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Abstract

A wave of recent behavioral studies has generated a new wealth of parametric observations

about serial order behavior. What was a trickle of neurophysiological studies has grown to a

steady stream of probes of neural sites and mechanisms underlying sequential behavior. More-

over, simulation models of serial behavior generation have begun to open a channel to link

cellular dynamics with cognitive and behavioral dynamics. Here we review major results from

prominent sequence learning and performance tasks, namely immediate serial recall, typing,

2 · N, discrete sequence production, and serial reaction time. These tasks populate a contin-

uum from higher to lower degrees of internal control of sequential organization and probe

important contemporary issues such as the nature of working-memory representations for

sequential behavior, and the development and role of chunks in hierarchical control. The main

movement classes reviewed are speech and keypressing, both involving small amplitude move-

ments amenable to parametric study. A synopsis of serial order models, vis-à-vis major
0167-9457/$ - see front matter � 2004 Published by Elsevier B.V.

doi:10.1016/j.humov.2004.10.008

* Corresponding author. Tel.: +1 617 353 9486; fax: +1 617 353 7755.

E-mail address: danb@cns.bu.edu (D. Bullock).

mailto:danb@cns.bu.edu 


700 B.J. Rhodes et al. / Human Movement Science 23 (2004) 699–746
empirical findings leads to a focus on competitive queuing (CQ) models. Recently, the many

behavioral predictive successes of CQ models have been complemented by successful predic-

tion of distinctively patterned electrophysiological recordings. In lateral prefrontal cortex, par-

allel activation dynamics of multiple neural ensembles strikingly matches the parallel dynamics

predicted by CQ theory. An extended CQ simulation model – the N-STREAMS neural net-

work model – exemplifies ongoing attempts to accommodate a broad range of both behavioral

and neurobiological data within a CQ-consistent theory.

� 2004 Published by Elsevier B.V.
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1. Introduction: A brief history of serial order

Thinking about movement sequences has a long history in behavioral science.

Pavlov and other early observers (for a review, see e.g., Adams, 1984) noted that se-

quences may arise if feedback caused by generating one response triggers the next
one. This mechanism has been called stimulus–response reflex chaining or simply re-

sponse chaining (Bain, 1868; James, 1890). That movement sequences can be per-

formed in the absence of sensory feedback argues against the sufficiency of

response chaining. Such cases suggest centrally programmed command sequences

that are ‘‘structured before the movement begins and allow . . . the entire sequence

to be carried out uninfluenced by peripheral feedback’’ (Keele, 1968, p. 387). Precur-

sors of this centralist view date back at least as far as Helmholtz (1866), James

(1890), Woodworth (1899), and Lashley (1917, 1951).
If sequence production is normally insensitive to removal of expected sensory feed-

back, then sequences are executed under open-loop control. A testable version of

open-loop sequence control was formalized by Henry & Rogers (1960). Their �mem-

ory drum� model started with the observation that simple RT increased as a function

of movement complexity, an effect reported much earlier (e.g., Freeman, 1907). The

memory drummodel explained these results by assuming that innate and learned neu-

romotor coordination patterns are stored, and become accessible for production, via

a mechanism abstractly similar to the rotating drums that memory psychologists then
used to automate presentations of stimuli (inscribed on the curved surface) to sub-

jects, at a rate dependent on variables such as drum radius and shaft rotation speed.

They proposed that the net drum operation rate slows as the sequence to be recalled

becomes more complex. Although a �complexity� metric was not defined in 1960,

Henry (1980) wrote that he and Rogers intended the dictionary definition: ‘‘That is

complex which is made up of a number of connected parts’’ (p. 164). Thus, a more

complex response would have a larger number of connected parts than a less complex

response. Although the empirical bases of this theory came from simple RT (sRT)
tasks, Henry argued that the theory applied to choice RT (cRT) tasks as well. The

complexity effect has been replicated many times in various types of tasks, including
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some that tested alternative explanations for the effect (Anson, 1982; Christina, Fis-

chman, Vercruyssen, & Anson, 1982). However, one prediction of the memory-drum

(or phonograph) metaphor – that performance rate for all sequence elements should

uniformly slow or quicken – has been falsified in multiple studies of human perfor-

mance (Heuer, 1988; MacKenzie & van Eerd, 1990; Verwey, 2003b).
A distinct line of research has examined skilled performance. Perceptual-motor

skills exemplified by typing and various sports include complex movement se-

quences. A recurring proposal is that complex movement sequences are controlled

hierarchically (e.g., Book, 1908; Miller, Galanter, & Pribram, 1960). Hierarchical

control is often depicted with tree-like branching structures. Skills involve units of

behavior, and each high level unit is subdivided into lower-level units that involve

smaller and more explicitly defined units, until, at the lowest level, limbs or muscles

are specified. The higher levels deal with longer term consequences, and lower levels
consider short-term details of individual movements. Level of control has been asso-

ciated with modifiability: ‘‘If the �vital� centers of the lowest levels were not strongly
organized at birth, life would not be possible; if the centers on the highest levels

(�mental centers�) were not little organized and therefore very modifiable we could

only with difficulty and imperfectly adjust ourselves to the circumstances and should

make few acquirements’’ (Taylor, 1932, p. 437).

Thus, hierarchical control would combine autonomous functions at low levels

with the possibility of learning new operations at higher control levels. By the late
1970s, this general idea was posited in testable form (e.g., Reason, 1979; Rosenbaum,

Kenny, & Derr, 1983; Sternberg, Monsell, Knoll, & Wright, 1978, 1980). Since then,

some connectionist theorists have argued that it may be possible to explain the data

indicating hierarchically organized behavior without accepting the inference of a

genuine hierarchical controller (e.g., Elman, 1990; for critiques, see Page, 1994; Mac-

Whinney, 2003). This is one of the key theoretical issues to which we will return fol-

lowing a survey of recent data. These data, which include not only parametric

behavioral effects but also a flood of recent neurobiological observations, establish
an extremely challenging set of criteria that must be met by models of serial order.

It has become clear that comprehensive serial order models of the future will have

to include multiple bases for sequence storage and learning, and that each basis will

involve distinctive representational resources. There is now compelling evidence that

part of such a model should include a component that can represent and store both

novel and familiar sequences as parallel activation patterns without using any direct

associative links between successive items in the represented sequence. Such evidence

violates the predictions of many classical and recent connectionist models, but sup-
ports the predictions of one class of �hierarchy friendly� connectionist models, namely

competitive queuing (CQ) models (Grossberg, 1978a, 1978b; Houghton, 1990).
2. Sequence learning and performance research: Major active paradigms

We now review major data constraints pertinent to delineating mechanisms

responsible for proficient representation and execution of movement sequences,
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especially short sequences that are known before movement is initiated. Most con-

ceptual models have been developed in the context of a particular task. There are dis-

tinct schemes (conceptual models) for handwriting, typing, speech production, and

musical performance. These schemes have a mutual resemblance but are often too

sketchy to allow definition of common and distinctive features. That these schemes
all describe examples of the same phenomenon – skilled human motor performance –

justifies the quest for a generic formal (e.g., neural network) model of human motor

behavior that encompasses the basic principles of skilled behavior.

The reviewed paradigms probe issues such as internal sequence preparation, hier-

archical control and practice effects. All paradigms consist of tasks which employ

small amplitude movement elements that can be produced rapidly (such as key-

presses and uttering phonemes), because sequences composed from movements with

prolonged durations can conceal preparation for forthcoming sequence elements
that may occur during execution of prior elements (e.g., Verwey, 1996, 2001). Most

reviewed tasks also involve moderate to extensive practice. Such practice leads to

skilled performance in which sequences are based neither on deliberative choice of

individual acts nor on the stimulus guidance that characterizes assembly of unfamil-

iar sequences.

2.1. Tasks and data treated

The tasks (Table 1) to be reviewed populate an internal control continuum that

ranges from tasks that strictly require internal (e.g., long-term- or working-mem-

ory-guided) sequence control (ISR, 2 · N, PSFD, plus simple and choice RT tasks

with sequences for responses), through tasks that strongly encourage but do not

strictly require internal sequence control (e.g., DSP), to tasks that allow but do

not encourage internal sequence control (e.g., SRT). Chronometric and/or error pat-

tern analyses, as available, will be summarized to identify robust trends to constrain

models of sequence representation and production.

2.1.1. Immediate serial recall (ISR)

In its canonical form, the ISR (immediate serial recall) task involves the presen-

tation of a list of familiar items (e.g., digits, letters, words) that the participant is

asked to recall in the correct order. The participant�s response exemplifies a planned

movement sequence. In spoken ISR, the necessary coordination of the articulators

during the utterance is one of the most complex motor acts that we routinely at-

tempt. That it rarely impresses us as virtuosic, testifies to the massive amount of
everyday speech practice from which such performance benefits.

Later we review evidence that the standard ISR task draws heavily on speech-

based processes. First we outline the general form of ISR data, drawing attention

to ways in which they differ in emphasis from other sequential task data. One prin-

cipal difference is that most ISR data analyses treat patterns of errors. Since early

studies of Conrad and Brown, error analysis has been a �royal road� to the study

of memory (Henson, 1996). Indeed, the large majority of modern models of short-

term serial memory are tested against error data as opposed to timing data. Yet



Table 1

List of serial order behavioral paradigms reviewed, plus other abbreviations used

Abbreviation Expansion

Serial order behavioral paradigms

2 · N 2 · N task – where N is typically 5 or 10

cRT choice reaction time (with response being a sequence)

DSP Discrete sequence production

ISR Immediate serial recall

PSFD Prescribed sequence figure drawing

sRT simple reaction time (with response being a sequence)

SRT Serial reaction time

Typing Typing – primarily with short sequences

Paradigm parameters/measures

ERP Event-related potentials

IRI Inter-response interval

LRP Lateralized readiness potential

RSI Response to stimulus interval

Effects from data

SLEL Sequence length effect on latency

SLER Sequence length effect on (mean production) rate

WLE Word-length effect

Brain activity investigation techniques

EEG Electroencephalography

FMRI Functional magnetic resonance imaging

PET Positron emission tomography

TMS Transcranial magnetic stimulation

Models/networks

CQ Competitive queuing

HED Hierarchical editor

RNN Recurrent neural network

Cortical regions

DLPFC Dorso-lateral prefrontal cortex

IPS Intra-parietal sulcus

SMA Supplementary motor area
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theorists and modelers have not neglected ideas relating to the passage of time, and a

fierce debate continues regarding the effects of passing time on ISR performance.

This debate concerns the effects both of short, filled delays on ISR performance

and of other within-recall delays brought about by differential articulation times

for the verbal materials. Timing phenomena are more often considered for their

effects on the number and pattern of errors than as explicit targets for modeling.

A recurring target for ISR modeling is the serial position curve produced by plot-

ting the number of serial-recall errors against output position. An error is any failure
to recall, in a given output position, the item that was presented in the corresponding

position in the stimulus list. Error types include transpositions of list-items from

other positions in the same list and the omission of any response at a position (which

participants are asked to indicate with the word ‘‘blank’’ during spoken recall, or
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with a dash in written recall). For ISR of lists of approximately span length – span

being the length of a list that a participant can recall correctly half the time – the

serial-recall curve has a very well-established form, that illustrated in Fig. 1 (from

an ISR experiment involving six visually presented items). It is often glossed as

bow-shaped, by analogy with curves from free-recall experiments, in which response
order is unconstrained. However, �bow-shaped� suggests a symmetry in the curve that

is rarely present. A better summary is that errors increase approximately linearly

across output positions, with a dip at the list-final position. The advantage for early

items is normally dubbed a primacy effect, and the improved performance for the

final item (occasionally items) is dubbed a recency effect.

The characteristic form of the serial position curve proved surprisingly difficult to

simulate in a number of sophisticated models of ISR. For example, the influential

connectionist model of Burgess & Hitch (1992) had considerable trouble capturing
this aspect of the data. An observation made by Page and colleagues (Henson, Nor-

ris, Page, & Baddeley, 1996; Norris, Page, & Baddeley, 1994; Page & Norris, 1998)

helped to resolve this problem. They noted a dominant transposition error pattern,

which they termed fill-in: an item�s being recalled early, say at position n, is most of-

ten immediately succeeded by �fill-in� of the item that should have appeared at posi-

tion n. Such fill-in is contrary to the prediction of models that represent serial order

via association links between prior states and next items. Fill-in implies that if the

response to the letter-list ‘‘RXKHZB’’ begins ‘‘RXH. . .’’ then recall is much more
likely to continue with a ‘‘K’’ than with, say, a ‘‘Z’’, whereas �chaining� models incor-

rectly predict that the ‘‘H’’ would tend to link onwards to its successor ‘‘Z’’ rather

than back to its predecessor ‘‘K’’. Lack of fill-in mitigated against the bias toward

adjacent item transpositions that was found in the data and turned out to be a cru-

cial problem that prevented most models that preceded the primacy model of ISR

(Henson et al., 1996; Page & Norris, 1998) from accurately modeling the serial posi-

tion curve.
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Fig. 1. A schematic serial position curve for immediate serial recall of a span-length list. The plot is typical

of data reported by Henson et al. (1996) that strongly informed the modeling of Page and Norris (1998).

The approximately linear increase in error rate across serial position, except for a dip below the trend line

in the list-final position, is apparent.
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Factors other than serial position also influence ISR errors. Substantial evidence

suggests that speech processes, including operations of a short-term, speech-based

store, are crucial for ISR performance under normal circumstances. Much of this

evidence was collected with reference to the working-memory framework established

by Baddeley & Hitch (1974) and later developed by Baddeley (1986). The first result
indicative of the use of a speech-based store was termed the phonological similarity

effect (e.g., Baddeley, 1968; Conrad, 1964). The recall of lists of rhyming items

(e.g., the list of letter names ‘‘GCBTPV’’) is reliably poorer than the recall of lists

of non-rhyming items (e.g., ‘‘HRQXBL’’). This robust effect is seen even if partici-

pants are shown the stimulus lists visually, provided that they are not forced to en-

gage in concurrent articulation during the visual presentation. Such concurrent

articulation normally takes the form of repeatedly uttering an irrelevant word

(e.g., ‘‘blah blah blah’’) and is taken to block the process by which the visual stimulus
is recoded into the speech-based store. With no chance to recode, participants are

assumed to perform from a visual, or perhaps episodic, memory within which

phonological similarity plays no role. Interestingly, concurrent articulation has no

effect on the phonological similarity effect when auditory presentation is used. This

is taken to indicate that auditory materials� access to the speech-based store is

�direct�.
A similar input-type-by-task interaction effect seen in ISR is the irrelevant sound

effect. Performance in ISR is disrupted in the presence of irrelevant background
sound of a particular type (Colle & Welsh, 1976; Salamé & Baddeley, 1982). If the

irrelevant sound is �white noise�, there is no disruption, but an irrelevant stimulus

that changes its state (Jones, Madden, & Miles, 1992) does disrupt ISR. Irrelevant

speech sounds (even in a language unfamiliar to the participant) produce strong ef-

fects. The �unattended speech effect� was later renamed the �irrelevant sound effect�,
following findings that speech is neither necessary nor sufficient. Jones & Macken

(1993) first showed that a changing sequence of tones suffices to disrupt ISR, whereas

an unchanging irrelevant speech stimulus, such as repeated utterance of the same
token, only weakly disrupts ISR. That concurrent articulation abolishes the irrele-

vant sound effect for visual but not auditory presentation of ISR materials, combines

with the fact that disruption is strongest when the irrelevant stimulus changes in a

speech-like manner to give qualified support to the hypothesis that a speech-based

store underlies standard ISR.

Two further factors affecting errors in ISR are delayed production and the length

of list-items, notably word-length. Even short, filled delays intervening between list

presentation and the recall attempt can cause drastic drops in serial-recall perfor-
mance (e.g., Conrad, 1958). For this result to accrue, the brief retention interval must

be filled with some task that prevents subvocal rehearsal of the list: performance can

survive practically indefinite delays in which participants are able to engage in such

rehearsal. The need to fill the retention interval introduces some ambiguity as to the

cause of the drop in performance with delay. Is it due to the passage of time as such?

Or is it due to some interference from the activity with which the retention interval is

necessarily filled? Or is it both? Because this 40 year debate continues to rage, it is

unrealistic to reprise it here, but time-related memory decay – an explanation
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favored by Baddeley & Hitch (1974) – remains a viable candidate for explaining at

least part of the effect.

The word-length effect (WLE) is usually grouped with the effect of delay because

both might be attributable to memory decay or memory interference. The basic re-

sult is that lists of long words (e.g., five-syllable words like ‘‘university’’) are recalled
worse than lists of short words (e.g., one-syllable words like ‘‘chair’’) when correct

serial order is required. Thus, the WLE contradicts Miller�s (1956) view that span

is about seven chunks, whatever those chunks might be. Originally, two possible

explanations of the WLE presented themselves. First, that the rehearsal of long

words is more difficult than rehearsal of short words, so that when participants came

to recall, their rehearsal would have been more recent in the case of the short-word

lists. The consequences of a more recent rehearsal, in a system in which memory is

decaying over time, would be seen in improved performance. This view was later ex-
tended to incorporate time delays during output. It was noted that simply uttering

the early words in the recall of a long-word list would delay the recall of later words,

relative to the later words in responses to short-word lists (e.g., Cowan, 1994). In

both the original and the extended account, the passage of time is held to play a cru-

cial role. The second type of explanation involved an appeal to some capacity limi-

tation in short-term memory. The long words, with their increased number of

phonemes or syllables, simply used up more of this capacity, resulting in poorer

recall.
In order to distinguish between these explanations, Baddeley, Thomson, & Bu-

chanan (1975) tested recall of words of different lengths, with word-length measured

in terms of articulation time rather than in terms of phonemic or syllabic length.

They thus used short words like ‘‘wicket’’ and ‘‘bishop’’ as opposed to long words

like ‘‘voodoo’’ and ‘‘zygote’’. They found a reliable WLE that they attributed to

delay and decay rather than to a capacity limitation. In its reliance on the time to

articulate, the WLE thus fits with the other evidence relating ISR to speech-based

processes.
The Baddeley et al. (1975) result has been empirically challenged numerous times,

with some claiming that although the result replicates with the precise set of words

used by Baddeley et al., it fails to generalize to other word sets (Caplan, Rochon, &

Waters, 1992; Lovatt, Avons, & Masterson, 2000, 2002). The issues of how delay and

word-length causally affect ISR performance remain subjects of hot dispute, but few

would now deny a link with processes relating to speech output.

2.1.2. Typing

Typing involves the production and learning of relatively discrete sequences of

items. This section will focus on typing studies in which the sequences are relatively

short. Nonetheless, a brief consideration of more continuous transcription typing

data permits the identification of some general phenomena which both concur and

conflict with the discrete typing data in focus here.

Sternberg et al. (1978) asked well-trained typists to produce short sequences of

keystrokes as rapidly as possible from memory. To focus on the production aspects

of the task, the sequences were presented at the start of a trial and subjects were
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given ample time to internally prepare their response. There was also a count down

to the imperative/GO signal which cued initiation of the prepared response.

Although the subjects were competent typists, the sequences presented were not well

practiced words and were not presented repeatedly enough to induce practice effects.

Sequence length was the primary independent variable, although some sequences re-
quired performance with one hand while others required alternation between hands.

The major dependent variables were: latency (or reaction time, RT), measured as the

delay between presentation of the GO signal and the first keypress; and inter-re-

sponse intervals (IRIs), the latencies between any two consecutive keypresses.

Sternberg et al. (1978) found a number of consistent effects. First was a sequence

length effect on latency (SLEL): latency increased as a linear function of sequence

length. Second was a sequence length effect on rate (SLER): mean IRI (an inverse

measure of production rate across the entire sequence) also increased as a function
of sequence length. Third, the ratio of latency to mean IRI – the ratio effect – was

much greater than one. Fourth, there were serial position effects on individual IRIs.

For a given sequence length, some IRIs were longer than others, but the longer IRIs

occurred in different positions depending on sequence length. Fifth, the IRI preced-

ing performance of the final item in a sequence was shorter than that which preceded

it – initiation of the final item was fast (see Fig. 2). This pattern of results was
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Fig. 2. Alternating hand typing results from Sternberg et al. (1978). (a) Reaction time and inter-response

intervals (IRIs) for each sequence length, illustrating the time course of performance. The 5-item sequence

data is presented with a dashed line to resolve potential ambiguity due to the intersection of the lines for

the 4- and 5-item sequences at the third item; (b) Sequence length effect on latency (SLEL); (c) Sequence

length effect on mean IRI (the inverse of production rate) – (SLER). The grey color signifies performance

considered to be at an early level of practice. Note that the ratio of the latency (sequence start time) to the

mean IRI is much greater than 1.0. This long-established ratio effect is a chronometric signature of

preparation of an entire sequence before initiation, which is possible even for novel sequences in this

paradigm. Using such whole-sequence preparation was recently referred to as the �collective� planning
strategy in Conway and Christiansen (2001).
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obtained for both single and alternating hand conditions and for similar speech pro-

duction tasks using one or two syllable words. Error rates were very low, and no

analysis of types or frequency of errors was reported. A subsequent study, where se-

quence lengths were increased to 6 items, reported a large increase in error rate for

6-item sequences (Sternberg, Wright, Knoll, & Monsell, 1980). The chronometric
patterns have generally been replicated in a variety of investigations; however, they

do vary under some circumstances – such as after brain injury or following practice

of the sequences.

Effects of various brain lesions have been investigated using the Sternberg et al.

(1978) paradigm. Rafal, Inhoff, Friedman, & Bernstein (1987) found that Parkinso-

nian patients exhibited the same basic pattern of results (as those of unimpaired con-

trol subjects), but displayed slower overall execution rates. Damage to the basal

ganglia apparently did not change the basic temporal aspects of sequence perfor-
mance as identified by Sternberg et al. (1978). When patients with bilateral cerebellar

lesions were tested, however, the pattern of results changed radically for moderately,

but not mildly, impaired subjects (Inhoff, Diener, Rafal, & Ivry, 1989). Moderately

affected cerebellar patients exhibited no SLEL, and IRIs were not significantly shorter

than latencies. Replication with unilaterally affected cerebellar patients revealed the

same set of abnormal effects only on the affected (ipsilesional) side of moderately im-

paired subjects. Further research concluded that damage to the lateral cerebellum,

sufficient to produce moderate clinical impairment, resulted in the altered timing pat-
terns (Inhoff & Rafal, 1990), whereas damage to medial cerebellum did not produce

timing patterns distinct from those found by Sternberg et al. (1978). This dissociation

is revealing because the lateral (but not the medial) cerebellum is reciprocally con-

nected with the frontal cortex.

In addition to the cerebellar-deficit-related changes in temporal patterning, there

are reports of practice-induced timing changes in sequential keypressing tasks.

Although participants in Sternberg et al. (1978) were practiced at the task, they were

not highly practiced on the individual sequences. Further studies have shown that,
depending on the task, the SLEL (sequence length effect on latency) disappears after

moderate to extensive levels of practice (more than about 300 practice trials, e.g.,

Klapp, 1995; Verwey, 1999, fig. 3). More extensive practice (of around 2500 trials)

can eliminate the serial position effects on IRIs (e.g., Verwey, 1996). The high ratio

of latency to IRI, the SLER (sequence length effect on rate), and faster final IRI were

reported to survive even this extreme level of practice.

A total of 29 transcription typing phenomena were identified in a comprehensive

review by Salthouse (1986). The first relevant phenomenon is that the rates of typing
for random orders of real words and for meaningful text do not differ markedly. On

the other hand, the rate of typing is slowed as the letters to be typed approach ran-

dom sequences. Increased practice with the same sequences reduces the randomness,

and production rate increases. This pattern is consistent with the keypress studies of

Sternberg et al. (1978), Klapp (1995), and Verwey (1996). A third relevant phenom-

enon is that restricted preview severely impairs typing rate. This prevents typists

from preparing future responses in advance – a situation explicitly avoided in the

Sternberg et al. (1978) paradigm but probed in Verwey�s studies (as described below).
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Fourth, sequences produced with alternating hands have a higher rate than those

performed with fingers of the same hand – as was the case in Sternberg et al.

(1978) (though this may reverse with extensive practice, Verwey & Clegg, in press).

Fifth, pairs of letters that occur more frequently in normal text are typed more rap-

idly than less frequently occurring pairs. This held true even when the type of tran-
sition between fingers was controlled. It is likely to be the result of extensive practice

with high frequency digrams, consistent with the learning-driven changes outlined

above. Sixth, greater practice driven changes occur for digrams typed with two dif-

ferent fingers than those typed with the same finger – learning to overlap and coor-

dinate movements for consecutive keystrokes (possible only when different effectors

are involved) is obviously an important aspect of learning.

One phenomenon identified by Salthouse (1986) is apparently in contradiction

with two of the main Sternberg et al. (1978) effects. Taken as a whole, the transcrip-
tion typing data indicate there is no systematic SLEL (when latency is measured be-

tween depression of the space bar and depression of the first letter of a word) or

SLER. Salthouse attributed the discrepancies with the Sternberg results to the differ-

ence between �discontinuous or burst typing� (as in Sternberg et al.) and continuous

(transcription) typing. On the other hand, the ratio effect of Sternberg et al. (1978) –

where latency is much greater than the subsequent IRIs – is a robust phenomenon of

transcription typing (Salthouse, 1986). Also, increases in typing skill decrease the

variability of IRIs (Salthouse, 1986), consistent with the loss of a serial position effect
on IRI after extended practice (Verwey, 1996).

Regarding errors, Salthouse (1986) reported the following: substitutions are the

most prevalent type of error among novice typists but intrusions (where an extra

character is inserted) and omissions become more prevalent in advanced typists;

transpositions (where the order of two adjacent characters is reversed) represent a

small percentage of errors. Many substitution errors involve adjacent keys. This sug-

gests that they are not central sequencing errors but arise from misdirected move-

ments, especially among novices. Extremely short IRIs occur in association with
many intrusion errors, which often result from �double keypresses� pursuant to a sin-

gle (slightly misdirected) finger depression or from failure to properly deactivate a

prior keystroke causing an unwanted repetition. A longer IRI often follows omission

errors, which may arise when finger movement is insufficient to depress the relevant

key (especially so for difficult to reach keys); most transposition errors are cross-

hand rather than within-hand. Thus output mechanics, rather than central processes,

seem to dominate transcription typing, which by definition does not tax working

memory for arbitrarily novel sequences.

2.1.3. The 2 · N task

The �2 · N� task (Hikosaka, Rand, Miyachi, & Miyashita, 1995), popular in non-

human primate studies, begins with a sequence discovery phase, during which sub-

jects use trial and error to discover the correct sequence. After discovery, continued

practice consolidates learning and performance. Subjects face a 4 · 4 square matrix

of buttons. A trial consists of an initial home key press followed by up to 5 (for mon-

keys) or 10 (for humans) consecutive 2-item ordering problems. For each problem,
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the 4 · 4 array is presented with only two of the buttons lit. The subject must press

these two buttons in the correct sequence – initially unknown to the subject. Any

error aborts the trial and causes reset back to the start of the 2 · N sequence. Upon

correct 2-item ordering, the lights are extinguished (for as long as a second in some

studies) and then two new buttons are illuminated – the next problem. Each such 2-
item ordering problem is called a set, and the entire sequence of N (5 or 10) sets is

called a hyperset. Typically, hypersets are represented to subjects until they success-

fully complete the entire hyperset a predetermined number of times. These errorless

completions do not have to occur consecutively – they accumulate within a block.

When the required number of successful trials has been performed, the block is com-

plete and there is a switch to a different hyperset. The paradigm also permits some

hypersets to be practiced extensively over long periods of time.

Typical performance measures are: total number of trials needed to accumulate
the criterion (e.g., ten) number of successful trials; and performance time, which is

measured from home key release until depression of the final button for each trial,

and then summed or averaged over the 10 successful trials. Unfortunately, the mea-

sures typical of the other paradigms reviewed here have not been systematically

reported.

Hikosaka et al. (1995) defined three phases of learning in the 2 · N task. The se-

quence discovery phase lasted until the first successful hyperset was generated. In the

intermediate phase, successful trials intermixed with error trials. The advanced phase
began when subjects showed virtually error-free performance. In addition to the de-

crease in errors, the speed of performance increased as a function of practice, but this

improvement lagged the accuracy gain. The other notable result concerned retention.

When well-practiced hypersets were retested after a one-month retention interval

(without practice), performance time and accuracy were significantly better relative

to new hypersets. Although the same was true after a six-month interval for perfor-

mance time, error rates for old were not reliably lower than for new hypersets. This

suggests a dissociation between order-controlling processes and speed-controlling
processes.

Miyashita, Rand, Miyachi, & Hikosaka (1996) also described changing patterns

of eye movements during the course of long-term 2 · N task learning. After sufficient

practice, anticipatory saccades (which started prior to target illumination and ended

within the area of the next target) began to replace the visually guided saccades char-

acteristic of early performance. Saccades preceded hand movements regardless of the

stage of learning, but the anticipatory saccades occurred only for learned hypersets,

and their frequency increased gradually as practice continued over 3 – 4 weeks. Video
analysis revealed that hand movements preceding button-presses also became antic-

ipatory – with the hand becoming poised over the next button awaiting its illumina-

tion. Movement time between first and second buttons in a set showed no decrease.

Each hand can be trained separately – providing a convenient method whereby

laterality of control can be probed at various stages of the learning process. Rand,

Hikosaka, Miyachi, Lu, & Miyashita (1998) investigated the effector-specificity char-

acteristics of long-term sequence learning. After monkeys learned a particular hyp-

erset with a selected hand, they were required to perform the hyperset with the
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opposite (untrained) hand. Errors and performance time both increased modestly

when the untrained hand was compared to the trained hand for the same hyperset.

However, these increases were not to levels seen for new hyperset so these results

indicate partial, but not total, transfer. This was not a laterality effect – the reversal

was apparent for both left-to-right and right-to-left switches. Transfer was assessed
only after very extensive practice of the hyperset. If the effect of learning becomes

more effector-specific with greater amounts of practice, then greater transfer might

have been seen at an earlier point in training. When the early learning period was

later examined (Rand et al., 2000), the effector transfer results differed somewhat

from those of well-learned hypersets. The second practice block of a new hyperset

was performed with either the same hand used in the first block or the opposite hand.

Error numbers did not differ between hands, but performance time was shorter for

the practiced hand. Here again is a dissociation between serial order representation
and speed. The latter appears somewhat effector-specific, even early in practice. The

existence of partial transfer suggests that there remains some effector-non-specific

memory that can be drawn upon to assist performance when required, consistent

with results from other serial tasks, e.g., handwriting (Rijntjes et al., 1999; Wright,

1990). Recent research with keying tasks suggests that the development of an effec-

tor-specific learning component is critically dependent on extensive practice (Verwey

& Clegg, in press; Verwey & Wright, 2004).

The first 2 · N report using human subjects was an fMRI (functional magnetic
resonance imaging) study by Hikosaka et al. (1996). The number of successfully

completed sets as a function of imaging scans (i.e., practice blocks) was qualitatively

similar to the pattern seen in the monkey data of Hikosaka et al. (1995). Presupple-

mentary motor area (pre-SMA) was found to be particularly active during discovery

of new sequences. This activation was unilateral, but the side differed between sub-

jects. Moreover, the same location was activated when subjects repeated the exper-

iment (thereby learning new hypersets). The pre-SMA was not active for

individual movements in a control, pseudo-learning, condition. The supplementary
motor area (SMA) proper showed only baseline activity during discovery, but

became more active during performance of sequential movements.

Sakai et al. (1998) found that various cortical areas contribute to human sequence

learning in the 2 · N task. As learning proceeded, the relative levels of activation of

these areas changed. There was a transition from strong activation in frontal areas to

parietal areas. For instance, dorso-lateral prefrontal cortex (DLPFC, left and right)

monotonically decreased in activation from early to intermediate to advanced stages

of performance (as defined earlier), while activation in the IPS (intra-parietal sulcus)
monotonically increased as performance became progressively better. Activation in

the pre-supplementary motor area (pre-SMA) remained high through the first two

stages, but decreased in the advanced stage. Another posterior (medial parietal) area,

the precuneus, increased in activation from early to intermediate stages and then de-

creased again with further practice. A wave of heightened cortical engagement seems

to pass from DLPFC to pre-SMA to medial parietal (precuneus) to lateral parietal

(IPS) during the time course of sequence learning (cf., Koechlin, Ody, & Kouneiher,

2003).
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Rand et al. (1998) explored the nature of the learned sequential representation.

When monkeys had learned a hyperset, the individual sets were presented in reverse

order. This manipulation greatly increased both error numbers and performance

time (to almost new hyperset levels), indicating that the animals were not merely

learning the order of button-presses for each set (visual configuration) individually,
but were learning the transitions between sets and, perhaps, the whole hyperset as an

extended sequence. This was also suggested by the prevalence of anticipatory eye

movements made before next-set illumination (Miyashita et al., 1996).

Sakai, Kitaguchi, & Hikosaka (2003) reported on the spontaneous appearance of

chunks of sets during human learning of 2 · 10 hypersets. In other paradigms – e.g.,

discrete sequence production, as reviewed below – chunk formation has been exter-

nally prompted by temporal grouping (or other pattern changes) within sequential

stimulus presentation. The 2 · N task has no such supra-set groupings, yet time gaps
between performed chunks, each spanning 2 or more sets, emerged during practice of

hypersets. Although overall hyperset performance time decreased as a function of

practice, the clustering of sets into chunks became clearer and more consistent. The

chunking patterns were independent of physical aspects of the sequence (like move-

ment distance) and were different between subjects who learned the same sequences

(cf., Verwey, 2003b; Verwey & Eikelboom, 2003). Subsequent to emergence of chunks,

experimental rearrangements that respected chunk boundaries resulted in more accu-

rate and quicker performance than rearrangements that violated them. The clear
implication is that the chunks had become unitary elements (at one level of hierarchical

control) that could be recombined fairly effectively as units, whereas attempts to break

them apart and recombine them arbitrarily proved problematic. These results are sim-

ilar to the transfer phase results of Verwey (1996). Probes of inter-hand transfer

showed that the chunking patterns transferred from the non-dominant hand to the

dominant hand, but not vice versa. The latter suggests an asymmetry in the intact

brain�s representation and storage of learned sequential chunks consistent with many

prior results on language acquisition (e.g., Bullock, Liederman, & Todorovic, 1987).
Further work, focusing on the early learning period, demonstrated that order

reversal had differential effects on error numbers and performance time (Rand

et al., 2000). The second training block of a new hyperset was presented either in

the original set order or in a reversed set order. For two of the four monkeys, second

block set order had no effect on error number reduction. For the other two monkeys

the error number reduction was greater for the same order condition. For all mon-

keys, there was a reduction in performance time for the same order condition but

none when the set order was reversed. These and the earlier speed results suggest that
a memory component that improves speed without reducing error rate is order-spe-

cific (as well as hand specific) and that this is the case throughout learning. Memory

for order seems to differ between monkeys early in learning (and is not effector-spe-

cific), but this ceases to be the case later in learning, when memory for order becomes

relatively effector-specific across all animals.

These memory dissociation results suggest that numerous substrates for learning

and performance may exist within the brain. The powerful capability to directly
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compare opposite extremes of the learning continuum within about 10min has been

employed to investigate the role of various brain sites in this form of serial learning

using reversible focal inactivation techniques.

Miyachi, Hikosaka, Miyashita, Karadi, & Rand (1997) injected muscimol, a

GABA agonist, to enhance local inhibition and thereby reversibly inactivate differ-
ent zones of the striatum in the monkey basal ganglia. Inactivation of a striatal

zone spanning the anterior caudate/putamen had a dramatic deleterious effect on

discovery/learning of new sequences but no effect on performance of well-learned

sequences. Injection into the middle-posterior putamen had a statistically detect-

able, but not overwhelming, effect on performance of well-learned sequences, but

no effect on learning. The putamen may contribute to correct ordering of items

within well-learned sequences, but other, extra-striatal, sites apparently assume

most of the load in mediating recall and performance of well-learned sequences.
This agrees with results of Lu, Hikosaka, & Miyachi (1998), who probed the role

of the cerebellum in 2 · N learning and performance. Muscimol was injected into

zones of the dentate (most lateral) nucleus of monkey cerebellum. Unilateral injec-

tions into dorso-medial, dorso-lateral, and central dentate led to an increase in the

number of errors on previously well-learned sequences when using the ipsilateral

hand but not when using the hand contralateral to the injection. In contrast, the

number of trials to criterion in the discovery/learning phase was not affected by

muscimol injection into any dentate region for either hand. Injections into ventral
dentate or other deep cerebellar nuclei (i.e., fastigial or interposed nuclei) likewise

had no effect on trials to criterion. These results indicate zone-specific dentate inac-

tivation effects on previously learned sequence production, but not on acquisition

of new sequences. This pattern is similar to, but much stronger than, the effects ob-

served by Miyachi et al. (1997) for middle-posterior putamen inactivation, and

quite distinct from effects of inactivation of anterior caudate, which caused a

marked retardation of new sequence acquisition.

Injections of muscimol at all tested deep nuclear sites led to elongated (intra-set)
movement times for the ipsilateral hand. This is consistent with the widely held view

of cerebellum as a predictive controller – absence of which entails a slow down in

order to retain the requisite level of accuracy. For learned hypersets, anticipatory

saccades decreased after muscimol injections into dorso-medial, dorso-lateral and

central dentate as well as interpositus.

Nakamura, Sakai, & Hikosaka (1999) found that pre-SMA inactivation increased

the number of errors for novel sequences, but not for learned sequences. SMA inac-

tivation produced a similar, but insignificant, trend. Performance speed was ham-
pered for both novel and learned sequences with both pre-SMA and SMA

inactivation. However, the effect was larger for SMA inactivation.

Aggregation of results from the 2 · N paradigm suggests participation of parallel

substrates, such that the specific roles of different areas vary depending on the stage

of learning. These results also imply organization above the set level: correct antic-

ipations of the stimulus location to be pressed next in a not-yet illuminated set

increased with learning.
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2.1.4. Discrete sequence production (DSP)

Another fruitful paradigm is the discrete sequence production (DSP) task. In the

DSP task, sequence length is limited to six or eight elements (�discrete�) and key-spe-

cific cues usually follow a response immediately. DSP encourages internal control be-

cause of the limited sequence length and because there is usually only a limited
number of sequences that can be distinguished and recognized easily. Therefore,

DSP is better suited to study preparatory mechanisms, hierarchical control, and se-

quence segmentation than tasks in which sequences are longer and have no clear

beginning, such as the SRT task. Also, the effect of serial position can be studied

in DSP. In DSP tasks, it seems fair to assume that participants use preparation of

at least the first few elements of forthcoming sequences to improve performance.

As already noted, many psychologists have long suspected that the control of

motor behavior is hierarchical (e.g., Miller et al., 1960). Restle (1970) and Povel &
Collard (1982) inferred control by a hierarchical representation because more errors

occurred at some than at other positions in the sequence. Using a particular version

of a DSP task, Rosenbaum and colleagues performed a series of studies in which par-

ticipants chose between alternative sequences of keypressing responses (see Rosen-

baum, 1987 for a comprehensive overview). In these choice reaction time (cRT)

tasks, Rosenbaum, Saltzman, & Kingman (1984) asked participants to choose be-

tween ‘‘i’’ vs. ‘‘I’’, ‘‘ir’’ vs. ‘‘IR’’, or ‘‘irm’’ vs. ‘‘IRM’’, where ‘‘i’’, ‘‘r’’, and ‘‘m’’ de-

note key presses of the index, ring, and middle fingers of the left hand, respectively,
and ‘‘I’’, ‘‘R’’, and ‘‘M’’ denote key presses of the right index, ring, and middle fin-

gers, respectively. Participants learned to associate one visual signal (O) with one se-

quence and another signal (X) with the other sequence but were not highly practiced

with any sequence. On each trial, one of the two signals appeared and the participant

was supposed to produce the designated sequence as quickly as possible. The se-

quences in the experiments were chosen because they are easily organized in a hier-

archical fashion. If any sequences would be controlled hierarchically, these would be.

The timing results in such tasks suggest hierarchical control (also see Gordon &
Meyer, 1987; Kornbrot, 1989). The main results in Rosenbaum, Saltzman, et al.

(1984) were that latency T1 increased with the number of keypresses in the sequence,

and that the mean time for the second key press T2 was longer when that response

was embedded in a sequence of three than when embedded in a sequence of two.

These results extend the SLEL and SLER, observed earlier for sRT tasks (Sternberg

et al., 1978), to cRT tasks. A subsequent experiment showed that the latency of a

sequence was heavily influenced by the alternative sequence. For instance, ‘‘I’’ was

considerably longer when the alternative sequence was ‘‘irm’’ than when it was
‘‘i’’. It appeared also that selection time takes longer as sequences differ in more fea-

tures (e.g., direction, hand). Apparently, just-used motor programs are preserved so

that the features distinguishing the just-used program from the next program to be

performed can be changed, and it takes more time to change these features than to

leave them unchanged (Rosenbaum & Saltzman, 1984). By carefully manipulating

properties of alternative sequences, like the position of sequence differences (e.g.,

‘‘irm’’ vs. ‘‘iRm’’ and ‘‘irm’’ vs. ‘‘irM’’), Rosenbaum, Inhoff, & Gordon (1984)

showed that T1 increases more as (a) there are more decisions (which of two alterna-
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tive responses is to be used) in the sequence, (b) these decisions are earlier in the se-

quence, and (c) the rules used to select alternatives are more complex. For example,

T1 was shorter when alternative sequences were mirror images (e.g., ‘‘iim’’ vs.

‘‘IIM’’) than when they were not (e.g., ‘‘iim’’ vs. ‘‘IMM’’). These data suggested that

participants prepare a plan and that choices are made at the highest hierarchical level
possible (i.e., affecting as many elements in one step as possible).

These and several other results were encompassed by the Hierarchical Editor

(HED) model (Rosenbaum, Inhoff, et al., 1984), which proposes that participants

prepare for a choice between response sequences by establishing an abstract program

with all the features common to the possible sequences. The program is hierarchi-

cally organized in that common features are represented by a single node in the hier-

archy whereas uncertainties are indicated by a subtree that represents the alternative

features. Before the reaction signal appears the hierarchy is traversed from the top
node, via the common feature nodes, to the subtree that represents the first uncer-

tainty. After the reaction signal is identified but before the first element is executed

(i.e., during T1) all remaining nodes are traversed and uncertainties are resolved. Re-

sponse elements are not executed yet. This phase prepares the hierarchy for execu-

tion and is called the edit pass. Next, control returns to the top of the hierarchy

and the traversal process begins anew, this time executing each sequence element

encountered. This is the execution pass. Given the assumption that traversal of

one to the next node (i.e., a processing step) takes a finite amount of time, predic-
tions can be made on the relative times between successive keypresses. However,

position-dependent IRI effects seen in Sternberg tasks are not explained (cf., Board-

man, 1995; Boardman & Bullock, 1991).

Another version of the DSP task has been studied by Verwey and colleagues. In

this research, emphasis is on the processing mechanisms that become engaged as par-

ticipants extensively practice keypressing sequences of up to six elements. In this par-

adigm, participants practice the sequences in a choice RT (cRT) task in which each

of the alternative sequences is practiced for about 500 trials. In contrast to those used
in the Rosenbaum studies, these sequences do not involve any apparent regularities

that can be expected to induce hierarchical representations. Given that the interest is

in execution rate as a function of serial position, confounding of finger-specific effects

with serial position is prevented by rotating fingers at each serial position across par-

ticipants. So, across all participants each serial position gets the same contribution

from each of the fingers used in the experiment. To help participants learn these se-

quences, each keypress is typically indicated by a cue that immediately follows

depression of the preceding key. So, whereas participants start off responding to
apparently unrelated cues they gradually learn to produce the keypresses as a

sequence in response to the first cue and ignore later cues (Verwey, 1999).

Initial studies in this research line used highly practiced keying sequences to assess

the earlier notion that extensive practice yields an integrated representation for the

entire movement sequence, that is, a motor chunk that can be selected and executed

as a whole (e.g., van Mier & Hulstijn, 1993). A first study involved a two-choice se-

quence production task (Verwey, 1994). One sequence contained four, the other two

keypresses. The main results were (a) reduction with practice of the difference
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between the times to initiate long and short sequences (i.e., reduction of the SLEL),

(b) a larger practice effect on final keypresses than on earlier keypresses, and (c) a

larger practice effect on the final keypress of the long than of the short sequence.

The results were in line with the notion that practice allows the processes that are

required for executing individual elements to overlap with execution of the preceding
element. Evidence for one hypothesized type of motor chunk development, an

increasing execution rate with serial position due to an increasing spread of activa-

tion across sequence elements (MacKay, 1982), was not found (also see Verwey,

1999; Verwey & Eikelboom, 2003).

The absence of an increasing execution rate with position does not imply an ab-

sence of motor chunks, conceived broadly as integrated sequence representations.

Verwey (1996) tested this by having participants produce a series of nine keypresses

in rapid succession. This task has some resemblance with SRT tasks (see next sec-
tion) but it involved more practice and it replaced the 200ms RSI typical of SRT

with zero RSIs after most responses. However, RSIs of at least 500ms were used

at two or three fixed positions of the 9 possible. These few RSIs were assumed to

determine the boundaries of any motor chunks that might develop. The development

of motor chunks qua sequence-specific representations was first tested by requiring

participants to execute the entire 9 item sequence as rapidly as possible in a transfer

phase. Despite this instruction, they exhibited long pauses at the locations where

they had previously been exposed to the long RSI (see Fig. 3). Moreover, perfor-
mance rate slowed when the pauses were located at non-practiced positions. These

and other data were interpreted as strong evidence for motor chunk development.

Another important finding was that the use of motor chunks may be concealed when

there is time for advance preparation and chunks involve no more than about four

keypresses.

In line with earlier findings by Brown & Carr (1989), the Verwey (1994) study

showed that the fourth element in the 6-key sequence was relatively slow in early

practice, and that this disappeared with more extensive practice. One interpretation
is that longer sequences consist of independent segments and that practice allows

them to be more efficiently concatenated, presumably by enabling preparation of

one segment during execution of the previous segment. If so, disappearance of the

relatively long interval halfway through the sequence is attributable to increasing

overlap between preparation of one and execution of the preceding segment. To

examine this hypothesis, Verwey (1995) investigated whether at least one particular

process, response selection, could overlap with, and complete during, the execution

of familiar keying sequences. To that end, subjects pressed a familiar series of keys
prior to pressing one stimulus-dependent key. Because it is known that the effect of

S–R compatibility does not disappear with practice, response selection demands

were manipulated by utilizing spatially compatible or incompatible stimulus–

response mappings. After practice, the time increment initially needed to select a

key using an incompatible mapping vanished from the timing data when the number

of keys in the sequence that preceded the choice key was four rather than two. This

finding indicates that response selection operations associated with incompatible S–

R mappings can occur concurrently with execution of a sufficiently long sequence
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Fig. 3. Practice phase results from Verwey (1996, fig. 2). The panels plot latencies (akin to reaction times)

and inter-response intervals (IRIs) as a function of serial position and of imposition (Structured) or not

(Unstructured) of temporal delays during sequence performance. Left: Results from the temporal delay

pattern (333 condition) that produced three 3-item response groups. Right: Results from the temporal

delay pattern (36 condition) that produced a 3- and a 6-item response group. Larger bounding squares

indicate sequence start (SS) times. Circles and dark grey lines indicate moderate levels of practice (despite

Verwey�s �Early� label); squares and black lines represent advanced (�late�) levels of practice. Over the

course of practice an obvious increase in overall performance speed is apparent, as too is loss of SLEL and

IRI inhomogeneity (when averaged across subjects), while SLER survives. The ratio effect is present in all

these plots based on practiced performance but is not present when subjects are producing novel sequences

in the DSP paradigm.

B.J. Rhodes et al. / Human Movement Science 23 (2004) 699–746 717
and thus can become invisible in timing data. Similarly, the transition between inde-
pendent segments of long sequences may become invisible in timing data over the

course of practice.

Verwey (2001) investigated this issue more directly by having participants first

practice several keying sequences, and then produce two of these sequences in rapid

succession. In contrast to Verwey (1995), when a single keypress quickly followed a

familiar keying sequence, the transition between the familiar sequences remained rel-

atively slow. By manipulating stimulus-sequence mappings, it was demonstrated that

the selection of the second sequence still occurred during execution of the first se-
quence. Therefore, the relatively slow transition between the first and second se-

quence suggests that processes that follow chunk selection, and that are not used

when a single response is selected, cannot overlap with execution of the preceding

motor chunk. The results also demonstrated that once formed, motor chunks are ro-

bust. When participants performed two 2-key sequences repeatedly in rapid succes-

sion, they maintained their use of distinct 2-key segments, although they could have

prepared and carried it out as a single 4-key sequence (cf., Sternberg et al., 1978).

As discussed earlier, Rosenbaum, Saltzman, et al. (1984) had shown that sequence
execution may be influenced by the alternative sequence. This led Verwey, Lammens,
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& van Honk (2002) to examine the hypothesis that when one of two 6-key sequences

consists of a repetition of a 3-key segment, the other 6-key sequence might be seg-

mented also as two 3-key parts. The results supported this hypothesis in that the

interval between the third and fourth keypress in both sequences was relatively long.

This gave rise to the hypothesis that perhaps each participant segments longer se-
quences, but that this is concealed because of individual segmentation differences

when the alternative sequence does not consist of a repeated 3-key sequence. A pre-

liminary indication for this suspicion is the well-known finding that the mean ele-

ment execution time increases with sequence length, i.e., the SLER (Sternberg

et al., 1978). This hypothesis was investigated in two studies. First, Verwey & Eikel-

boom (2003) had participants practice a 3- and a 6-key sequence. Analyses across

serial position and participants confirmed the SLER for the 3 vs. 6 comparison. Fur-

ther analyses supported segmentation for 6-key sequences with and without clear
regularities at various levels of practice and irrespective of a preceding task. This sug-

gests that a component of the SLER is caused by segmentation of longer sequences

and that motor chunks represent sequences of a limited length only. A second study

examined the SLER across sequences of lengths two, four and six keypresses (Ver-

wey, 2003b). Detailed analyses confirmed the upward curvature noted first by Stern-

berg et al. (1978), and showed that in each 6-key sequence the rate effect was caused

by a few slow elements while the fastest elements in these 6-key sequences were no

slower than corresponding (always non-initial) items in shorter sequences. A concur-
rent memory task did not affect the transition between segments, suggesting that

controlling the transition does not require working memory and perhaps depends

on a higher order sequence representation that is able to code longer sequences. If

so then even performance of longer sequences that do not involve regularities may

engage hierarchical control.

These findings were taken as support for a dual-processor model. In it, a motor

processor executes representations that we may still call motor chunks, which control

highly practiced segments of limited length. A cognitive processor either triggers
each element in parallel to the motor processor, or concatenates the segments in

the sequence (Verwey, 2001). Given the high execution rates that are gradually at-

tained with practice, these motor chunks seem to involve a type of coding that re-

quires little further processing to execute the sequence. A neural interpretation of

this model has been proposed on the basis of the finding that transcranial magnetic

stimulation (TMS) of the premotor cortex slowed intervals at the start of, and with-

in, a segment (Verwey et al., 2002). It assumes that motor chunk length is limited by

the number of keypresses the supplementary motor area/motor cortex loop can han-
dle. With longer sequences the basal ganglia would have to concatenate these corti-

cally stored segments via a relatively slow thalamo-cortical motor loop, thus

inducing hierarchical control of longer keying sequences, or triggering of individual

elements. This mention of subcortical structures raises an interesting parallel with the

SRT task (see below). Even though participants in this version of the DSP task are

fully aware that they are executing a few fixed sequences, and despite the extensive

amount of practice, there are always a few participants who at the end of the exper-

iment are not able to give a full account of the sequences they just executed, even
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though their performance level is not below that of aware participants (Verwey,

2003a, 2003b). This finding suggests the hypothesis that the sequence elements that

allow fast sequence production in the DSP are not accessible for translation in other

codes either, just as in the SRT task.

More recent findings suggest more than two control levels. First, Verwey &
Wright (2004) showed that, in addition to a verbal and a more automated control

level, extensive practice yields a third component that is effector-specific in that it

does not transfer when other fingers are being used (cf., Rand et al., 1998). This find-

ing might indicate parallel control by a third processor, though it might also be

caused by the development of a timing pattern that is optimally adjusted to the effec-

tors used. Second, indications for more than two processing modes are also provided

by a study in which participants unexpectedly were required to produce familiar se-

quences (Verwey, 2003a). Detailed analysis of the individual interkey interval (IRI of
Sternberg et al., 1978) distributions showed evidence, for most participants, of three

separate peaks in the distributions. These data suggest that familiar sequences can be

carried out in three different modes among which the participants switched once the

familiar sequence was recognized. Third, detailed analysis showed that a memory

task slowed sequence initiation and execution of the second response in a 2-key se-

quence, but not in longer sequences and not the transition between segments (Ver-

wey, 2003a). Given that longer sequences are segmented and, hence, already

involve two control levels, this finding might indicate a third control level in which
working memory is involved. Even though more evidence for a three-level control

model is required, a three-level control model fits the notion that control of individ-

ual segments at the cortical level, and concatenation of these segments by the basal

ganglia, are extended by executive control provided by the frontal lobe.

At first sight, the Rosenbaum et al. and the Verwey et al. studies agree on the use

of hierarchical control. However, a distinction should be made between two types of

hierarchical control (Broadbent, 1977). Hierarchical control according to Rosen-

baum, Inhoff, et al. (1984) involves a single processor traversing a hierarchical rep-
resentation. This may well be more suited for modeling relatively unfamiliar

sequences. In contrast, hierarchical control implicated by the Verwey et al. results

involves different processors working in parallel at different levels of sequence

descriptions. In fact, this type of model involves two further subtypes of models.

On the one hand, low level segments are carried out by a dedicated motor processor

while a higher level processor is preparing forthcoming segments, thus being respon-

sible for concatenation of the segments. On the other hand, various processors may

race to trigger each forthcoming element. Depending on the level of practice, some
processors maybe more successful, and hence may allow certain processors using

particular codes (like spatial, or motor) to be dominant. Learning of multiple repre-

sentations is in line with theoretical perspectives on highly practiced tasks like writ-

ing, speech, typing, and key tapping (e.g., Hulstijn & van Galen, 1988; Klapp, 1995;

MacKay, 1982; Newell, 1978; Semjen & Garcia-Colera, 1986). All in all, there is am-

ple reason to believe that with practice sequence representations develop at various

levels, probably involving different task dimensions (Keele, Ivry, Hazeltine, Mayr, &

Heuer, 2003) and that the production of movement sequences can be flexibly
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adjusted to the availability of representations and processing resources like attention

and working memory.

2.1.5. Serial reaction time (SRT)

The development of the SRT task started in 1987 (but see Bahrick, Noble, & Fitts,
1954 for an early version) when Nissen & Bullemer (1987) wondered whether non-

episodic forms of memory would perhaps be less dependent on attentional process-

ing than episodic memory forms. They put this to the test with a task in which a light

appeared at one of four locations on a video monitor. As quickly as possible, partic-

ipants pressed the key, out of a set of four, that was directly below the position of the

light. Each time a response was given, the next stimulus was presented after a re-

sponse to stimulus interval (RSI), typically of about 200ms. A particular 10-trial se-

quence of light positions was practiced for 10 blocks. Each block consisted of 10
sequence cycles so that naı̈ve participants would not detect the transition between

the end of one and the start of the next repetition. Nissen and Bullemer established

a divergence between RTs in the sequence vs. the random order condition after only

six repetitions of the sequence, and a 50% RT reduction in the sequence over the

course of 40min of practice whereas hardly any improvement was found in perfor-

mance of the random sequence. However, when low and high pitched tones were pre-

sented before each of the keypresses and participants were instructed to count the

low tones, RTs declined with practice to a similar extent for a sequence and a ran-
dom group. Participants appeared to learn to combine the two tasks, but they did

not learn the sequence. This was confirmed by a subsequent test of episodic memory,

known as the generate task, in which participants were asked to press the key corre-

sponding to where the next stimulus would appear in the sequence. Nissen & Bull-

emer (1987) concluded that attention is required for learning sequences regardless

of whether learning involved episodic or non-episodic memory. The results were con-

sidered in line with the use of distinct memory systems because verbalizability of the

sequence was severely hampered in amnesics with Korsakoff syndrome even though
performance was not. Later studies demonstrated sequence learning also, in that

RTs increased dramatically when the repeating pattern was modified (e.g., Cohen,

Ivry, & Keele, 1990).

Many SRT participants do not express awareness of the repeating sequence. Par-

ticipants with awareness can express their sequence knowledge in various ways and

are said to have explicit knowledge, whereas participants who cannot express that

knowledge in other ways than by performing the task are said to have implicit knowl-

edge. This distinction led to the question of whether participants showing awareness
of the sequence use another memory system than participants showing no signs of

awareness. The idea of different memory systems has been rejected by some research-

ers because awareness (i.e., presence of explicit knowledge) was inadequately as-

sessed in early studies. Typical methods were (a) free verbal sequence

reproduction, (b) prediction of the next elements (using the so-called generate task),

and (c) recognition of short stimulus segments from a set of which only some had

been practiced. Shanks & St. John (1994) argued that free verbal reports do not con-

stitute sufficiently sensitive tests of explicit knowledge because people may not be
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able to express weak explicit knowledge in such a task. They argued that forced-

choice tests, such as sequence generation, and segment/sequence recognition, should

be used to assess whether participants have explicit knowledge (also see Jimenez,

Mendez, & Cleeremans, 1996a, 1996b; Perruchet & Amorim, 1992). Because studies

have shown strong associations between forced-choice and SRT performance levels,
it was argued that the dissociation between SRT performance and verbal reports is

caused by a methodological flaw and, hence, that the evidence for independent mem-

ory systems was unjustified. However, by now, there are various indications that im-

plicit and explicit knowledge are based on functionally different forms of memory.

For example, Destrebecqz & Cleeremans (2001) argued that no task, not even a

forced-choice task, can be assumed to be process-pure, in the sense that it involves

solely implicit or explicit knowledge. Findings that aware participants are better at

predicting oncoming cues in the generation task, and better at recognizing sequence
segments, cannot be exclusively attributed to the influence of explicit knowledge be-

cause implicit knowledge can also affect performance on these tasks. In order to cir-

cumvent this problem, the process dissociation procedure (PDP; Jacoby, 1991) was

adapted for the SRT task (Destrebecqz & Cleeremans, 2001). In the PDP, partici-

pants are informed after practice that there had been a repeating sequential pattern

in the input, and they are asked to freely generate a series of 96 trials that �resemble

the training sequence as much as possible� (an inclusion condition). Participants are

instructed to rely on intuition if necessary. Then they generate another 96 trials, but
this time they try to avoid reproducing the sequential regularities of the training se-

quence (an exclusion condition). The results of the PDP confirmed the earlier men-

tioned associations between performance levels on forced-choice tests and the SRT

task. However, analyses also revealed that participants who practiced with zero RSIs

(assumed to suppress development of explicit knowledge), produced significantly

more fragments of the training sequence in the exclusion condition than participants

from the 200ms RSI condition. Participants� inability to exclude familiar sequences

in the exclusion condition suggests that performance in the inclusion condition was
in part based on implicit sequence knowledge, and that this was stronger when prac-

tice involved a 0ms RSI. The results were seen as support for a functional dissocia-

tion between implicit and explicit learning although perhaps not for entirely different

memory systems.

A second study supported the hypothesis that aware participants are faster than

unaware participants because they use sequence knowledge to prepare forthcoming

responses before the cue is presented. Earlier research had already suggested this

(e.g., Willingham, Nissen, & Bullemer, 1989), but Eimer, Goschke, Schlaghecken,
& Stormer (1996) found support using electroencephalography (EEG). At the half-

way and end points of a 28-block SRT task, they asked participants whether they

had noted anything special and, if they referred to regularities, asked them to repro-

duce those regularities. At the end of training they were asked also to identify the

correct sequence from a set of six alternatives in a forced-choice test. On the basis

of these subjective results, participants were classified as unaware or having some

awareness. In the first experiment, for instance, seven participants qualified as par-

tially aware or aware (i.e., they were eventually able to identify at least four
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successive items of the sequence), and nine as unaware. Event-related potentials

(ERPs) were extracted from the EEG recorded during performance of a SRT task

that included a deviant stimulus on half (Experiment 1) or all of the sequences

(Experiment 2). Because the so-called N2 component of the EEG is known to be en-

larged with unexpected events, this allowed a non-intrusive on-line measure for the
development of awareness (expectancies). Participants who showed explicit knowl-

edge on the basis of the forced-choice sequence recognition task developed larger

deviance-related RT effects and also produced an enlarged N2 effect, relative to par-

ticipants lacking explicit knowledge. Furthermore, the N2 effect increased with prac-

tice only for the more aware participants. It was concluded that the deviance-related

N2 indicates gradual development of explicit knowledge. In line with the notion that

aware participants base their higher execution rate on preparation of the individual

responses during RSIs, the lateralized readiness potential (LRP) in the EEG (an
index for response preparation) showed evidence for early response activation in

aware participants but not in unaware participants. These results confirm that

awareness is associated with higher execution rates because explicit knowledge is

used for preparing forthcoming responses. Such preparation exemplifies one way

that aware participants are more flexible in using sequence knowledge than unaware

participants. Overall, the study validates awareness classifications based on behav-

ioral (forced choice) tests with an independent, physiological measure.

Other neuropsychological studies provide evidence for the notion that different
brain areas are involved in explicit and implicit knowledge. The original Nissen

and Bullemer finding that verbalizability of the sequence was severely hampered in

amnesics with Korsakoff syndrome while performance was not, was replicated for

several neurological diseases (Alzheimer�s disease, Down and Korsakoff syndrome;

Ferraro, Balota, & Connor, 1993; Vicari, Bellucci, & Carlesimo, 2000), while the re-

verse pattern (poor SRT performance but good verbalization) was associated with

other disease syndromes (Parkinson�s and Huntington�s disease, lesions of the basal

ganglia; Doyon et al., 1997; Vakil, Kahan, Huberman, & Osimani, 2000). Together
these studies imply a double dissociation between tests of implicit and explicit knowl-

edge across studies. Consistent evidence comes from a single study in which amnesic

patients exhibited superior implicit sequence knowledge (though after more practice)

than healthy control participants, but less explicit knowledge as indicated by a forced

choice between the practiced and five alternative sequences (Reber & Squire, 1998).

The authors proposed that explicit sequence knowledge is supported by medial tem-

poral lobe structures that mediate declarative knowledge, whereas implicit sequence

knowledge is supported by various other brain areas (e.g., the neostriatum, supple-
mentary motor area, and motor cortex).

Many studies have used brain scanning methods to determine whether awareness

in the SRT task is related to activity in particular brain systems. Neuroimaging with

positron emission tomography (PET) during SRT task performance indicated that

the sensorimotor cortex and neostriatum were active in conditions in which little ex-

plicit knowledge was acquired (Grafton, Hazeltine, & Ivry, 1995; Hazeltine, Grafton,

& Ivry, 1997; see Cleeremans, Destrebecqz, & Boyer, 1998 for an overview), whereas

other structures were indicated when the sequence was learned explicitly. To further
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reveal structures involved in explicit learning, Destrebecqz et al. (2003) combined

PET and the earlier described process dissociation procedure (Destrebecqz & Cleere-

mans, 2001). The results showed that activity in the anterior cingulate/mesial pre-

frontal cortex was exclusively correlated with the explicit component of

performance during recollection of the learned sequence. However, it is not clear
whether differential brain activity necessarily implies that different memory systems

are involved in implicit and explicit sequence knowledge.

Keele et al. (2003) reviewed an abundance of empirical evidence, much of it from

SRT tasks, to motivate a dual-substrate theory of sequential representation. One

dorso-medial system includes parietal and supplementary motor areas, whereas a

second, ventro-lateral system includes temporal cortex and lateral prefrontal cortex.

Thus of the four cortical areas mentioned, two, the parietal and temporal, are late

stages of the well-known dorsal and ventral (sensory) processing streams (Goodale
& Milner, 1992; Ungerleider & Mishkin, 1982). Each proposed system learns sequen-

tial regularities by association. Dorso-medial learning is proposed to be implicit

whereas ventro-lateral learning is proposed to be explicit and implicit. The dorso-

medial system consists of encapsulated modules each of which extracts sequential

regularities in a single dimension to which it is attuned (cf., Adi-Japha & Freeman,

2000). Attention is not needed for this automatic extraction, and the uni-dimensional

modules are immune to potentially disruptive information in other dimensions.

Although the authors offer no formal definition of �dimension�, dimensions are pro-
posed to span attributes of stimuli within a particular modality (cf., Treisman, 1988),

and attributes of the motor system (e.g., hand vs. feet). Ventro-lateral learning,

whether implicit or explicit, builds associations between multidimensional events.

Such learning facilitates acquisition of complex sequences, but makes sequence

learning vulnerable to overload by uncorrelated dimensions. To protect from such

overload, only signals specified as relevant by the current task set – i.e., the attended

signals – can enter the multidimensional system and participate in learning. Second-

ary tasks are predicted to disrupt multidimensional learning not by inducing capacity
limitations, but by disrupting coherence between successive events. However, once

events are admitted by the attentional system, associative learning is implicit: it will

automatically operate on all admitted signals. Learning may also become explicit be-

cause attending to events implies that they are accessible to processes underlying

awareness.

The primary difference between aware and unaware individuals seems to lie in the

capacity of aware individuals to flexibly adjust sequence knowledge. They can pre-

pare forthcoming responses in a familiar sequence, recognize short segments, and
produce verbal sequence descriptions. This capacity may depend on having a type

of representation – an explicit representation – that unaware participants lack. Ex-

plicit sequence representations are flexible, rapidly forgotten and resistant to sleep

deprivation. Unaware participants have only implicit representations, which are task

and context specific, robust to forgetting and susceptible to sleep deprivation (Heuer,

Spijkers, Kieswetter, & Schmidtke, 1998). With extensive practice they may even

comprise an effector-dependent component (Verwey & Clegg, in press). That these

forms of representations are functionally different does not necessarily mean that
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they involve different memory systems. However the differential associations with

cortical brain areas, combined with the overwhelming evidence that all areas of

the cerebral cortex possess local memory, strongly suggests that there are multiple

memory systems subserving implicit and explicit knowledge of sequences.

2.2. Modeling approaches and the history of competitive queuing

From at least the time of Lashley (1951), cognitive scientists have marshaled evi-

dence in support of the thesis that fundamentally parallel representations underlie

much of our learned serial behavior. Such behavioral evidence provided a basis

for the proposal (Grossberg, 1978a, 1978b) of a class of parallel sequence production

models that have since come to be known as competitive queuing (CQ) models (Bull-

ock & Rhodes, 2003; Houghton, 1990). Such models (see Fig. 4) follow naturally
from two assumptions: (1) more than one plan representation can be simultaneously

active in a planning layer; and (2) the most-active plan representation is chosen, in a

second neural layer, by a competition run to decide which plan to enact next. In CQ

models, activation is the �common currency� used to compare alternative plans, and

simple maximum-finding or WTA (winner-take-all) dynamics can be used as the

choice mechanism in the choice layer. Once a plan wins the competition and is used

to initiate a response, its representation is deleted from the field of competitors in the

planning layer, and the competition is re-run. This iteration allows the two-layer net-
work to transform an initial activity distribution across plan representations, often

called a primacy gradient (Grossberg, 1978a, 1978b; Page & Norris, 1998), into a se-

rial performance without any reliance on associative links among elements of the se-

quence. More generally, and especially in applications to linguistic sequences, it is

recognized that the rank ordering of plans is subject to dynamic reordering during

production. Thus, it is the emergent gradient, rather than an initial primacy gradient,

that controls overt sequence production (Houghton, 1990; Ward, 1994). For simplic-

ity, the following discussion will refer to CQ applications that do not utilize dynamic
reordering (except where Ward�s work is introduced). It should be noted that the

standard CQ process of deleting already-executed plans to ensure progression

through the entire sequence is not considered a form of dynamic reordering.

The primacy gradient across plan representations in a CQ model is a fundamen-

tally parallel representation of serial order. Thus, CQ models provide a much differ-

ent basis for control of serial behavior than so-called recurrent neural networks

(RNNs), one modern descendent of associative chaining models. An RNN, in this

usage, is a network in which each output is fed back as one component of a high-
dimensional input (or other pre-output) stage. After extensive sequence-specific

learning, this fed back (recurrent) signal combines with other state information to

create a distinctive context for eliciting the correct next output. An RNN�s represen-
tation of a learned sequence is therefore fundamentally serial, in the sense that the

information that specifies the sequence only becomes available as the serial perfor-

mance unfolds. In contrast, all the information needed to specify a forthcoming se-

quence is present in the current state of the planning level of a CQ system and no

learning is needed to represent the sequence: the primacy gradient suffices. Having



PARALLEL
PLANNING

LAYER

COMPETITIVE
CHOICE
LAYER

A Z

Ti
m

e'
s 

Ar
ro

w

Conversion to time

G

I

D

A

Y

first item
produced

last item
produced

Fig. 4. Initial state of a two-layer competitive queuing (CQ) system, prior to production of a five letter

sequence. The sequence that will emerge is shown in the lower part of the figure. Excitatory connections

terminate with arrowheads, inhibitory connections with filled circles. The most-active plan is selected for

execution in the lower, competitive choice, layer by a winner-take-all dynamic whose outcome is wholly

determined (in the absence of noise) by the activation gradient (representing the to-be-performed

sequence) present in the parallel planning layer. Once a plan representation wins at the competitive layer, a

large output signal is sent to initiate execution of the corresponding response (descending arrow) and to

delete the plan�s representation in the parallel activation layer (ascending path to parallel planning layer).

This process iterates until all plans have been enacted and all planning layer activities deleted. The result is

sequential plan execution that corresponds to the initial rank ordering (gradient) of plan activation levels

in the upper field of the CQ network. Although each competitive layer node would send an inhibitory

connection to its correspondent in the parallel planning layer, only one such connection is shown here, to

avoid clutter. In this example, which uses recurrent inhibition in the choice layer, each competitive layer

node would inhibit all others, but only nearest-neighbor inhibition for a single node is actually depicted.

From Bullock and Rhodes (2003).
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such an explicit, parallel, activation-based representation of (even novel) sequential

plans is advantageous for many purposes. For example, such representations can be
learned and recalled via the compressive and expansive coding operations that may

underlie the phenomenon of motor chunking.

Recent neuronal recordings in frontal cortex (e.g., Averbeck, Chafee, Crowe, &

Georgopoulos, 2002; Cisek & Kalaska, 2002) have strikingly confirmed four key pre-

dictions of the CQ class of models as originally proposed in Grossberg (1978a,
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1978b). Notably, the study of Averbeck et al. (2002), Averbeck, Chafee, Crowe, &

Georgopoulos (2003), and Averbeck, Crowe, Chafee, & Georgopoulos (2003)

showed (1) that prior to initiating a serial act (of using a cursor to draw a geometric

form with a prescribed stroke sequence – prescribed sequence figure drawing,

PSFD), there exists an active parallel (simultaneous) representation of all the strokes
planned as components of the forthcoming sequence. Also, (2) the strength of acti-

vation of a stroke representation predicts its order of production, and (3), as the se-

quence is produced, the representations are serially deleted at the times that the

corresponding strokes are enacted. Several studies (Averbeck et al., 2002; Basso &

Wurtz, 1998; Cisek & Kalaska, 2002; Pellizzer & Hedges, 2003) also give evidence

for (4) partial activity normalization. The amount of activation that is spread among

the plans grows more slowly than the number of plans (in the sequence), and even-

tually stops growing. This was hypothesized (Grossberg, 1978a, 1978b) to result
from competitive interactions among simultaneously active plans, and it places a

low upper bound (e.g., five plus or minus two) on the number of plans that can

be simultaneously active in a motor working memory for sequences. This upper

bound – perhaps as low as four on average – is a property of human working mem-

ory as assessed in immediate serial recall (ISR) paradigms (Cowan, 2000), though in

CQ models in this area (e.g., Burgess & Hitch, 1992; Page & Norris, 1998), the

partial normalization is more often conceived of as resulting from a process of

time-based decay, consistent with Baddeley & Hitch (1974).
Simulations of CQ models (Boardman & Bullock, 1991; Rhodes & Bullock,

2002b) have shown that they can readily explain the SLEL (Sternberg et al.,

1978), as well as the characteristic pattern of response times – the ratio effect – that

is taken as a chronometric signature of the collective planning strategy (Conway &

Christiansen, 2001). To recall, in the Sternberg et al. (1978) task, subjects were told

to repeat short novel prepared lists as fast as possible following an external signal.

This qualified it as a working-memory dependent sRT task. A related list-recall task

is the ISR task (as described earlier), in which subjects also recall a short novel list
from working memory, but without explicit instruction to initiate or perform recall

as fast as possible. This non-RT sequence production task has also been modeled

successfully within the CQ framework. In particular, to the CQ assumptions noted

above (primacy gradient, deletion upon enactment, and iterated competitive choice

of most-active remaining plan), Page & Norris (1998) added two further assump-

tions: that the choice is noisy, and that decay of activity in the planning layer occurs

during input to the planning layer and during intervals spent performing items from

the list. Error data favor both assumptions, and this extended model was able to ad-
dress data on errors of serial recall. One kind of error, simple failure to recall, is most

probable for list-final plans in long sequences. The extended model explains this as a

consequence of their low initial activation level (due to being last in the primacy-gra-

dient-coded sequence), which in turn makes them more susceptible to falling into

inactivity due to the decay that can occur during enactment of the prepared se-

quence. Another feature of error data from ISR studies is that the majority of trans-

position errors (items are recalled, but in incorrect order) are simple exchanges with

immediately adjacent items in the planned sequence. Given moderately noisy choice,
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this likewise follows from the gradient representation, because noise in the choice

layer is less likely to illicitly promote a plan by two positions in the activity gradient

than by one position. Moreover, whenever a transposition is an adjacent item ex-

change, then the earlier occurring of the two items is followed not by the correct next

item in the target sequence but by the prior item from the target sequence. As noted
earlier, such �fill in� (Page & Norris, 1998) by the prior item is predicted by the CQ

model, but is the opposite of what is expected by associative chaining models, either

in the classical or RNN incarnations. Chaining predicts that any item that appears

too early should be followed by the next item in the target sequence, not by the

skipped item. But filling in by the skipped item is much more likely in the ISR task.

When Lashley (1951) argued against the associative chaining theory of serial

order, he implicitly assumed that the elements of sequences are not coded with re-

spect to their context. For example, in a context free code, the ‘‘u’’ in ‘‘struck’’ is rep-
resented in the same way as the ‘‘u’’ in ‘‘crust’’. Since associative chaining models

operate by following explicit links between the elements of sequences, the non-con-

textual ‘‘u’’ cannot be followed by both the ‘‘ck’’ in ‘‘struck’’ and the ‘‘st’’ in ‘‘crust’’.

Wickelgren (1969), however, pointed out that if the elements of sequences are coded

in a context specific manner, associative chaining models do not have this difficulty.

For example, if the ‘‘u’’ in ‘‘struck’’ is coded as ‘‘ruck’’, and the ‘‘u’’ in ‘‘crust’’ as

‘‘rus’’, the ambiguity is resolved. Thus, if associative chaining works with a context

sensitive code, it is able to overcome some of the difficulties raised by Lashley
(1951). The context sensitive code clearly predicts that a sequence element will be

coded differently, depending upon the sequence in which it is being executed. Inter-

estingly, as we review below, the neurophysiological representation of sequence ele-

ments is sensitive to the sequence being executed. Specifically, neural responses for a

specific sequence element differ, depending upon both the position of that element in

the sequence, and the sequence elements which precede and follow it. These data do

not favor either the associative chaining or CQ hypotheses, but they do suggest that

the brain is using a context sensitive code.
It might be thought that the CQ model cannot apply to syntactic language pro-

duction, because sequencing errors in language production often violate the �adja-
cent items exchange� error pattern that predominates in ISR studies (which

typically use non-grammatical item sequences). In most sequencing errors in lan-

guage production, exchanges respect grammatical constraints, as when a sequencing

error transforms the intended ‘‘flying saucers’’ into the spoonerism ‘‘sighing flos-

sers’’. Note that the same example supports the CQ postulate that the initial seg-

ments of both words were already co-active in a planning field prior to production
of either word. Moreover, it is plausible that the exchange error occurred because

noise transiently rendered the plan for ‘‘fl’’ less active than the plan for ‘‘s’’ at the

instant that ‘‘flying’’ should have been spoken. In fact, several neural network theo-

rists have used CQ as a core of extended models that have offered explanations of

many of the grammar-respecting patterns of sequencing-errors observed in language

production (e.g., Dell, Burger, & Svec, 1997; Hartley & Houghton, 1996).

The most sustained treatment of CQ in language generation is that in Ward

(1994). Far from simply explaining how the �emergent choice� that operates in CQ
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models is compatible with grammar-respecting sequencing errors in language pro-

duction, Ward argues that only emergent choice offers a basis for overcoming more

traditional language generators� failures to mimic the �flexible incremental genera-

tion� (FIG) exhibited in the real-time behavior of human speakers as they compose

sentences �on the fly�. Ward�s FIG model combines CQ principles with principles in-
spired by construction grammar (e.g., Croft, 2001; Fillmore, 1988; Goldberg, 1995) to

build a comprehensive connectionist model of grammatical sentence generation. The

FIG algorithm is an iterated cycle: (1) each node of an input conceptualization is a

source of activation to �construction� nodes of various types, including words; (2)

activation is allowed to flow freely through the structured network of nodes; (3)

when the network settles (or is forced to make an output) the most highly activated

word representation is selected and enacted; (4) any node or nodes of the input con-

ceptualization that are expressed by the enacted word are inhibited, and activation
levels are updated to represent the new current state; (5) steps 2–4 iterate until the

conceptual content of the input has been expressed by the enacted word sequence.

For the system to work well, the word plan that has the highest activation must

be for a word which will be both syntactically and semantically correct if spoken

as the next word in the utterance. This requirement is met, in part, by having the

evolving activation level of a word be dynamically determined by the product of

its semantic and syntactic inputs, not by their sum.

During the last two decades, CQ-compatible neural models have been explored in
many further domains of learned serial behavior, including: eye movements (Gross-

berg & Kuperstein, 1986); phoneme sequences with repeating elements and phoneme

coarticulation (Houghton, 1990); cursive handwriting (Bullock, Grossberg, & Man-

nes, 1993); working-memory storage of sequential inputs (Bradski, Carpenter, &

Grossberg, 1994); word recognition and production (Grossberg, 1986; Gupta &

MacWhinney, 1997); and melody learning and performance (Mannes, 1994; Page,

1994). These applications illustrate that the CQ model is highly extensible. For exam-

ple, one of the advantages of CQ models� explicit parallel representation of sequen-
tial plans – an advantage unavailable to RNNs as such – is that these distributed

representations can be learned and recalled via compressive and expansive coding

operations. In the Sternberg task and the ISR tasks mentioned above, novel se-

quence information was provided to the performer. According to the CQ interpreta-

tion, performers hold a corresponding parallel representation for a few seconds in

working memory (WM) before generating the sequence under the guidance of

WM. However, Klapp (1996) and Verwey (1996), among others, showed that high

numbers of practice trials with short fixed sequences leads to disappearance of the
SLEL (Sternberg et al., 1978). This result can be explained by an augmented CQ

model. Rhodes & Bullock (2002b) reported successful simulations of several sets

of list learning and performance data, using a neural network in which the cerebel-

lum, modeled as one substrate for procedural long-term memory (LTM), learns acti-

vation gradients over item nodes and rapidly recalls them into a normalized motor

buffer (planning layer), which is a WM for action plans. The recall process is rapid

because it entails parallel loading of sequence chunks into a WM from LTM. When

the procedural LTM of a fixed sequence representation becomes strong enough
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(due to extensive practice), it causes pre-selection of the first list-item within the CQ

subsystem. Such pre-selection explains the practice-dependent disappearance of the

SLEL. This hybrid cerebellar-CQ model�s assumption that the cerebellum can load

parallel sequence representations into a fronto-cortical motor buffer is supported by

recent neuroanatomical tracing studies, which have discovered pathways that run
from the dentate nuclei of the cerebellum, via the thalamus, to several fronto-cortical

zones, including premotor cortex and the PFC (Dum & Strick, 2003). More gener-

ally, the hybrid model shows one way that the CQ model, which focuses on WM

dynamics that support sequential performance, can interface with an LTM system

that compressively learns and stores, and expansively recalls, oft-used sequences.

Such a system may be critical for functions that require frequent re-use of subse-

quences, such as musical performance or language production. Note that loading

such subsequences into a prefrontal (PFC) buffer makes their final expression in
behavior subject to voluntary modulation in premotor and motor cortices, which

are downstream of PFC. Such modulation of otherwise fixed sequences is critical

both for emphatic aspects of speech and musical expressivity.

2.3. Neurophysiological paradigms and results

Sequence paradigms have been studied extensively in single cell neurophysiology

experiments. A number of laboratories have carried out experiments in frontal lobe
cortical areas including the supplementary motor area (SMA), the pre-supplemen-

tary motor area (pre-SMA), and the prefrontal cortex. In a series of experiments,

Tanji and colleagues explored the neural representation, at the single cell level, of

the elements of sequences. In their first study they used a task in which monkeys were

trained to push buttons on a four-button touch pad in a particular order (Mushiake,

Inase, & Tanji, 1990; Mushiake, Masahiko, & Tanji, 1991). This task was executed

under two conditions, a visually guided condition and a memory condition. In the

visually guided condition the sequence of movements was instructed by the sequen-
tial illumination of three buttons on the touch pad. After a GO signal the monkey

executed the indicated sequence. In the memory condition, the animal first executed

a series of six trials in which a fixed sequence was cued as in the visually guided trials.

After the six visually guided trials were completed, the monkey had to execute the

sequence following only a GO signal, without visual cueing. In the memory condi-

tion, neural activity related to sequence execution was prominent in the SMA, and

a subset of neurons was preferentially active before the execution of a specific se-

quence. These neurons were not active before other memory-guided sequences,
and were not active before the same sequence if executed in the visually guided

condition.

In a second series of experiments (Shima, Mushiake, Saito, & Tanji, 1996; Shima

& Tanji, 2000; Tanji & Shima, 1994) animals were trained on a serial order task in

which they were required to carry out a sequence, the elements of which were one of

three possible movements: a push, a pull or a turn of a manipulandum. The animals

again carried out the task in visually guided and memory conditions and neurons

were found which increased their activity before the execution of a preferred
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sequence, only in the memory-guided condition, and not before other sequences. A

second type of neuron was selective for the sequential position of the movement,

independent of the specific movement executed. A third type of neuron was active

selectively between two particular movements – for example, after a push and before

a pull, but not after a push followed by a turn, or before a pull if it was preceded by a
turn. Thus these neurons appeared to link two actions in a sequence.

Hikosaka and colleagues recorded in SMA and pre-SMA during monkeys� learn-
ing and performance of the 2 · N task described above (Nakamura, Sakai, & Hiko-

saka, 1998). The responses of individual neurons were preferentially related to either

the acquisition of new hypersets or the performance of previously learned hypersets.

Seventy-eight out of 345 task related neurons responded more strongly to the perfor-

mance of new hypersets than the performance of remembered hypersets. Of these 78

new preferring cells, 33 showed a learning-dependent decrease in activity; that is,
their activity level was strongest at the beginning of the acquisition of a new hyper-

set, whereas 11 showed a learning-dependent increase in activity. Finally, 18 neurons

responded preferentially to the production of a particular set within a learned hyp-

erset. An analysis of the anatomical distribution of neurons showed that neurons re-

lated to learning of new sets were preferentially located in pre-SMA, whereas the

SMA appeared to contain a roughly equal distribution of neurons related to new

and learned sets – consistent with human imaging and primate reversible lesion

results.
Clower & Alexander (1998) conducted a serial order experiment, in which identi-

cal movements were made as elements at multiple positions within several sequences.

The task apparatus had four targets arrayed around a start hold circle. When one of

the peripheral targets was cued, the monkey moved a cursor from the start hold cir-

cle to the peripheral target. After a hold period, one of the targets, positioned either

clockwise or counterclockwise from the cued target, changed color briefly, instruct-

ing the direction of all subsequent movements. After the peripheral target changed

color, the monkey moved in the direction which had been indicated previously.
Another hold period followed and then the current target changed color, at which

point the monkey moved to the next target maintaining the same direction of move-

ment. The task continued in this way until the monkey had made three movements

between the peripheral targets, visiting all four targets. By cueing different starting

targets and different directions, each individual movement was produced at different

serial positions. Thus the effect of the serial position of a movement could be as-

sessed. Thirty-nine percent of SMA neurons recorded, and 71% of pre-SMA neurons

showed an effect of serial position on their response.
In general, these experiments in the SMA and pre-SMA found that a neuron�s fir-

ing rate will change when a particular movement is being executed at different posi-

tions within a sequence, or within different sequences. While these experiments have

provided valuable data on the cortical representation of the elements of sequences,

they have provided little definitive support for, or insight into, possible mechanisms

underlying the production of the elements of a sequence in their correct order. As

discussed above, associative chaining and parallel response activation have been pro-

posed as mechanisms by which the elements of a sequence can be produced in their
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correct order. These theories make different predictions about their associated neuro-

physiological signals. Specifically, associative chaining predicts that only a single ele-

ment of a sequence will be active at any point in time, and the activation of this

element will �cause� the next element to become active. Contrary to the predictions

of the associative chaining model, parallel response activation models, such as
CQ, predict that the elements of the sequence will be represented simultaneously,

and in parallel. Thus, even before the sequence is executed all the elements of the

sequence will be simultaneously activated.

Averbeck et al. (2002), Averbeck, Chafee, et al. (2003), and Averbeck, Crowe,

et al. (2003) have reported results from an experiment in which monkeys were trained

to use a prescribed stroke sequence to draw a set of geometric shapes (prescribed se-

quence figure drawing, PSFD), including a triangle, square, trapezoid, and upside

down triangle. In their experiment, the monkeys began a trial by maintaining a joy-
stick controlled cursor in a start hold circle for 1s. After this 1s hold period, a static

template (geometric form) appeared on the right half of the screen, and the monkey

was free to draw on the left half. If the monkey executed a complete drawing trajec-

tory, while keeping the cursor within (non-visible) �corridors� that defined acceptable

form, a juice reward was delivered. Shapes were drawn in blocks of consecutive trials

of the same shape. This regularity, and the 1s hold period, allowed the monkey to

anticipate, and prepare to draw, the appropriate shape in the subsequent trial, on
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Fig. 5. Plots of strength of segment representation for four different shapes vs. time (from Averbeck et al.,

2002, Fig. 2). Time 0 (vertical broken grey line) indicates the onset of the template which permitted

drawing to commence. Consistent with competitive queuing (CQ) models, the plots show parallel

representation of segments before initiation of copying; rank order of strength of representation before

copying corresponds to the serial position of the segment in the series; and the rank order evolves during

the drawing to maintain the serial position code. Line color/pattern corresponds to segments as follows:

solid black, segment 1; dashed black, segment 2; dotted black, segment 3; dashed grey, segment 4; solid

grey, segment 5 (but not all segments are defined for all shapes).
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all trials except the first trial of a block. Analysis of the acceleration profiles of the

monkey�s hand movements showed that the continuous trajectory was composed of

a sequence of individual segments (Averbeck, Chafee, et al., 2003). While the mon-

keys carried out this task, ensembles of individually isolated single neurons were re-

corded in the prefrontal cortex. Neural activity patterns were defined, based upon
the average ensemble neural responses which occurred during the drawing of individ-

ual segments of the geometric shapes. These activity patterns were shown to be

highly predictive of the shape segment being drawn (Averbeck, Crowe, et al.,

2003), and therefore could be considered neural correlates of each segment of the

shape. When the neural activity during the hold period was analyzed, a parallel rep-

resentation of these activity patterns was found (see Fig. 5). Furthermore, the rela-

tive strength of the representation of each segment also predicted the serial position

of the segment, such that prior to the execution of the sequence, the first segment had
the strongest representation, the second had the second strongest representation, etc.

– a �primacy gradient� as defined earlier. This parallel representation continued to un-

fold during the execution of the sequence of shape segments. After a segment was

executed, its representation decreased, and the subsequent segment became the most

strongly activated. Thus, this study provided the first neural evidence for a mecha-

nism which could order the elements of a sequence, strongly supporting the CQ class

of models reviewed above.
3. A contemporary (partial) synthesis: The N-STREAMS model

As the foregoing attests, learning and production of serial movements have re-

ceived much attention from psychological and neuroscience experimentalists as well

as modelers. Numerous models have attempted to address relatively specific parts of

the data presented above or have explored a single learning mechanism as a basis for

serial learning. Very few models have addressed data and neuroanatomical con-
straints simultaneously. Given the complexity of the picture painted by the data

above, it is unlikely that a single, homogeneous mechanism will ultimately account

for serial phenomena in general. A new neural network theory (Rhodes, 2000;

Rhodes & Bullock, 2002b), known as N-STREAMS (an acronym for Neural Sub-

strates That Rehearse, Encode, And Memorize Sequences), specifies interactions

among several distinct bases for serial movement learning and performance. In

addressing timing data as reported by Sternberg et al. (1978), Klapp (1995), and Ver-

wey (1996), the model accounts for temporal characteristics of serial behavior perfor-
mance both early and late in learning, and provides a unified treatment of changes

that occur along the learning continuum. Key data properties that the model exhibits

are: (1) a SLEL early in practice that disappears with extended practice; (2) a ratio

effect, i.e., the pattern of long latency followed by markedly shorter inter-response

intervals (IRIs) for non-initial sequence elements, under two conditions: either with

foreknowledge of a novel sequence to be produced and adequate opportunity to

prepare for its execution, or without preparation but after significant amounts of

practice; (3) a SLER that does not disappear with practice; and (4) a serial position
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dependence of IRIs that disappears after extended practice. The model also exhibits

word-length effects such as those from ISR tasks (e.g., Cowan, Wood, & Borne,

1994; Hulme, Newton, Cowan, Stuart, & Brown, 1999) and the patterns of errors

are consistent with those in the data. As already noted, the primacy model of Page

& Norris (1998) uses a noisy CQ mechanism with a primacy gradient (in common
with the N-STREAMS model) to very effectively model the patterns of error in se-

quence recall from short-term memory. The two models can be considered close

relatives.

The major elements of the N-STREAMS model (see Fig. 6) are: (1) a fronto-cor-

tical gradient-based representation of serial order that provides a sequence produc-

tion buffer and CQ; (2) a working-memory mechanism capable of producing a

suitable gradient from an input stream of items (representing a sequence) which also

allows for comparison of sequences recalled from long-term memory with a repre-
sentation currently being constructed on the basis of external stimulus presentation;

(3) compressive chunk encoding for cortical sequence learning that enables efficient

memorization of short sequences of items and facilitates recall for production or rec-

ognition purposes; and (4) a cerebellum-based learning module that learns both se-

quence chunks and individual inter-response transitions. As noted above for CQ in

general, the gradient representation uses the relative activation level of primed items

as an implicit code of serial order. Through practice, the cerebellar learning mecha-

nism learns to anticipate and preempt slower cortical loading of the appropriate gra-
dient into the frontal production buffer as well as to speed up the execution of

individual responses within the sequence. These major components, along with oth-

ers included within the model, are compatible with neuroanatomical constraints and

with the major trends emerging from neurophysiological, clinical, and brain imaging

investigations of learning and performance of serial movements. The model in par-

ticular highlights the functional significance of projections from the deep cerebellar

nuclei to the frontal cortex via the motor thalamus (e.g., Dum & Strick, 2003).

Production of novel, preloaded sequences is accomplished by the �execution mod-
ule� of N-STREAMS. Although sharing gradient-based representation and compet-

itive selection of individual items with the class of earlier CQ models of serial

movement production (e.g., Grossberg, 1978a, 1978b; Houghton, 1990; Page & Nor-

ris, 1998), this module resolves many implementation problems not immediately evi-

dent within these earlier models given their algorithmic or difference equation

specification. Only when implemented within a self-contained differential equation

framework do many of these problems become obvious – and thus require resolu-

tion. Examples of such problems include effective deletion of selected items from
the gradient buffer by feedback signals and prevention of premature selection of a

subsequent item (before execution of the item currently being performed). This mod-

ule also incorporates an automatic, but competitive, gain control system that gov-

erns overall function during the performance of a sequence. In the model, gain

switches between the gradient buffer and the components of the module responsible

for actual execution of the selected item. This competition for gain assists in solving

the problem of effectively deleting items from the buffer once they have been selected

for performance. It also embodies the type of working-memory dynamics that
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Cowan (1994) and Page & Norris (1998) proposed to explain the word-length effect.
In the model, the working-memory representation (the primacy gradient) decays

during actual performance of an item and is then refreshed by searching that repre-

sentation for the subsequent item (see Fig. 7, top). As noted above, this is an area of

continuing debate, and there are alternative explanations for the word-length effect,
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some based on a different conception of decay (e.g., Page & Norris, 1998), and some

that eschew decay entirely (e.g., Neath & Nairne, 1995). Irrespective of how this issue
resolves, by itself, the N-STREAMS model�s execution module does exhibit the

human operating characteristics – the SLEL and SLER – evident in RT studies of

performance of novel sequences (e.g., Sternberg et al., 1978; see Fig. 7, bottom).
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Following the lead of Bradski et al. (1994), a working-memory submodule is

incorporated to enable the N-STREAMS to construct a gradient representation as

the model is presented with a series of input items – as would be the case in any task

requiring performance of a novel sequence, such as a phone number. But in N-

STREAMS, this gradient can also be voluntarily transferred to the buffer of the exe-
cution module. This transfer process, a key constituent of voluntary preparation,

facilitates learning of the sequence in two other parts of the model. The first is a cor-

tical chunking component capable of learning a compressive representation of the

loaded sequence. This form of learning could (at least in part) constitute a form

of explicit learning. It allows subsequent recognition, and recall of the sequence into

the working-memory subsystem, when initial items of the same sequence are pre-

sented at a later time. This recall constitutes a �best guess� (from currently known se-

quences) as to which sequence an incoming stream of stimuli may represent. Further
accumulation of evidence, on the basis of presentation of additional stimuli, serves to

either confirm or disconfirm this hypothesis.

The transfer of the sequence from working memory to the production buffer with-

in the execution module also provides a teaching signal to the cerebellar module.

This teaching signal causes the latter to learn its own gradient representation of

the sequence. After sufficient practice, presentation of the initial item(s) of a learned

sequence causes the recognition component to provide the cerebellar module with a

specific contextual input. Appearance of this input triggers the cerebellar module to
rapidly instate its learned gradient representation of the sequence into the fronto-

cortical production buffer. This trans-cerebellar loading of the frontal buffer occurs

much more quickly than loading that utilizes the working memory. Such speeded

loading of well-learned sequences can explain learning-dependent changes in the

latency to produce the first item of a sequence, notably the loss of the SLEL for

specific, highly practiced, sequences.

Intra-sequence transitions, from earlier to later items, are also learned by the cer-

ebellar module. This item-by-item learning marks a second role within the overall N-
STREAMS model for the cerebellar side loop. The differentiation between roles is

solely based upon the input and output connections to and from the cerebellar cir-

cuits – as is the case in vivo. With extensive practice of a sequence, cerebellar learning

reduces the latency between items and speeds up production of the entire sequence.

Doing so relies upon the adaptive timing competence that is known to be provided

by the cerebellar cortex (e.g., Fiala, Grossberg, & Bullock, 1996; Perrett, Ruiz, &

Mauk, 1993). The necessity of embedding this competence within the context of se-

quence performance emphasized the issue of scalability and the importance of the
recurrent nature of the cerebellar circuitry, and resulted in the development of a

new model of cerebellar adaptive timing and sequencing. This Recurrent Slide and

Latch (RSL) model is introduced and documented in Rhodes & Bullock (2002a).

There, it is noted that timing and sequencing operations requiring entire cell popu-

lations in alternative models require only a few cells in the RSL module. The learning

that occurs within this cerebellar module is a form of procedural learning.

A key feature of the dynamical N-STREAMS model is stable, self-regulated inter-

action, from initial to late stages of practice, among the various components of the
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model. The theory explains how each component contributes different competencies,

all of which appear necessary when attempting to explain the brain system respon-

sible for serial learning and production. The involvement of multiple substrates is

now well established (e.g., Hikosaka et al., 1999; Sakai et al., 1998 as noted above).

Of special interest is the model�s incorporation of parallel and serial representations
within a consistent and unified framework, because it allows a reconciliation of

mechanisms previously treated as exclusive alternatives. The gradient buffer, chunk-

ing apparatus, and the first of the cerebellar module roles are fundamentally parallel

(where sequence items are temporally co-active); the second cerebellar role, with its

exploitation of recurrence, is fundamentally a serial mechanism (whereby only a sin-

gle item is active at any given time). The latter is typical of sequence learning and

production models in which the sequence is not explicitly represented, but instead

is recovered only when the system runs – as in the RNNs referred to above (e.g.,
Cleeremans & McLelland, 1991; Dominey & Arbib, 1992; Elman, 1990; Jordan,

1989). Thus, the current N-STREAMS model hypothesizes a distinct role for each

of two major classes of mechanism previously proposed to explain serial organiza-

tion in learning and performance.

Although the model has not yet been applied beyond the domain of button press-

ing tasks, it is extensible to cover many types of performance in which subjects learn

stable sequences defined over finite sets of items. Included here are linguistic perfor-

mances, such as typing, handwriting and speech production. The structure of the
model makes it compatible with prior cognitive proposals that emphasize how

chunking maximizes effective use of working memory and output buffers that have

a severely limited (e.g., 4–7 item) capacity. For handwriting, the most compatible

treatments are dynamic neural network models that generate cursive forms via over-

lapped readout of a small number of discrete linear strokes represented in a motor

buffer (e.g., Bullock et al., 1993; Contreras-Vidal, Poluha, Teulings, & Stelmach,

1998).

The compressive cortical chunking competence of N-STREAMS provides a basis
from which to begin to address issues related to sequencing chunks, as have recently

been elucidated by Verwey (2001), for example. The interaction between preparation

of a forthcoming sequence and execution of the present sequence represents fertile

ground for the continued development of the N-STREAMS theoretical framework.

Another interesting avenue for development would be the early learning phase of the

2 · N task. Here, the working-memory component of the current N-STREAMS for-

mulation would provide a substrate for additional development to enable a compe-

tence for trial and error with search. The search aspect would be facilitated by a
suitable memorization and recognition mechanism that could be accomplished by

the current chunk learning component of the model. N-STREAMS features intra-se-

quence transition (item-by-item) learning within a cerebellar side loop. This aspect of

the model is a ready substrate for the type of learning indicated by the SRT tasks

described earlier. The specific nature of the cerebellar learning taking place in the

N-STREAMS model suggests that this mechanism would result in sequence learning

under conditions where such learning occurs in experiments (e.g., with stable inter-

stimulus intervals) whereas conditions preventing learning in experiments (such as
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random inter-stimulus intervals) would also prevent learning in the N-STREAMS

model. An open question is the range of tasks that the N-STREAMS model can ex-

plain. In tasks where the subject is aware of the sequence and chunking is known to

occur, a cerebellar contribution to LTM for learned sequences has been demon-

strated (e.g., Lu et al., 1998). However, one recent neuroimaging report has chal-
lenged the idea that the cerebellum is also involved in the implicit learning that

occurs in the SRT (serial reaction time) task, in which subjects often show evidence

of sequence learning despite having no awareness that a non-random sequence has

been presented and learned. In particular, Seidler et al. (2002) showed that through-

out an initial learning phase that included a distractor task performed in parallel

with the SRT task, there was no evidence of learning in performance, and also no

evidence of cerebellar activations. Upon removal of the distractor task, performance

suddenly improved, and cerebellar activations suddenly became detectable. They
interpreted this correlation to mean that removal of the distractor task suddenly en-

abled previously masked cortical learning to gain expression via the cerebellum and

thereby immediately enhance performance. However, correlation does not imply

causation. The N-STREAMS theory is fully consistent with the Seidler et al.

(2002) data, but it offers a strikingly different interpretation: removal of the distrac-

tor task allows cortical chunk learning to finally gain access to the WMp, via which

such learning immediately begins to have an impact on performance (even without a

cerebellar assist to performance). Simultaneously, the transfers from WMd to WMp
generate teaching signals for cerebellar learning, and it is these teaching signals that

cause the cerebellar activations observed in the neuroimaging study. This prediction

remains to be tested, but it can be seen that the N-STREAMS framework, even in its

early stage of development, has the potential to span many of the paradigms and

results presented earlier in this paper.
4. Conclusions

The present discussion of research paradigms, tasks and models of skilled sequen-

tial motor behavior indicates that people have the capacity to control short se-

quences as chunks whose elements can be treated collectively, e.g., activated in

parallel, during cognitive operations. Such collective treatment may be a necessary

condition for hierarchical control, which is further suggested by many of the data

and models reviewed. In such hierarchical control, short segments can be processed

automatically, in the sense that their initiation and execution need not require shifts
of attention and deliberative executive control, and need not burden the kind of

short-term memory required for recoding between alternative representations. Most

likely, these segments are coded in a task-specific way that facilitates rapid

processing.

On the other hand, there is ample reason to believe that a kind of working mem-

ory can mediate performance of even well-learned short sequences. The need for

continuing working-memory involvement makes sense from several perspectives.

First, we know that humans are able to modulate the performance of very well-
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learned short sequences at will, as when a teacher greatly elongates a spoken syllable

to meet some transient communicative goal. Second, when a chunk is unpacked into

its constituent representations, the activation of the later elements must be sustained

until the earlier elements have been performed. The length of time needed can be so

short as to hardly require working memory, but for one reason or another, it can
also be long enough to require the sustained activation provided by the working-

memory system long associated with the pre-frontal cortex.

Within hierarchical control models, a key issue is whether higher and lower-level

control processes may be carried out simultaneously. In general, simultaneous pro-

cessing is to be preferred because it can greatly speed system operation. Above the

chunk level, control involves information and decisions regarding which next chunk

to initiate, and recent research suggests that such control operates simultaneously

with lower-level operations. From a processing point of view, this demonstrates that
independent processors are responsible for low and high level control, most likely

tapping different knowledge bases. On the other hand, there are also indications

from the ISR literature that during short sequence performance, there may be at

least a brief alternation between two iterated phases: launching item execution and

running the competition to choose the next item for execution.

A promising recent development is the emergence of adaptive neural network

models that respect neuroanatomical and neurophysiological constraints and that

are applicable to sequence learning in addition to other tasks. One problem with
these models is that they tend to be enormously complex, with much more internal

structure and far more parameters than traditional mathematical models in the psy-

chology of sequence learning. For biological realism, these models must be complex.

It is therefore incumbent on the modelers to demonstrate that their models are

competent to explain a much wider range of data than has been targeted by most

traditional models in psychology. For example, a model should be able to explain

real-time performance measures (e.g., latencies) and error patterns as they evolve

across early, middle and asymptotic phases of task learning and performance.
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