
Angelic Semantics for High-Level Actions

Bhaskara Marthi
CSAIL

Massachusetts Insitute of Technology
Cambridge, MA 02139
bhaskara@csail.mit.edu

Stuart Russell
Computer Science Division

University of California, Berkeley
Berkeley, CA 94720
russell@cs.berkeley.edu

Jason Wolfe ∗

Computer Science Division
University of California, Berkeley

Berkeley, CA 94720
jawolfe@cs.berkeley.edu

Abstract

High-level actions (HLAs) lie at the heart of hierarchical
planning. Typically, an HLA admits multiple refinements
into primitive action sequences. Correct descriptions of the
effects of HLAs may be essential to their effective use, yet
the literature is mostly silent. We propose an angelic seman-
tics for HLAs, the key concept of which is the set of states
reachable by some refinement of a high-level plan, represent-
ing uncertainty that will ultimately be resolved in the plan-
ning agent’s own best interest. We describe upper and lower
approximations to these reachable sets, and show that the re-
sulting definition of a high-level solution automatically sat-
isfies the upward and downward refinement properties. We
define a STRIPS-like notation for such descriptions. A sound
and complete hierarchical planning algorithm is given and its
computational benefits are demonstrated.

Introduction

Since the early days of AI (Simon 1962), hierarchical struc-
ture in behavior has been recognized as perhaps the most im-
portant tool for coping with complex environments and long
decision horizons. Humans, who execute on the order of one
trillion primitive motor commands in a lifetime, appear to
make heavy use of hierarchy in their decision making—we
entertain and commit to (or discard) high-level actions such
as “write an ICAPS paper” and “run for President” with-
out preplanning the motor commands involved, even though
these high-level actions must eventually be refined down to
motor commands (through many intermediate levels of hier-
archy) in order to take effect.
For the purposes of this paper, hierarchical structure is

supplied in the form of a library of high-level actions (or
HLAs), in addition to the primitive action descriptions used
in standard planning. Each HLA admits one or more refine-
ments into sequences of actions, which may include other
HLAs. (More complex definitions of hierarchy are possible,
of course, but this suffices for now.)
The principal computational benefit of using high-level

actions seems obvious: high-level plans are much shorter,
and ought to be much easier to find. This benefit can be
realized only if high-level solutions can be identified—that
is, only if we can establish that a given high-level plan has

∗The authors appear in alphabetical order.
Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a primitive refinement that achieves the goal. (This is the
motivation for the much-sought-after downward refinement
property (Bacchus & Yang 1991), which requires that every
high-level solution must be refinable into a primitive solu-
tion.) Another important benefit is that a situated agent may
begin executing primitive actions corresponding to the ini-
tial step of a high-level solution without having first reduced
the remaining steps to primitive actions.
For this approach to work, the planner needs to know

what high-level actions do. Yet even though many hierarchi-
cal planners use precondition–effect annotations for HLAs,
their exact meaning is often unclear. After the collapse of
the “hierarchical” track at the first Planning Competition,
McDermott (2000) wrote as follows:

The semantics of hierarchical planning have never been clar-
ified . . . the hierarchical planning community is used to think-
ing of library plans as advice structures, which was a drastic
departure from our assumption that the basic content of the
plan library contained no ”advice”, only ”physics”. . . . The
problem is that no one has ever figured out how to recon-
cile the semantics of hierarchical plans with the semantics of
primitive actions.

Our analysis of the literature, sketched briefly in the “Re-
lated Work” section towards the end of the paper, suggests
this is slightly pessimistic but essentially correct.
Our aim in this paper is to rectify this situation and

thereby realize the full benefits of hierarchical structure in
planning. Our approach is a simple one: we provide de-
scriptions of the effects of HLAs that are true—that is, they
follow logically from the refinement hierarchy and the de-
scriptions of the primitive actions. If achievement of the
goal is entailed by the true descriptions of a sequence of
HLAs, then that sequence must, by definition, be reducible
to a primitive solution. Conversely, if the sequence provably
fails to achieve the goal, it is not reducible to a primitive
solution. Thus, the downward refinement property and its
converse are automatically satisfied.1 Finally, if the descrip-
tions entail neither success nor failure of a given plan, then
further refinement will resolve the uncertainty.
So far, so good. But what can be truly asserted about

high-level actions? The first such assertions were the

1Bacchus and Yang (1991) assert that it is “naive” to expect
downward refinement to hold in general; but downward refinement
can fail only if HLAs are allowed to have false descriptions. Such
descriptions are common in ABSTRIPS hierarchies.

precondition–effect descriptions of macro-operators in the
early STRIPS system (Fikes & Nilsson 1971); these de-
scriptions were true, and indeed were derived automatically
from solutions found by the planner. Each STRIPS macro-
operator, however, had exactly one refinement, whereas the
tricky issues arise with multiple refinements. The most
common proposal is that the effects of an HLA are those
that occur in all of its refinements (Tate 1977; Yang 1990;
Russell & Norvig 2003). This is equivalent to the way in
which nondeterminism is handled in planning: a plan works
iff it works no matter how the choices are made. But this
treatment ignores the fact that the planning agent itself (not
an adversary) chooses which refinement to make. Instead of
requiring effects to hold under all refinements, then, we are
interested in what happens under some refinement.
A similar distinction between adversarial and nonadver-

sarial refinements of abstract specifications occurs in the se-
mantics of programming languages. For example, a mul-
tithreaded program is correct only if it works under all le-
gal thread sequencings, because the actual sequencing de-
pends on unknown (“adversarial”) timing properties of the
machine and process scheduler. On the other hand, a nonde-
terministic algorithm succeeds iff some sequence of choices
succeeds—the choices are assumed to be made with the aim
of succeeding. In the programming languages literature,
the term angelic nondeterminism is used for this case (Ja-
gadeesan, Shanbhogue, & Saraswat 1992). Thus, it seems
reasonable to call our proposed semantics an angelic seman-
tics for HLAs.
To describe the angelic semantics correctly, we begin with

the concept of a reachable state: a state s′ is reachable from
s by a given HLA a iff some primitive refinement of a takes s
into s′. The exact description of an HLA is simply its reach-
able set, specified as a function of s. If an HLA’s reachable
set from the start state intersects the goal, then the HLA is a
solution. We can extend this notion in an obvious way to se-
quences of HLAs, and thereby derive a hierarchical planning
algorithm with the desirable properties mentioned above.
To illustrate the basic idea, let us consider a domain where

the state is described by propositional fluents u, v, andw and
where there is an HLA a that has two possible refinements
r1 and r2 into primitive sequences. The sequence induced
by r1 has effects+u+v, while r2 has effects+u−v. (Both
leave w unchanged.) Under adversarial semantics, we can
be sure that a achieves u, but we can say nothing about v.
In particular, under adversarial semantics, a is not a solution
to the problem of achieving u ∧ v. Yet it is obvious that a
is a solution; we simply have to choose the refinement r1.
Under angelic semantics, a always achieves u and possibly
achieves v or ¬v (agent’s choice). Ordinary STRIPS nota-
tion cannot capture this—note that leaving v out of the effect
list implies that v is always unchanged—so we introduce an
extension called NCSTRIPS (nondeterministic conditional
STRIPS). In this notation, the exact description of the ef-
fect of a is +u ±̃v, where ±̃ denotes that, by choosing the
appropriate refinement, we can either add or delete the cor-
responding proposition.
It turns out, however, that even with this notational exten-

sion, exact descriptions of reachable sets are seldom concise
enough to be usable. Instead, we introduce both complete
descriptions, which provide an upper bound (superset) on

the reachable set, and sound descriptions, which provide a
lower bound (subset) on the reachable set. When extended
from actions to sequences, complete descriptions support
proofs that a sequence cannot reach the goal under any re-
finement, while sound descriptions support proofs that a se-
quence surely reaches the goal under some refinement.

Given a language for expressing sound and complete de-
scriptions, it is conceptually straightforward to derive algo-
rithms for constructing them automatically, starting from the
primitive actions (which always have exact descriptions in
the standard setting) and working up the hierarchy. We de-
fer this issue to a future paper, pointing out for now that there
are tradeoffs among the expressiveness of the language and
the exactness and conciseness of the descriptions. We illus-
trate these tradeoffs in an example domain—the warehouse
world, which is a variant of the blocks world. For our NC-
STRIPS language, we find that nonempty sound descriptions
are sometimes hard to come by. We introduce a third type
of description called sound-intersecting, which has many of
the useful properties of sound descriptions but—at least in
our limited experience—seems a better fit to real domains.

Based on this approach to describing HLAs, we describe
a simple, provably sound and complete hierarchical plan-
ning algorithm that performs a “top-down” forward search.
We report on preliminary experiments in the warehouse
world, demonstrating order-of-magnitude, complementary
speedups from using sound and complete descriptions.

The representations and algorithms described in the body
of the paper are just one way in which the overall approach
can be fleshed out; many other ways are possible. There is
also a lot more work to do on the methods we have chosen.
These issues are discussed in the final section of the paper.

Hierarchical Planning

Planning Problems

Since the main semantic issues regarding HLAs are or-
thogonal to the particular representation used for states and
actions, we will define the concepts in a representation-
independent way and illustrate them on a running example.
For our purposes, a (deterministic, fully observable) plan-
ning problem consists of a set S of states, an initial state s0,
a set G ⊆ S of goal states, a set L of primitive actions, and
a transition function f : S × L → S. The meaning of this
function is that doing a in s leads to state f(s, a). For sim-
plicity, we omit strict action preconditions, assuming instead
that actions leave the state unchanged if their preconditions
are not met. The transition function can be overloaded to
take in sequences of primitive actions; if a = (a1, . . . , am),
then f(s, a) is the result of doing the actions a1, . . . , am in
order, starting at s. The planning problem is to find a ∈ L∗

such that f(s0, a) ∈ G.2

A popular representational choice is to make the state set
S be the set of truth assignments to some set of ground
propositions, describe the goal using a logical formula,
and describe the transition function using the STRIPS lan-
guage (Fikes & Nilsson 1971).

2We restrict our attention to totally ordered planning, and do
not consider finding optimal (e.g., shortest) plans.

1

1 2

2

3

3

4

4

t1 t2 t3 t4

a b

c

predicate interpretation
R(xi, xj) xi one square right of xj

U(yi, yj) yi one square up from yj

POS(x, y) gripper at (x, y)
FACINGR gripper facing right
HAVE(b) gripper holding block b
EMPTY gripper holding nothing
AT(b, x, y) block b at (x, y)
FREE(x, y) no block at (x, y)
ON(b, c) block b on c
CLEAR(c) no block on c

Figure 1: Left: An example instance of a 4x4 warehouse world
planning problem. The goal is to have ON(c, t2)∧ ON(a, c). Right:
predicates used to encode the domain. R and U are constant, and
all other predicates are fluents.

TurnR(): also TurnL()
pre: POS(x, y) ∧ y = h
eff: +FACINGR
Right(): also Left(), Up(), Down()
pre: POS(xs, ys) ∧ R(xt, xs) ∧ FREE(xt, ys)
eff: −POS(xs,ys), +POS(xt,ys)
GetR(): also GetL()
pre: POS(xg, y) ∧ EMPTY ∧ FACINGR ∧

R(xb, xg) ∧ AT(b, xb, y) ∧ CLEAR(b) ∧ ON(b, c)
eff: −ON(b, c), −AT(b, xb, y), −EMPTY,

+CLEAR(c), +FREE(xb, y), +HAVE(b)
PutR(): also PutL()
pre: POS(xg, ybg) ∧ HAVE(b) ∧ FACINGR ∧

R(xbc, xg) ∧ U(ybg, yc) ∧ AT(c, xbc, yc) ∧ CLEAR(c)
eff: −CLEAR(c), −FREE(xbc, ybg), −HAVE(b),

+ON(b, c), +AT(b, xbc, ybg), +EMPTY

Figure 2: STRIPS descriptions forw×hwarehouse world domain.

To illustrate some of the issues, we use a simple propo-
sitional domain, a variant of the well-studied blocks world
with discrete spatial constraints added. In this warehouse
world (see Figure 1), blocks are stacked on a 1-d table of
fixed length. A forklift-style gripper can pick up and stack
blocks from the left or right side, as long as it is facing the
target. The gripper can also move to adjacent free squares,
and can turn (to face the other way) when in the top row. A
partial STRIPS domain description is provided in Figure 2.3

Problems in this domain can be quite challenging, due to
constraints on the gripper position imposed by the ceiling
and by the blocks themselves; for instance, the shortest plan
that solves the example problem in Figure 1 is 50 steps long.

Hierarchy and Refinements

A hierarchical planning problem P consists of a planning
problem together with an action hierarchy H = (A, I, T).

A is a set of high-level actions. Let Ã = A∪L be the set of
all actions, both high-level and primitive. For each a ∈ A,
there is a set I(a) of possible immediate refinements, each of

which is a finite sequence (a1, a2, . . . , am) ∈ Ã∗. Finally,

T ⊆ Ã is the set of actions that can be done at the top level.
To refine a sequence a = (a1, . . . , am) is to replace one
of the ai by one of its immediate refinements. A sequence

3For ease of exposition we introduce new variables in precon-
ditions when they are determined uniquely by the other arguments
and state, rather than cluttering up the argument lists; it is trivial to
translate this into correct PDDL definitions.

Nav(xt, yt)
pre POS(xs, ys)
ref. 1 pre: xs=xt ∧ ys=yt

ref:
ref. 2 pre: R(x, xs) ∧ FREE(x, ys) ∧ (xs, ys) 6= (xt, yt)

ref: Right(), Nav(xt, yt)
ref. 3-5 Like refinement 2, but with Left(), Up(), or Down().

comp. else→ −̃POS(xs, ys), (∀xy)+̃POS(x, y)
sound POS(xs, ys) ∧ FREE(xt, yt) ∧ (∀ x) FREE(x, h)

→−POS(xs, ys), +POS(xt, yt)
else→ {}

Navigate(xt, yt)
pre POS(xs, ys)
ref. 1 pre:

ref: Nav(xt, yt)
ref. 2 pre: ¬FACINGR

ref: Nav(xs, h), TurnR(), Nav(xt, yt)
ref. 3 pre: FACINGR

ref: Nav(xs, h), TurnL(), Nav(xt, yt)

comp. else→ −̃POS(xs, ys), ±̃FACINGR, (∀xy)+̃POS(x, y)
sound POS(xs, ys) ∧ FREE(xt, yt) ∧ (∀ x) FREE(x, h)

→−POS(xs, ys), +POS(xt, yt), ±̃FACINGR
else→ {}

MoveBlock(b, c)
pre CLEAR(b) ∧ ON(b, a) ∧ AT(b, xb, yb) ∧

CLEAR(c) ∧ AT(c, xc, yc) ∧ U(yt, yc) ∧
POS(xg, yg) ∧ EMPTY

ref. 1 pre: R(xb, xi) ∧ FREE(xi, yb) ∧ R(xc, xj) ∧ FREE(xj , yt)
ref: Navigate(xi, yb), GetR(), Navigate(xj , yt), PutR()

ref. 2-4 Like refinement 1, but with GetL() and/or PutL().

comp. else→−̃ON(b, a), +̃ON(b, c), −̃CLEAR(c), +̃CLEAR(a),
−̃FREE(xc, yt), +̃FREE(xb, yb),
−̃AT(b, xb, yb), +̃AT(b, xc, yt), −̃EMPTY,+̃HAVE(b),
−̃POS(xg, yg), (∀xy)+̃POS(x, y), ±̃FACINGR

sound else→ {}

Figure 3: A hierarchy for the warehouse world domain. There are
three HLAs, each of which has an overall precondition, a set of
possible immediate refinements with preconditions, and sound and
complete descriptions specified in the NCSTRIPS language.

b is a refinement of a sequence a iff b can be obtained by
repeated refinements starting with a, and a primitive refine-
ment iff, in addition, it consists only of primitive actions.
We define R∗(a) as the set of all primitive refinements of
a. A sequence is consistent with H if it is a refinement of
some sequence in T ∗. In hierarchical planning, we restrict
attention to plans that are consistent withH.4

Figure 3 shows a hierarchy for our running example, with
various annotations that will be described in this and the
following section. In this hierarchy, there are three HLAs:
A = {Nav,Navigate,MoveBlock}. Nav(x, y) attempts to
navigate the gripper from its current position to (x, y). It has
five possible immediate refinements: do nothing, or execute
a primitive move step followed by a Nav. Navigate(x, y)
attempts to navigate while possibly turning the gripper. It
either directly Navs to the target, or Navs to the top row,
turns, and then Navs to the target. Finally, MoveBlock(b, c)
attempts to move a block b to on top of c. It has four imme-
diate refinements, each of which Navigates to one side of b,
picks it up, Navigates to one side of the target location, and
puts b on c. The refinements differ only in the sides from

4Technically, to be consistent with the hierarchy, a primitive
plan must also satisfy all HLA and refinement preconditions at
points in the plan where their primitive refinements begin.

which the block is picked up and put down. While this hi-
erarchy is simple, it is also quite general; all plans we care
about can be generated solely by refinements of sequences
of MoveBlock actions (i.e., T = {MoveBlock(·)}). For in-
stance, the example problem can be solved by moving c on
a, b on t4, c on t3, a on b, c on t2, and finally a on c.

High-Level Action Descriptions
As explained in the introduction, the set R∗(a) of primitive
refinements of HLA a may be large. A key concept in our
approach is the set of states reachable by these sequences:

Definition 1. Given a hierarchical planning problem P , the
exact reachable set of a high-level action sequence a from
state s is given by

F (s,a) = {s′ : ∃b ∈ R∗(a) f(s,b) = s′}

Remark. If a is primitive, F (s,a) = {f(s,a)}.

Definition 2. An action sequence a ∈ Ã∗ solves hierarchi-
cal planning problem P iff F (s0,a) ∩ G 6= ∅.

In other words, a high-level plan is a solution iff the goal
is reachable by some primitive refinement.
If we could compute F (s,a) efficiently, during planning

we would only need to refine action sequences known to
solve the problem at hand. But this is not possible in general.
(Proofs are deferred to the full paper due to lack of space.5)

Theorem 1. There exist hierarchical planning problems
Pn, n ∈ N for which the state descriptions, hierarchy size,
and plan lengths are all polynomial in n and the transition
model for primitive actions can be evaluated in polynomial
time, such that, if there exists an algorithm that takes in Pn

and a state s and decides in polynomial time whether the
goal state of Pn is in F (s, a) for some HLA a in Pn, then
P=NP.

Thus, we consider instead principled compact approxima-
tions to F that still allow for exact inferences about what
states a high-level plan can possibly or definitely reach. The
framework we present is representation-independent; in or-
der to illustrate and implement our definitions, however, we
need a concrete way to specify sets of states and transition
functions. In this paper, we use NCSTRIPS (Nondetermistic
Conditional STRIPS), as illustrated in Figure 3. This lan-
guage allows for a set of conditional effects with exhaus-
tive, disjoint conditions,6 each of which includes an add and
delete list (as in the STRIPS language). In addition, effects
may include possible adds and deletes, denoted by +̃, −̃, and
±̃ (short for possible-add and -delete). A possibly-added
proposition appearing in a complete (resp. sound) descrip-
tion of an action can possibly (resp. definitely) be made true
by some refinement of that action.

Complete Descriptions

We first consider complete descriptions, which specify su-
persets of the exact reachable sets of HLAs. These allow

5Full paper, implementation, and test scripts available at
http://www.cs.berkeley.edu/∼jawolfe/angelic/

6In other words, we assume that exactly one effect applies in
each state. For ease of exposition, we also assume that effect con-
ditions are conjunctive (which can be enforced by preprocessing).

us to prune a high-level plan that cannot possibly reach the
goal, without explicitly considering its refinements. For ex-
ample, consider the complete description of Navigate in Fig-
ure 3, which asserts that from any state, Navigate(x, y) may
delete the current gripper position, add any other gripper
position, and turn the gripper, but cannot affect any other
propositions. This description allows us to infer that, e.g.,
no sequence of Navigate actions alone can solve the example
problem, because Navigate cannot change the ON predicate.

Definition 3. A function ga : S → 2S is a complete de-
scription of an HLA a iff, for every s ∈ S, ga(s) ⊇ F (s, a).

We can extend a complete description ga to a function ḡa

on sets of states, defined by ḡa(σ) =
⋃

s∈σ ga(s). Then, we
define the complete reachable setG of a high-level sequence
as a composition of descriptions of its component actions:

Definition 4. Given complete descriptions ga for all actions,
the complete reachable set of a = (a1, . . . , aN) from some
set of states σ ⊆ S is given byG(σ,a) = ḡaN

◦ . . .◦ ḡa1
(σ).

The complete reachable set G can be used to support
claims of the form “If a certain high-level sequence must
lead to a state in σ, then following with high-level sequence
a must lead to a state in G(σ,a).”

Theorem 2. For all s ∈ σ ⊆ S, a ∈ Ã∗, and b ∈ R∗(a),
f(s,b) ∈ G(σ,a).

Corollary 1. A plan a ∈ Ã∗ cannot possibly reach the goal
(by any refinement) if G({s0},a) ∩ G = ∅.

In summary, given a high-level plan, we can progress a set
of possibly reachable states (starting with a set containing
only the initial state) through the complete descriptions of
the plan’s component actions in sequence. If the final set
does not intersect the goal, the high-level plan cannot solve
the planning problem and need not be refined further.

Sound Descriptions

Sound descriptions are dual to complete ones, in that they
specify subsets of the exact reachable sets of HLAs. For ex-
ample, the sound description of Navigate(x, y) in Figure 3
asserts that if (x, y) and all squares in the top row are free,
then Navigate can definitely move the gripper to (x, y), pos-
sibly turning it in the process; otherwise, no states are known
to be achievable (denoted by the special {} effect). Now,
consider the problem of achieving ON(c, a) from the initial
state in Figure 1. Using the sound description of Navigate
(along with the primitive descriptions of GetL and PutL), we
can conclude that the high-level plan Navigate(4, 3), GetL,
Navigate(2, 3), PutL is guaranteed to reach this goal.

Definition 5. A function ha : S → 2S is a sound descrip-
tion of a iff, for every s ∈ S, ha(s) ⊆ F (s, a).

We extend ha to a function h̄a(σ) =
⋃

s∈σ ha(s) and then
define the sound reachable set H as before:

Definition 6. Given sound descriptions ha for all actions,
the sound reachable set of a = (a1, . . . , aN) from some set
of states σ ⊆ S is given by H(σ,a) = h̄aN

◦ . . . ◦ h̄a1
(σ).

The sound reachable set H can be used to support claims
of the form “If we can reach any state in σ with a certain
high-level sequence, then by following with high-level se-
quence a, we can reach any state in H(σ,a).”

Theorem 3. For all σ ⊆ S, a ∈ Ã∗, and s′ ∈ H(σ,a),
there exists b ∈ R∗(a) and s ∈ σ such that f(s,b) = s′.

Corollary 2. A plan a ∈ Ã∗ can definitely reach the goal
(by some refinement) if H({s0},a) ∩ G 6= ∅.

Given a high-level plan, we can progress a set of defi-
nitely reachable states (starting with a set containing only
the initial state) through the sound descriptions of the plan’s
component actions in sequence. If the final set intersects the
goal, the plan can be refined to a primitive solution.
Moreover, if we want to actually find such a refinement,

we can use the following theorem to decompose this task
into separate subproblems, one for each HLA in the plan:

Theorem 4. If for a = (a1, . . . , aN) there exists sN ∈
H({s0},a) ∩ G, a sequence s0, . . . , sN can be found by
greedily choosing each si−1 (starting with sN−1) such that
si−1 ∈ H({s0}, (a1, . . . , ai−1)) and si ∈ hai

(si−1).
Moreover, for each ai there exists bi ∈ R∗(ai) such that
f(si−1,bi) = si. Concatenating any such bi yields a prim-
itive refinement b ∈ R∗(a) such that f(s0,b) = sN ∈ G.

In the above example, the high-level Navigate(4, 3), GetL,
Navigate(2, 3), PutL has only one soundly reachable state
that satisfies the goal of having c on a. This state has the
gripper at (2, 3) facing left; we call it s4. We then regress
backwards from s4, choosing s3 in which the gripper is hold-
ing c, then s2 in which the gripper is at (4, 3) facing left,
and finally s1 in which c is still on b. s0, of course, is just
the initial state. Given these intermediate states, a primi-
tive refinement of the plan can be found by solving separate
planning problems, one for each Navigate HLA. Solving the
first such problem of reaching s1 from s0 by a refinement of
Navigate(4, 3) might yield the primitive sequence Up, Right,
Right, Down, and solving the second such problem might
yield Up, Left, Left, Down. Concatenating the results gives
the primitive refinement Up, Right, Right, Down, GetL, Up,
Left, Left, Down, PutL, which solves the original problem.

Sound-Intersecting Descriptions

In some domains, it is difficult to construct compact but use-
ful sound descriptions. For instance, suppose we add to our
domain a nuisance predicate describing the position of some
gear in the gripper’s mechanism, which is changed by each
action in a complex but deterministic way based on the cur-
rent state. With this modification, there is no longer a com-
pact sound description of Navigate, since picking out con-
crete achievable states (which must specify the gear posi-
tion) would require detailed conditioning on the source state.
However, we do know that Navigate can achieve the same

values for the old propositions that it could before, and for
each such combination of values, there is some possible gear
position (but we don’t want to say which one). In NC-
STRIPS, we can represent this by adding to our previous
sound description intersecting-possible-add and -delete lists
containing all possible gear positions. The semantics is that
we choose the direction the gripper faces, and then an ad-
versary chooses the gear position. This compact description
allows us to prove that the same plans as before succeed in
this new domain. We call it a sound-intersecting descrip-
tion, because it describes a set of sets of states, such that we
can definitely achieve at least one state from each set.

Definition 7. A function j : S → 2S is an intersecting
description of a iff for every s, j(s) ∩ F (s, a) 6= ∅.

Definition 8. A sound-intersecting description of a is a set
ka = {ji} of intersecting descriptions of a.

We first extend the ji to functions j̄i(σ) =
⋃

s∈σ ji(s) on
sets of states. Then, given a set of sets of states Σ = {σi′},
define k̄a(Σ) = {j̄i(σi′)} (ranging over all j̄i and σi′).

Definition 9. Given sound-intersecting descriptions ka for
all actions, the sound-intersecting reachable set of sets of
a = (a1, . . . , aN) from some set of sets of states Σ ⊆ 2S is

given byK(Σ,a) = k̄aN
◦ . . . ◦ k̄a1

(Σ).

A sound-intersecting reachable set K can be used to sup-
port claims of the form, “If we are able to reach some state
in each set in Σ, then by following with high-level sequence
a, we can reach some state in each set inK(Σ,a).”

Theorem 5. For all sets of sets of states Σ ⊆ 2S , action

sequences a ∈ Ã∗, and sets of states σ′ ∈ K(Σ,a), there
exists a set σ ∈ Σ such that, for any s ∈ σ, there is a primi-
tive refinement b of a for which f(s,b) ∈ σ′.

Sound-intersecting descriptions, like sound ones, can be
used to guarantee the existence of a successful primitive re-
finement of a given plan, and also to decompose the problem
of finding such a primitive refinement:

Corollary 3. A plan a can definitely reach the goal (by some
refinement) if there exists σ ∈ K({{s0}},a) s.t. σ ⊆ G.

Theorem 6. If for a = (a1, . . . , aN) there exists σN ∈
K({{s0}},a) s.t. σN ⊆ G, a sequence {s0}, σ1, . . . , σN

can be found by greedily choosing each σi−1 (starting
with σN−1) so that σi−1 ∈ K({{s0}}, (a1, . . . , ai−1))
and σi ∈ kai

(σi−1). Concatenating any greedy choice of
bi ∈ R∗(ai) (starting with a1) such that f(si−1,bi) =
si ∈ σi yields a primitive refinement b ∈ R∗(a) such that
f(s0,b) ∈ σN ⊆ G.

To use sound-intersecting descriptions, we must choose a
representation for sets of sets of states. While these sets of
sets could potentially grow very large, we can restrict our-
selves to more compact but less expressive representations.
For example, we can use factored formulae, which are tuples
(Ps,Φs,Φi) where Φs is a formula over a subset of propo-
sitions Ps, and Φi is a formula over all propositions. The
semantics is that for each combination of values for propo-
sitions in Ps consistent with Φs, there is some extension to
the remaining propositions that is consistent with Φi, and
represents a reachable state.
Because our example domain (as stated) does not require

sound-intersecting descriptions, we only consider ordinary
sound descriptions in what follows. However, we expect
that in many real domains, sound-intersecting descriptions
may be necessary to make interesting (true) assertions about
an action’s reachable set.

Reasoning with Descriptions

In our implementation, we use DNF formulae to represent
sets of states. Thus, to use our sound and complete de-
scriptions, we need to be able to progress and regress sets
specified by DNF formulae through NCSTRIPS descrip-
tions. The algorithm for progression is simple: progress

Algorithm 1

function HIERARCHICALFORWARDSEARCH(s0,G, H)
* for d = 0, 1, 2, 3, . . . do

for i from 0 to d do
a← TOPLEVELPLAN(H, i)
if FINDPRIMREF(s0,G, {a}, d) succeeds then
return the refinement

function FINDPRIMREF(s0,G, stack, d)
while ¬ISEMPTY(stack) do

a← POP(stack)
if SUCCEEDSCOMPLETE(s0,a,G) ∧ D(a) ≤ d then
if SUCCEEDSSOUND(s0,a,G) ∧

* DECOMPOSE(s0,a,G) isn’t on the call stack then
return DECOMPOSE(s0,a,G)

PUSHALL(IMMEDIATEREFS(ai), stack)

return failure

function DECOMPOSE(s0,a,G)
(σ1, . . . , σ|a|) = PROGRESS(s0,a)
(s1, . . . , s|a|) = REGRESS(σ,G,a)
for i from 1 to |a| do
if ISPRIMITIVE(ai) then

bi ← (ai)
else

* for d = 0, 1, 2, . . . do
r ← IMMEDIATEREFS(ai)
bi ← FINDPRIMREF(si−1, {si}, r, d)

* if bi 6= failure then break

return CONCATENATE(b1, . . . ,b|a|)

each clause of a formula separately through each conditional
effect of an action, then disjoin the results. To progress a
conjunctive clause through a conditional effect, first con-
join the effect conditions onto the clause. If this creates a
contradiction, return false; otherwise, make all added lit-
erals true, all deleted literals false, and remove proposi-
tions from the clause (so that they may take on either value)
if known true and possibly-deleted, or known false and
possibly-added. Regression can be implemented similarly.

Hierarchical Planning Algorithm

This section presents a top-down, forward search, hierarchi-
cal planning algorithm that takes advantage of the seman-
tic guarantees provided by sound and complete descriptions.
The algorithm is quite simple, as our focus here is on how to
best utilize these descriptions. We expect that speedups will
also apply to practical algorithms with heuristics and more
sophisticated search control.

Algorithm 1 provides pseudocode for our general hierar-
chical planning algorithm, which is sound and complete for
arbitrary hierarchies. Removing the lines marked (*) and
setting d=∞ everywhere yields a simpler version that is cor-
rect for non-recursive hierarchies (in which ∀a ∈ Ã∗, R∗(a)
is finite). We begin by describing the operation of this sim-
pler version, and then explain the additions that allow our
algorithm to work in recursive hierarchies.

The core of Algorithm 1 is FINDPRIMREF (short for
FINDPRIMITIVEREFINEMENT). This function takes in an
initial state, a goal set, and a set of high-level plans, and ei-

ther returns a primitive refinement of some high-level plan
that achieves the goal set from the initial state, or fails. HI-
ERARCHICALFORWARDSEARCH simply iterates, in order
of increasing length, over top-level plans (with the require-
ment that each action in the plan be legal in at least one state
of the complete set at which it was done), until it finds one
for which FINDPRIMREF succeeds.
FINDPRIMREF maintains a stack of plans to consider. At

each iteration, SUCCEEDSCOMPLETE progresses the initial
state through the complete action descriptions of the next
plan on the stack. If the result does not intersect the goal,
the plan is not considered further. The vast majority of plans
will usually be pruned at this stage. If the plan also SUC-
CEEDSSOUND (which is checked by progressing the initial
state through the sound descriptions and testing if the result
intersects the goal), the algorithm commits to this plan and
calls DECOMPOSE to decompose the problem of finding a
primitive refinement, exiting the outer loop. Otherwise, all
immediate refinements of the plan are added to the stack.
The function IMMEDIATEREFS can be implemented in var-
ious ways, so long as every refinement will be generated ex-
actly once by repeated calls to IMMEDIATEREFS. Our im-
plementation assumes an ordering on the HLAs, picking the
first instance of the highest HLA and returning all possible
refinements (whose preconditions are satisfied in at least one
state in the complete set) in random order. In the example,
we used the ordering (MoveBlock,Navigate,Nav).
Finally, DECOMPOSE is called when a plan is found that

succeeds soundly. It first computes the sound reachable
sets σi = H({s0}, (a1, . . . , ai−1)) at each point in the
current plan using PROGRESS. Because the plan succeeds
soundly, the last such set σ|a| must intersect the goal. It then
uses REGRESS to compute a sequence of states s1, . . . , s|a|,
where each si ∈ σi. This is done by first choosing any
s|a| ∈ σ|a| ∩ G, then proceeding backwards, choosing each
si ∈ σi such that si+1 ∈ hai+1

(si). For our NCSTRIPS
case, this is accomplished using an extension of the progres-
sion algorithm, which simply recomputes the progression of
σi, picking out the first clause that generates a generalization
of si+1 and specializing it as necessary to yield a concrete
state.7 We can then solve the subproblems of reaching si

from si−1 by a refinement of ai by recursively calling FIND-
PRIMREF if ai is high-level (if ai is already primitive it is
guaranteed by the semantics to lead to si).
In recursive hierarchies, the algorithm as described thus

far could potentially get stuck evaluating infinitely many re-
finements of a single high-level plan, or repeatedly attempt-
ing the same decomposition, and thus fail to return a solu-
tion even though one exists. We now describe two additions
(marked (*) in Algorithm 1) that prevent these problems, al-
lowing our algorithm to work in general hierarchies.
First, we have added loops over plan depth limits around

calls to FINDPRIMREF. We define the depth of a plan as the
total number of refinements used in generating it within a
given call to FINDPRIMREF, and modify FINDPRIMREF to

7More generally, we can allow REGRESS to generate formulae
describing all states (or any subset thereof) that are reachable from
the initial state and can reach the goal; computing these formu-
lae might be expensive, but could make the recursive subproblems
easier to solve (since they will have multiple goal states).

reject plans a of depth D(a) greater than the current limit d.
In HIERARCHICALFORWARDSEARCH, we first call FIND-
PRIMREF with the first possible plan and depth limit 0, then
with the first two possible plans with depth limit 1, and so
on, ensuring that all possible (finite) refinements of every
(finite) top-level plan will eventually be considered. In DE-
COMPOSE, we discard the original depth limit and again call
FINDPRIMREF with iterative deepening, to prevent it from
refining the same recursive HLA ad infinitum. An alterna-
tive would be to have FINDPRIMREF to use a queue of plans
rather than a stack.
The second addition is a cycle check when calling DE-

COMPOSE. If the algorithm discovers a soundly succeed-
ing plan inside a call to DECOMPOSE on the same plan in
the same circumstances, it does not DECOMPOSE again; in-
stead, it pretends that the plan did not succeed soundly and
adds its subplans to the stack accordingly. This ensures that
it finds successful refinements of soundly succeeding plans
in finite time, preventing the degenerate case in which, e.g.,
in trying to Nav from (0, 1) to (0, 2), we first decompose into
the soundly succeeding plan (Down,Nav), then decompose
that Nav into (Up,Nav), and so on ad infinitum without ever
actually making progress towards the goal.
It should be intuitively clear that the algorithm satisfies a

completeness property, as the definition of complete descrip-
tions means that a successful plan can never be skipped over.
As written, the top level will iterate forever without failing
if no plan exists. This can be fixed if an a priori bound is
known on the plan length, or if a loopchecker for the plan-
ning problem is available.

Theorem 7. Calls to FINDPRIMREF will always terminate.
If there exists a primitive refinement of some plan in stack
that achieves the goal within the depth limit, FINDPRIMREF
will eventually return a solution. If no primitive refinements
of plans in stack achieve the goal, FINDPRIMREF will even-
tually fail.

Remark. If there exist primitive refinements achieving the
goal, but none of them are within the depth limit, then FIND-
PRIMREF may either return one of them or fail.

Corollary 4. If there exist finite primitive sequences consis-
tent with the hierarchy that achieve the goal of the overall
planning problem, HIERARCHICALFORWARDSEARCH will
eventually return a primitive plan that achieves the goal.

Since the algorithm uses exact descriptions for primitive
actions, it is also sound. But in fact it satisfies a much
stronger property:

Theorem 8. At any stage in Algorithm 1, given that the re-
cursive calls to FINDPRIMREF thus far have produced the
sequence a = a1, ..., ak, there are guaranteed to exist suc-
cessful primitive-level plans that begin by doing the actions
in a, and HIERARCHICALFORWARDSEARCH will eventu-
ally return one such sequence.

This property allows our algorithm to be used by situated
agents that interleave planning with execution: as soon as a
call to FINDPRIMREF returns, the agent may safely do the
corresponding actions without further deliberation.
The algorithm can be extended to use sound-intersecting

descriptions, but we have not yet implemented this. The ex-
tension requires a more complicated search procedure and

Inst Size Len F H HC HSC HSC+
P1 3x4 7 212 80 1 1 0

P2 4x6 48 >104 >104 430 135 17

P3 5x8 90 >104 >104 >104 6390 1059

Table 1: Effect of hierarchy and descriptions on running time,
rounded to the nearest second. P1, P2, and P3 are instances of
the warehouse world. Size refers to the map size and length is
the minimum number of steps to achieve the goal. The algorithms
compared are F (no hierarchy), H (hierarchy without descriptions),
HC (hierarchy with complete descriptions), HSC (hierarchy with
sound and complete descriptions), and HSC+ (version of HSC that
returns as soon as the first primitive action is found). Algorithm H
was allowed to use complete descriptions when determining the set
of applicable top-level actions or refinements at each step. Results
were averaged across five runs, and each algorithm was stopped if
the first run had not terminated within three hours.

definitions of sound and complete success. For the example
problem, only sound and complete descriptions are needed.

Experiments

We have implemented a version of Algorithm 1. Our im-
plementation operates on the aforementioned STRIPS-like
representations of planning problems, hierarchies, and de-
scriptions. Table 1 shows running times for several algo-
rithms on some example instances. The absolute numbers
should not be taken too seriously, because our DNF opera-
tions are not optimized, and a lot of redundant progression
is done that could be avoided by caching. Nevertheless, the
relative differences between the algorithms are clear.

The flat algorithm (“F” in Table 1) scales poorly as it is
just a breadth-first search over primitive plans. The hier-
archy without descriptions (“H”) does better, but still can-
not not handle P2 or P3, as it must consider all refine-
ments (within the current depth limit) of each top-level plan.
Adding complete descriptions (“HC”) makes a big differ-
ence, since most high-level plans are not refined at all.
Adding sound descriptions as well (“HSC”) provides fur-
ther gains as the problem size grows, because once a soundly
succeeding plan is discovered at the high-level, it can be de-
composed into independent navigation subproblems. This
decomposability is a general property of navigation, and our
algorithm discovers it automatically from the descriptions.
The final algorithm (“HSC+”) is designed to be used by a
situated agent. It returns as soon as it finds a soundly suc-
ceeding plan whose first action is primitive. Without sound
descriptions, such an algorithm would take as long as the
original planner, but here it produces a further speedup.

Related Work

HLA descriptions have been treated in various ways in the
literature. One approach is to simply view the descriptions
as placing constraints on the planning process: whenever
the planner reaches a partial plan that causes any of the
HLA descriptions to be violated, it must backtrack. HTNs
based on this approach have achieved impressive success in
real-world problems (Nau et al. 2003). We believe further
gains are possible by viewing the descriptions as making
specific assertions about the effects of the agent’s actions

in the world, and the results of this paper show some of the
ways such gains may come about.

Much previous work (Tate 1977; Yang 1990; Russell &
Norvig 2003) has assumed that the effect of an HLA is to
achieve those literals added by all of its refinements. This
is, in effect, a limited type of complete description. But as
discussed in the introduction, such an adversarial semantics
will often prevent us from (correctly) concluding that a high
level plan succeeds. Some work (Georgeff & Lansky 1986;
Doan & Haddawy 1995) has considered more general forms
of complete descriptions, including extensions to metric val-
ues, whose representation and use are more similar to ours.

Only one work that we know of (Biundo & Schattenberg
2001) considered sound descriptions, but they do not con-
nect them directly to solution algorithms. In addition, they
begin by assuming the descriptions rather than viewing them
as logical consequences of the primitive actions and refine-
ment hierarchy.

McIlraith and Fadel (2002) describe a method for synthe-
sizing descriptions of high-level actions that are specified
using the Golog language. Their method produces succes-
sor state axioms which can, in certain cases, be converted
to effect axioms of the sort that we consider. The descrip-
tions will, however, be exact and therefore possibly grow
very large for complex actions.

Several researchers (Bacchus & Yang 1991; Knoblock
1991) have studied properties such as ordered monotonicity,
the downward refinement property, and the upward solution
property. Key differences from our approach are discussed
in the introduction.

Discussion and Conclusions

We have demonstrated several classes of HLA descriptions
that make specific assertions about the world, and shown
theoretically and empirically that they can improve the ef-
ficiency of hierarchical planning in complementary ways.
There is, however, still much work to be done.

Synthesizing descriptions automatically from the hierar-
chy is conceptually simple, but raises the difficult issue of
automatically managing the complexity-accuracy tradeoff.

There are many possible alternative representations for
HLA descriptions and state sets. BDDs (binary decision
diagrams) are a promising candidate. In the context of a
logic-based hierarchical planner, one might consider using
Horn clause approximations. Given appropriate representa-
tional choices, incorporating metric values into the frame-
work should be straightforward.

In nondeterministic environments, our complete descrip-
tions may work unchanged, whereas sound-intersecting de-
scriptions will be the natural analogue of sound descriptions.
In fact, intersecting descriptions and many instances of non-
determinism have similar motivations: we replace a compli-
cated deterministic dependency with uncertainty.

For practical applications, it will be essential to extend
current domain-independent heuristics to handle HLAs with
sound and complete descriptions. Especially when de-
scriptions are represented in a simple language (e.g., NC-
STRIPS), it should be easy to incorporate them into existing
heuristics (e.g., planning graphs). When a high-level plan

does not fail completely or succeed soundly, HLA descrip-
tions may also help us decide which action to refine next.
Finally, many existing hierarchical planning systems use

refinements into partially ordered rather than totally ordered
subplans. One might, therefore, worry that nothing inter-
esting and true can be said about an HLA in this context,
since any other action might be interleaved with its expan-
sion, disrupting its effects (Young, Pollack, & Moore 1994).
This concern is based, implicitly, on an adversarial seman-
tics for HLAs. In fact, our sound descriptions should work
unmodified in the partially ordered case, since the planning
agent can always choose not to interleave the refinements
of different HLAs. In contrast, extending complete descrip-
tions to work in this setting may be more challenging.

Acknowledgements

Bhaskara Marthi thanks Leslie Kaelbling and Tomas
Lozano-Perez for their support during the latter part of this
research. This research was also supported by DARPA
IPTO, contracts FA8750-05-2-0249 and 03-000219.

References
Bacchus, F., and Yang, Q. 1991. The downward refinement prop-
erty. In Proc. IJCAI ’91, 262–292.

Biundo, S., and Schattenberg, B. 2001. From abstract crisis to
concrete relief – A preliminary report on combining state abstrac-
tion and HTN planning. In Proc. ECP-01, 157–168.

Doan, A., and Haddawy, P. 1995. Decision-theoretic refinement
planning: Principles and application. Technical Report TR-95-
01-01, Univ. of Wisconsin-Milwaukee.

Fikes, R., and Nilsson, N. J. 1971. STRIPS: A new approach to
the application of theorem proving to problem solving. Artificial
Intelligence 2(3/4):189–208.

Georgeff, M. P., and Lansky, A. L. 1986. Procedural knowledge.
Proc. IEEE 74(10):1383–1398.

Jagadeesan, R.; Shanbhogue, V.; and Saraswat, V. 1992. Angelic
non-determinism in concurrent constraint programming. Techni-
cal report, Xerox PARC.

Knoblock, C. A. 1991. Automatically generating abstractions for
problem solving. Ph.D. Dissertation, Carnegie Mellon University.

McDermott, D. 2000. The 1998 AI planning systems competi-
tion. AI Magazine 21(2):35–55.

McIlraith, S. A., and Fadel, R. 2002. Planning with complex
actions. In Proc. NMR ’02, 356–364.

Nau, D.; Au, T. C.; Ilghami, O.; Kuter, U.; Murdock, W. J.; Wu,
D.; and Yaman, F. 2003. SHOP2: An HTN planning system.
Journal of Artificial Intelligence Research 20:379–404.

Russell, S., and Norvig, P. 2003. Artificial Intelligence: AModern
Approach. Prentice-Hall, Englewood Cliffs, NJ, 2nd edition.

Simon, H. 1962. The architecture of complexity. Proc. American
Philosophical Society 106(6):467–482.

Tate, A. 1977. Generating project networks. In Proc. IJCAI ’77.

Yang, Q. 1990. Formalizing planning knowledge for hierarchical
planning. Comput. Intell. 6(1):12–24.

Young, R. M.; Pollack, M. E.; and Moore, J. D. 1994. Decompo-
sition and causality in partial-order planning. In AIPS ’94.

