such as ‘GIDAY’, or a 5-stroke drawing [8]. Each

simulation trace depicts the activation history of one of the sequence element representations (1–5) during the interval from just before initiation of sequence performance to

just after production of element 5. These simulation traces correspond remarkably well with empirical observations made a decade later [8] and shown in (c). [However, the

data-processing steps [8] used to generate (c) preclude using it directly as evidence for neural normalization.] (c) Each colored data trace represents the relative activation

level in area 46 (of a monkey’s prefrontal cortex) of a small neural ensemble that represents one element of a 3-, 4-, or 5-element sequence used to draw a geometric form.

(a) Adapted with permission from [7]; (c) Reproduced with permission from [8].
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cell recordings by Averbeck et al. [8] plugged that
evidential gap. They trained monkeys to draw a copy of
a static geometric form using a routine, prescribed stroke
sequence. Thus a form cued recall of sequence-representing
information from long term memory. Recordings from area
46 of prefrontal cortex showed that before the monkey
began the stroke sequence, there existed a parallel
representation, as proposed in CQ theory (see Fig. 1b,c).
As strokes were produced, deletions occurred as expected
from this representation, with the most active represen-
tation being deleted first, and so on, until the final stroke
was made and its representation deleted. These data
buttress the hypothesis that the brain uses parallel
activation patterns to represent, plan and control the
execution of short sequences. The same results disconfirm
the conjecture [9] that monkeys don’t use a ‘collective’
planning strategy.

In some CQ models [5,10–12], the total activity
allocated to plans is normalized and redistributed to the
remaining representations on each iteration. By the time
the last element is chosen, its activity will have grown to a
much larger value than it had initially (Fig. 1b). Such
normalization (which abets the explanatory successes of a
recent production system model [13]) predicts that the
average activation of each representation varies inversely
with sequence length. Experiments that varied the
number of alternative response options in deferred
choice tasks [14–16] confirmed this neurophysiological
prediction.

Progress of CQ models in explaining sequencing and

timing

To motivate normalized CQ models, Grossberg [5] stressed
that neurons exhibit finite activation ranges and noise.
Both constrain the ability of neurons to use relative
activations to reliably code the relative priority of a large
number of sequence elements. Brains using this analog
code should exhibit a small upper bound on the number of
elements that can be reliably recalled in correct sequential
order without secondary strategies, such as reloading
chunks from long-term memory [5,6,12]. Cowan [17]
showed that such a small upper bound has been found
for working memory capacity in tasks requiring immedi-
ate recall of novel sequences in correct order. Page and
Norris [18] showed that a CQ model with noisy choice
predicts additional data from immediate serial recall
tasks, such as the overwhelming tendency for exchange
errors to be transpositions of adjacent elements in the
planned sequence.

In all CQ models, the latency to produce a sequence
element depends on the time needed for the activation
level of the corresponding plan to win the competition.
Because more simultaneously active plans imply a lower
activation level for each (normalization), the latency to
initiate the first element should increase with sequence
length. Such effects, measured by Sternberg and col-
leagues [19], were successfully simulated [10] in 1991.
However, more recent data [20,21] showed that for well-
practiced sequences, some practice-dependent process
overcomes the latency penalty initially associated with
preparing sequences. Neurophysiological data [22]
www.sciencedirect.com
implicate the lateral cerebellum in recall of well-learned
sequences, and recent neuroanatomical data [23] show
projections to prefrontal cortical area 46 from the
cerebellum’s dentate nucleus. Consistent with these
data, Rhodes and Bullock [12] constructed an adaptive
neural model to explain how practice-dependent cerebellar
outputs could mediate ‘parallel analog loading’ of
sequence element activations into the plan layer of a
working memory that obeys CQ principles (Fig. 1a). This
model shows how a cortico-cerebello-cortical circuit can
learn and recall long-term (procedural) sequence mem-
ories. After practice, strong cerebellar output forces the
choice layer of the CQ system to pre-commit to the first
sequence element. Thereafter, initiation latency is inde-
pendent of the number of elements in the practiced
sequence.

The past decade has seen many extensions of
CQ-compatible sequence learning and control models to
cognitive phenomena. These include sequences with
repeating elements [6,11,24], sequences with overlapping
performance of successive elements, as in speech coarti-
culation [6] and cursive handwriting [25,26], pitch-
duration sequences in melody learning [27], and language
production [28,29]. Notably, Ward’s connectionist
language generator illustrates how to link CQ theory to
‘construction grammar’ [30]. If recent neurophysiological
evidence [8,14–16] for CQ assumptions and predictions
survives scrutiny, many further CQ model elaborations
can be expected.

Coordination of rates and completion times in voluntary

action

Many movement models, such as Equilibrium Point (EP)
models ([31], Box 1), treat the temporal structure of
actions from a biomechanical perspective. By contrast,
some central pattern generation models, such as Vector
Integration To Endpoint (VITE) models ([32], Box 1), treat
timing from a cognitive dynamics perspective, with a focus
on voluntary gating of plan execution and voluntary
control of movement rates. VITE models have successfully
simulated both the discharge patterns of diverse motor
cortical cell types [32,39] and numerous movement timing
phenomena [12,25,26,39,40]. Recently, VITE-consistent
models have explained timing properties of interceptive
reaching and reach-grasp coordination. Peper and col-
leagues [41] noted that if an interceptive reach is to
succeed at getting the hand to an approaching ball before
it passes by, then global scaling of the reaching rate should
be coupled to a relational percept. In their Required
Velocity (RV) model [41], an evolving perceptual variable,
the ball’s declining time-to-contact (TC) with the catcher,
continuously adjusts the reaching rate to that velocity
required for a successful interception. Because TCK1

increases during the reach, it can function in the same
way as the increasing GO signal in VITE models [32].
Comparing predictions of the VITE and RV models with
data revealed a common weakness [42], which was
corrected by allowing ball velocity to affect both rate (via
TC) and hand direction. The resulting ‘prospective’ VITE
model of Dessing and colleagues [42] explains many
interceptive reaching phenomena (Fig. 2a). Evidence for
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Box 1. Equilibrium point models contrasted with central pattern generators

Some neurobiologists once entertained the hypothesis that actions

might not require any internal trajectory planning, because move-

ments might be treated as mere transitions between postures. If the

balance of muscle forces needed to hold a goal posture B were

abruptly instated, then the body’s existing posture, A, would suddenly

be in a biomechanical disequilibrium created by muscles acting as

spring-like force generators. Movement would ensue, with the body’s

configuration attracted towards goal posture B as a mechanical

equilibrium point in the space of possible body configurations. So

emerged ‘equilibrium point’ (EP) models. Simple versions of EP theory

fall to logical counterexamples. Suppose a kneeling quadriped hoping

to stand were to abruptly activate its muscles to the levels needed to

generate the pattern of forces typically used to hold standing posture.

This fails because standing quadripeds support most of their weight

by columns of bone – not by muscle forces. Elaborated EP models

have failed empirical tests [31], and none explains overwhelming

evidence (e.g. [15,16,32]) for continuous movement vector compu-

tations in motor cortex. By contrast, such evidence inspired central

pattern generator (CPG) models such as the ‘Vector Integration To

Endpoint’ (VITE) model [32]. A CPG model is also preferable to sensory

feedback control models, because simple voluntary movements in

primates survive removal of all sensory feedback regarding the

controlled limb. The VITE CPG models a nexus of brain adaptations

needed for deliberative planning and voluntary movement. Thus,

most acts require parallel contributions by many muscles contracting

by markedly different lengths. To avoid jerky actions, the rate of each

contraction must be proportional to its desired length. When we slow

or speed an act, multiplicatively scaling all these proportionate rates

with a single GO signal (see Fig. 2 in main text) ensures synchronous

contractions. Even if onsets are asynchronous, temporal equifinality

(synchronized terminations) of contractions occurs if the volitional

rate scaling signal’s amplitude increases as the act unfolds. Onset

(or offset) of such a GO signal can initiate (or halt) plan execution – a

basic requirement for voluntary action. Finally, vector plans can be

cognitively prepared for alternative effectors – such as the right and

the left arm – until a decision process selectively gates performance by

one alternative. The VITE theory predicts a brain site that is both a gate

for plan execution and a modulator of movement speed. Stimulation

at such a site should affect movement rate but leave movement

direction unaffected. Evidence supports the hypothesis that the basal

ganglia and related parts of thalamus serve the gating/scaling function

for locomotion, reaching, handwriting, speaking and eye movements

[26,33–37]. An adaptive model of basal ganglia gating of cortical plans

(consistent with VITE and CQ) recently appeared [38].
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TC neurons is abundant [42–44], and TC is prominent in
other timing models, including models of viapoint move-
ments [44] and legato articulation [45,46] by pianists.

Another focus of timing research is reach-grasp
coordination. The Hoff–Arbibmodel [47] showed how
internal duration computations could ensure that hand
opening and closing were adjusted to both the planned
duration of a reach and the maximum expected hand
aperture (the thumb to finger distance), which was solely a
function of object size. Yet reach duration often emerges
from a dynamic coupling between actor and object motions
[41,42], and maximum hand aperture depends on reach
rate [48]. Thus neither component durations nor maxi-
mum apertures are known in advance. The VITE-based
model (Fig. 2b) of Ulloa and Bullock [49] generates reach-
grasp coordination without such advance knowledge. Key
timing-data trends [50,51] emerge dynamically. Thus,
although there is a single pre-planned hand aperture goal
(object size), a cross-coupling between the reach and grasp
circuits allows the aperture to be transiently incremented
during the reach by an amount proportional to reach
velocity, which in VITE trajectories is maximal midway
through the duration of a typical (unperturbed) reach.
Because the transient increment to aperture fades after
mid-time of the reach, the model generates an aperture
sequence without explicit sequence preparation. Under
typical (and perturbed, see Fig. 2b) conditions, the reach
and hand closure finish synchronously. This exemplifies
the temporal equifinality property (Box 1 and Fig. 2b)
afforded by using a single rate-scaling signal to coordinate
parallel processes.

To students of control theory, VITE circuits (Fig. 2)
invite comparisons with engineering approaches such as
PID (Proportional, Integral, Derivative) control, in which
motor command components are proportional to the
fedback error (between the desired and current sensory
states), its integral, and its time derivative. However,
whereas PID control requires sensory feedback, a central
pattern generator (CPG) like VITE can operate without
www.sciencedirect.com
sensory feedback. Our analysis [39] concluded that
primates use flexible CPGs of desired kinematics, which
operate in cascade with a spinal PID controller and a
cerebellar feedforward controller. The VITE circuit models
only some properties of the inferred CPG. Equally
important as voluntary rate scaling to the success of
coordinated movements is flexible recruitment and de-
recruitment of the multiple effectors that contribute
motion components in different directions and amplitudes
as an act unfolds. Guenther and colleagues [52,53] have
developed adaptive neural models called DIRECT and
DIVA to explain effector recruitment in arm and speech
movements, respectively. Fiala [54] and Barreca and
Guenther [53] each demonstrated how to preserve
principles of the VITE model within complex, DIRECT-
type, models. In DIRECT, learning creates inverse
kinematic mappings and predictive forward kinematic
mappings that transform between sensory and motor
coordinates. Such networks enable ‘motor-equivalence’,
i.e. equivalent results from variable means, because as the
movement unfolds, the learned internal mappings recruit
novel combinations of joint rotations adequate to produce
desired visual motions of a hand, or a tool held in the hand.
The DIRECT model clarifies how adaptive circuits can
achieve performances similar to abstract, but behaviorally
predictive, models like the ‘optimal feedback’ model [55] of
Todorov and Jordan. In particular, DIRECT and DIVA
respectively enable on-line corrections to unexpected
perturbations of movements by arms and speech
articulators.
Timed anticipatory responses

In a successful ball catch, the arm flicks out and ‘stops on a
dime’ at whatever degree of arm extension enables the
hand to catch the ball. Newtonian mechanics implies that
an arm set in motion by extensor muscles would
(disastrously) continue ‘past the mark’ unless braked by
precisely timed, anticipatory action of opposing muscles.
When driving a car, stomping the accelerator and hitting

http://www.sciencedirect.com
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Figure 2. Vector integration to endpoint models for catching and grasping. (a) The

prospective VITE model [42] of interceptive reaching, a basic component of

catching. Symbols T(t) and _T ðtÞ are the position and velocity of an approaching

object (e.g. a ball). In all VITE models, DV is the difference vector computed between

representations of the target position vector (TPV) and the hand’s present position

vector (PPV). Output from the PPV continuously specifies desired hand position.

The desired velocity vector (DVV) for the hand arises as a product of the DV and an

internally generated GO signal. Because of its multiplicative control of the DVV, the

GO signal can be used to initiate movement, scale its overall velocity, and halt

movement. The PPV is generated internally by continuously integrating the DVV.

The prospective VITE model augments the basic VITE circuit (just described) by

using target velocity both to compute TC (time-to-contact) and to refine the effective

DVV by computing a relative velocity vector (RVV). The inverse, TCK1(t), an

‘urgency to complete’ signal, refines the effective GO signal. These interactions

adjust movement velocities to values needed to intercept in the time available. This

VITE model is called ‘prospective’ rather than ‘predictive’ because it anticipates

without ever predicting the locus of interception. If a model were to predict and

move by the shortest path to the locus of interception, it could not explain the

systematic reversals of movement direction exhibited by human catchers. (b) A

neural model [49] for temporal coordination of three component processes – hand

orientation control, control of hand transport by the arm, and hand aperture

(distance between thumb and index finger) control – that operate in parallel during

reaches that culminate in a precision grasp of an object at rest. The symbols Ti, Di,

and Pi stand for internally computed target, difference, and present position

vectors, respectively; the Vi stand for desired velocity vectors. The values of the

subscript i indicate either transport (T), aperture (A), or orientation (O), for example,

TT is the target object’s location, TA is targeted hand aperture, and TO is targeted

hand orientation. To prepare a movement plan, initial values of the Dis are

computed before GO signal activation initiates movement. Ii is a perceptual

representation of the target for each component. Ei is the discrepancy between the

perceptual (Ii) and plan (Ti) representations of the target for each component.

Discrepancies arise if the object suddenly changes in size, orientation or distance.

Such discrepancies inhibit the GO signal and slow all movement components until

planning variables again agree with current percepts. CTA and COA are inputs to

aperture control from velocity of transport and velocity of orientation, respectively.

These inputs cause maximum aperture transiently to exceed object size by an

amount that scales with movement speed – useful for avoiding collision of the

fingers with the object during the hand’s approach [48]. Node R represents a

process mediating delayed self-inhibition of hand aperture. (a) and (b) Reproduced

with permission from [42] and [49], respectively.
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the brake are separate voluntary actions. When ‘driving’
our bodies, the braking contractions are automatic and of
subcortical origin. The timed anticipatory components of
the motor cortex signals that shape braking reactions
disappear if part of the cerebellum’s dentate nucleus is
cooled [56]. Many such observations implicate the cere-
bellum as an engine for the learning and performance of
anticipatory responses [56–59] that fit the following
formula: In context C generate signals in output channel
A after waiting time interval T. Furthermore, Perrett,
Ruiz and Mauk [60] showed that a restricted cerebellar
cortical lesion, which spares the cerebellum’s deep nuclei,
produces an animal that makes its anticipatory responses
too early. Such experiments have created a consensus that
some mechanism in the cerebellar cortex learns to with-
hold an anticipatory response until the optimal time T
after onset of the conditional stimulus (CS) that indicates
the state/context within which the response should be
generated.

The network and cells in the cerebellar cortex are
complex, and several models have been proposed to
explain cerebellar adaptive timing. These models fall
into two broad classes: network-delay models and synaptic-
delay models (see Box 2). Two similar cerebellar network-
delay models [61,62] were proposed independently in 1994
and both borrowed ideas from earlier adaptive timing
models (e.g. [63]). Both postulated that a CS (conditional
stimulus) carried to the cerebellum by mossy-fibers
induces local interactions between Golgi cells and large
populations of granule cells. Such interactions might
enable any CS to generate a spectrum of transient, time-
lagged granule cell activations that was specific to that
CS. Given such a temporal basis, whichever granule cell
activation has the appropriate time delay to coincide with
a climbing fiber signal can, over the course of repeated
experiential trials, become able to control cerebellar
output, provided that an associative learning process
operates to change the synaptic weight between that
granule cell’s parallel fiber and those Purkinje (output)
cells excited by the climbing fiber signal. (Signal propa-
gation along parallel fibers does not provide a behaviorally
significant delay.) Even the latest network-delay models
[64,65] use whole cells and network interactions to create
the temporal basis. By contrast, synaptic-delay models
[66] postulate that the spectrum of delays needed for
adaptive timing emerge in synapse-specific elements,
namely the tiny spines [66,67] that populate the branch-
lets of Purkinje cells’ dendritic trees. It is with these
spines that parallel fibers actually synapse.

Relative to synaptic-delay models, network-delay
models are very inefficient. They are metabolically
inefficient because they use a cellular network to do
what may be done within tiny dendritic spines; and they
are computationally inefficient because each granule cell
population dedicated to creating a spectrum of time-
lagged responses to one CS cannot readily serve other
roles attributed to cerebellar cortex. In particular, no
network-delay model has shown how purported temporal-
basis granule cells could simultaneously fulfill the ‘spatial
pattern separation’ role (Box 2) attributed to the granule
cell stage in Marr–Albus models [68–70]. By contrast, all

http://www.sciencedirect.com


Box 2. A two-stage cerebellar adaptive engine?

If the cerebellum performs both of the major functions most

commonly attributed to it – spatial pattern separation and adaptive

timing – then cerebellar learning constitutes a parallel search, through

masses of potentially predictive recent signal sets, for reliable leading

indicators that will allow the animal to make timed anticipatory

responses. According to Marr–Albus theory [68–70], the first stage of

cerebellar processing uses the granule cells (Figure Ia,b) to perform

spatial pattern separation. Each of millions of mossy fibers (MFs)

distributes its signal, one component of a massive state/context

vector, across the cerebellar cortex (Figure Ia). Billions of cerebellar

granule cells each use four or five dendrites to sample a partially

distinctive subset of the MF context representation (Figure Ia). This

allows granule cells to detect highly specific event or state-subset

combinations. The creation of these combination representations,

abetted by inhibitory suppression of granule cells excited by only one

or two of their potential inputs, makes the representations of any two

contexts more dissimilar (‘farther apart’ whence ‘separation’) in the

higher-dimensional space defined by granule cell outputs than in the

lower-dimensional space defined by MF signals. Each granule cell’s

parallel fiber (Figure Ia,b) sends its output (if any) to hundreds of

Purkinje cells, and each Purkinje cell receives inputs from many

thousands of parallel fibers. Synaptic-delay models propose that

adaptive timing is achieved after the granule stage, by a spectrum of

delays within the population of Purkinje dendritic spines contacted by

each granule cell via its long parallel fiber. Thus spatial pattern

separation and adaptive timing can efficiently co-exist and co-operate

in each cerebellar compartment. By contrast, network-delay models

propose that the spectrum of delays emerges in the population of

granule cells itself. It remains to be shown in a model how the granule

stage could perform both functions.
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Figure I. Circuit properties of the mammalian cerebellum. (a) Within the lattice-like cortex (‘outer rind’) of the cerebellum (‘little brain’), signals pass along mossy fibers to

mossy fiber terminals (rosettes), then to granule cells, then to granule cell axons, which rise and then bifurcate (T-branch) to form parallel fibers. For many mammals,

there are as many granule cells in the cerebellum as there are neurons in the remainder of the brain. Each branch of each parallel fiber can excite up to hundreds of Golgi,

basket, stellate and Purkinje cells, groups of which are linked in a highly conserved connectivity pattern, one token of which is shown in (b). (b) A very highly schematic

depiction of the cell types and connections found in the basic cerebellar circuit, which is replicated millions of times, albeit with different inputs and output destinations, in

each cerebellum of large mammals. Also shown is the pons, source of a large proportion of mossy fibers, and the inferior olive, sole source of the climbing fibers whose

discharges gate one type of cerebellar learning. The convergence onto each Purkinje cell of thousands of parallel fibers (only one shown here) but just one climbing fiber

(as shown) is a striking connectional asymmetry that has figured prominently in most theories of cerebellar learning, including adaptive timing. (A) and (B) reprinted with

permission from [4].
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variants [4,71] of the synaptic-delay model introduced by
Fiala and colleagues [66] are compatible with granule-
based spatial pattern separation.

Although further computational challenges to some
network-delay models exist – for example, poor signal-
processing repeatability – recent empirical results cast
strong doubt on the sufficiency of any cerebellar network-
delay model. Three separate laboratories [57,72,73] have
discovered that cerebellar adaptive timing occurs under
conditions in which it should be impossible if adaptive
timing requires the network-delay mechanism. By con-
trast, the synaptic-delay model correctly predicts success-
ful adaptive timing in all three cases. In the earliest
experiment, Shinkman, Swain and Thompson [57] sub-
stituted prolonged direct stimulation of parallel fibers
(granule cell axons) for CS presentation, and demon-
strated normal delayed response learning and perform-
ance. For this protocol, the network-delay model instead
predicts a learned response that begins much too early
and persists until CS offset. The second experiment, by
Raymond and Lisberger [72], was explicitly designed to pit
www.sciencedirect.com
network-delay models against synaptic-delay models.
They found that the information needed to control
behavior had disappeared from the granule cell discharges
w100 ms before the signal that initiated associative
learning. Under such conditions, the network-delay
model predicts no response learning – again, contrary to
the data. Raymond and Lisberger inferred that there must
be a synapse-specific delay of at least 100 ms – an
inference since confirmed by direct observations on
Purkinje cell dendritic spines [67]. In the third experi-
ment, Svensson and Ivarsson [73] used decerebrate ferrets
to eliminate any hippocampal or other cerebral contri-
butions to adaptive timing. They then showed successful
temporal conditioning using a ‘trace’ protocol, in which
there is a gap between CS offset and the time the
conditioned response should be generated. For this
protocol, the network-delay model predicts no learning,
because there is no stimulus to drive granule cell
activations once the CS goes off. By contrast, synaptic
delay models predict robust learning, provided that the
trace interval is not too long. Available data suggest that
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the cerebellum is sufficient for trace intervals up to at least
600 ms [73,74] Learning across longer trace intervals
requires hippocampal assistance during training. Thus all
three experimental results are consistent with the
synaptic-delay model, but inconsistent with the network-
delay model.

How efficient should a biologically accurate model of
adaptive timing be? The synaptic-delay model proposed by
Fiala et al. [66] is much more efficient than the network-
delay model (Box 2), but it is not maximally efficient. Two
offspring [4,71] of the synaptic-delay model have proposed
distinct ways to replace each of the original model’s
populations of dendritic spines (and associated pre-
existing spectra of delays) with a single adaptive element.
In these untested models, a granule cell’s output is
transformed into a separate, experience-trained time
delay within each Purkinje dendritic spine contacted.

Conclusions

This review has focused on neural circuit models of fluent
performance of discrete actions, and the implicit claim was
that at least three kinds of temporal structuring must be
acknowledged to exist as distinct factors in most episodes
of skilled action. Competitive queuing theorists who
endorsed Lashley’s inference that some sequence planning
involves parallel activation of all sequence elements can
now point to compelling electrophysiological support, but
this does not imply that other mechanisms play no role in
sequence representations important for fluent action.
Vector-integration-to-endpoint models explain many
electrophysiological and behavioral patterns as signatures
of a nexus of circuit adaptations that made flexible volun-
tary action possible, but many ideas from the literatures
on equilibrium point control and feedback control are
usefully incorporated in extensions of CPG models like
VITE. Synaptic-delay data and models indicate that the
brain has an efficient intracellular mechanism for detect-
ing predictive relationships between event onsets separ-
ated by intervals from tens of milliseconds to at least half a
second, but this may say little about interval timing on
significantly longer time scales [75]. Finally, it is exciting
to see emerging data and computer models that highlight
the embedding of subcortical circuits, in the basal ganglia
and cerebellum, within segregated loops that include
the frontal cortex [23,36,37]. These subcortical circuits,
heretofore often associated with operant conditioning
(basal ganglia) and classical conditioning (cerebellum),
have emerged as key to cognitive functions such as
decision making (e.g. [38]) and serial plan preparation
(e.g. [12]). Clarifying the functional architecture of these
extended circuits is a priority of most brain modelers
interested in the temporal structure of behavior.
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