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Agam, Yigal, Daniel Bullock, and Robert Sekuler. Imitating unfamiliar
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First published July 13, 2005; doi:10.1152/jn.00366.2005. A fundamental
challenge in neuroscience is to understand the mechanisms by which
multicomponent actions are represented and sequenced for produc-
tion. We addressed this challenge with a movement-imitation task in
which subjects viewed the quasi-random, two-dimensional move-
ments of a disc and then used a stylus to reproduce the remembered
trajectory. The stimulus disc moved along straight segments, which
differed sufficiently from one another that it was possible to trace
individual segments’ fate in the resulting movement imitation. A
biologically based segmentation algorithm decomposed each imita-
tion into segments whose directions could be compared with those of
homologous segments in the model. As the number of linked seg-
ments in a stimulus model grew from three to seven, imitation became
less accurate, with segments more likely to be deleted, particularly
from a model’s final stages. When fidelity of imitation was assessed
segment by segment, the resulting serial position curves showed a
strong primacy effect and a moderate recency effect. Analysis of
pairwise transposition errors revealed a striking preponderance of
exchanges between adjacent segments that, along with the serial
position effects, supports a competitive queuing model of sequencing.
In analogy to results with verbal serial recall, repetition of one
directed segment in the model reduced imitation quality. Results with
longer stimulus models suggest that the segment-by-segment imita-
tion generator may be supplemented in the final stages of imitation by
an error-signal driven overlay that produces a late-course, real-time
correction. Results are related to neural mechanisms that are known to
support sequential motor behavior and working memory.

I N T R O D U C T I O N

Unlike members of many other species, humans are able to
observe and later reproduce the actions of conspecifics, an
ability that is critical for learning and perfecting a wide range
of motor and social behaviors (e.g., Bandura et al. 1961; Heyes
2001; Wolpert et al. 2003). Imitation is a complex process,
recruiting diverse functions such as visual processing, working
memory, motor control, sequential organization, and learning.
Even though these functions individually rank among neuro-
science’s most intensely studied areas, their theoretical inte-
gration has been difficult (Schaal 1999). One source of this
difficulty is the paucity of useful, theory-related data on human
imitation.

Although many imitated behaviors are complex and contain
multiple components that must be performed in proper se-
quence, studies of imitation have tended to limit themselves to
very simple actions, such as the flexion of a single finger, or
well-practiced stereotyped movements, such as grasping and

moving an object from one location to another predefined,
fixed location (but see Matarı́c and Pomplun 1998). Moreover,
such studies typically assess imitation quality on a “pass–fail”
scale, whose binary values correspond to extremes of imitation
present or absent (e.g., Iacoboni et al. 1999; Makuuchi et al.
2005). The all-or-none character of this approach is poorly
suited to assessing subtle changes in performance such as those
that come with learning (Schaal 1999).

“Mirror neurons,” reported first in area F5 of the monkey
brain (Gallese et al. 1996) and subsequently postulated in
Broca’s area (Buccino et al. 2004; Iacoboni et al. 1999), the
human brain’s putative F5 homologue, may be implicated in
action understanding and in movement imitation (Rizzolatti
and Craighero 2004). However, understanding how events are
encoded and represented for subsequent imitation must take
account of how separable components are organized and se-
quenced. Competitive queuing (CQ) models provide an attrac-
tive computational architecture for sequencing (Bullock 2004;
Bullock and Rhodes 2003; Grossberg 1978; Houghton 1990;
Rhodes et al. 2004), and recent neurophysiological results from
awake behaving monkeys have strongly supported this ap-
proach (Averbeck et al. 2002, 2003a,b). In these studies of
prefrontal area 46 in monkeys, small neural ensembles corre-
sponding to as many as five forthcoming drawing strokes were
simultaneously active well before sequential movement initia-
tion. The relative activation levels among these ensembles also
specified the relative order of the corresponding strokes in the
forthcoming sequences: Higher preparatory activation reliably
predicted earlier execution of the corresponding stroke when
the sequence was eventually performed. Such a preparatory
representation is fundamental in CQ models but is not pre-
dicted by classical or recurrent-state chaining models (Henson
et al. 1996; Page and Norris 1998).

Even though the studies by Averbeck and colleagues on
monkeys are highly suggestive for human imitation, those
studies were limited to well-learned performance of just a few
highly distinctive models. To better understand sequencing of
component actions during human imitation of novel sequences,
we carried out two experiments on human delayed imitation of
simple, multicomponent models. The models for imitation
were abstract movement sequences of graded complexity. Such
two-dimensional (2D) models afford several advantages for
studying sequencing in imitation, such as minimal intrusion
from semantic memory and little influence from subjects’
previous, domain-specific experience. By using a new model
on each trial, we avoided contamination from model-specific
learning that results from even a few encounters with the same
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model (Sekuler et al. 2003). Moreover, the models and task
allow us to examine theoretically important relationships
among errors in imitating various components of a model. As
will become clear later, this analysis is essential for evaluating
CQ accounts of sequencing. So, using a biologically based,
automated algorithm for assessing imitation quality segment by
segment, we examined not only the overall performance for
models of varying complexity, but also the way in which
magnitude and types of errors depended on components’ serial
position. One aim was to mine the details of behavioral
performance for clues to the representations that subjects used
when reproducing the just-seen models.

M E T H O D S

Overview

To study imitation learning, Sekuler et al. (2003) synthesized
abstract stimulus models of graded complexity. Their stimuli were 2D
motion patterns, generated by a disc that moved along an irregular,
unpredictable trajectory constituting variable numbers of segments.
Because only the disc’s momentary position was visible on the display
screen, viewers had to construct a mental representation of the
trajectory, using the mind’s eye to knit together those momentary
positions. This product had to be held in working memory until the
entire trajectory was to be reproduced with a stylus on a graphic tablet.
Unfortunately, the analytic methods of that study were insensitive to
an essential feature of complex sequential events and actions: the
serial ordering of their components (Lashley 1951; Rhodes et al. 2004;
Zacks et al. 1999). We therefore modified the methods of Sekuler et
al. (2003) to facilitate the detection and analysis of effects associated
with individual components’ serial order.

To link visuomotor imitation to the wealth of parametric observa-
tions and models of serial-order behavior in various sequence learning
and performance tasks (e.g., Rhodes et al. 2004), we sought to
evaluate how quality of imitation might vary with the serial position
that a segment occupied in the model. We also sought to examine
ways in which this relationship was influenced by model complexity,
which was operationalized as the number of segments in a model.
Finally, we sought a way to examine the relationship between the
fidelity with which successive components were imitated. Alternative
views of serial recall from working memory predict different relation-
ships between the quality of recall of successive items. Classical
chaining models, for example, predict a “collapse” of the entire
sequence after a single error is made (Henson 2001; Henson et al.
1996). CQ models, in contrast, assert that the recall process can be
robust in the face of an error on a single component, and that the most
common type of error would be a temporally local one, that is, a
transposition between two adjacent segments.

To serve our analytic goals, we devised an algorithm that automat-
ically decomposed subjects’ reproductions into component segments,
which made it possible to analyze imitation quality on a segment-by-
segment level. This algorithm was grounded in current understanding
of the way in which human observers normally segment complex
actions. Behavioral and brain-imaging studies show that observers
rely on spatiotemporal discontinuity as the principal evidence that one
component of an event has ended and another has begun (Newtson et
al. 1977; Zacks and Tversky 2001; Zacks et al. 1999, 2001). Therefore
we built our segmentation algorithm on a foundation of spatiotempo-
ral discontinuities in the subjects’ performance. The segmentation
algorithm is a simplified version of ones used in previous research
(e.g., Abend et al. 1982; Lewis et al. 2003).

Subjects

A total of 21 human subjects (ages 18–34 yr), with normal visual
acuity and no history of visual or motor disorder, took part in two

different experiments. Thirteen participated in the first experiment and
eight in the second experiment. Fifteen of the subjects were right-
handed. All subjects gave informed consent, and all procedures were
approved by the Institutional Review Boards of Brandeis University
and Boston University.

Stimulus trajectory generation and presentation

Motion-pattern stimuli were generated by the steady movement of
a yellow disc (0.57° visual angle in diameter) against a black back-
ground on a computer screen, which subjects viewed from a distance
of 75 cm. The disc moved along a series of linked, straight segments,
each 1.15 ° visual angle long (Fig. 1A). The display was refreshed at
60 Hz. At the start of a trial, the yellow disc appeared at the center of
the screen for 750 ms and then began moving at a constant speed of
4.57° visual angle/s, pausing for 150 ms at the end of each segment.
This brief pause was meant to minimize illusory, perceptual smooth-
ing of the disc’s path (Brown and Voth 1937). The disc remained on
the display screen for 400 ms after movement was over, then disap-
peared. A formal description of our stimuli will facilitate understand-
ing of the rationale behind this design. The model trajectory S, traced
out by the moving disc, can be described as

S � �s1,. . .,sn�

where si represents the segment in a model composed of n segments.
Trajectory complexity, defined by the number of segments in a model,
varied randomly from trial to trial, with 3 � n � 7 (20 trials of each).
Regardless of n, model segments were all the same length and
duration. Stimulus models were constructed iteratively by generating
random directions of movement for each candidate segment, and then
verifying that its specifications fit desired constraints. The direction of
the ith segment is given by

�i � �i�1 � ��

where �i is the direction of the ith segment. In the present experi-
ments, the movement direction � of each new segment was restricted
to multiples of 45°. �� was a quasi-random variable with a minimum
value of 45°. The disc was not allowed to retrace the preceding
segment or to move in the same direction as the previous segment.
These constraints were designed to facilitate subsequent analysis of
segment-by-segment errors in reproduction.

Pilot studies (see Sekuler et al. 2003) showed that closed trajecto-
ries produced anomalous imitations, probably by allowing subjects to
apply and use verbal labels for the models. A comparable result was
reported recently for reproductions of felt objects (Henriques et al.

FIG. 1. Example of a 4-segment stimulus model presentation and imitation
attempt. A: stimulus disc moved along a series of 4 straight, connected
segments. Dashed line represents the disc’s path, with the dashed circle
signifying the trajectory’s starting point. Here the disc is shown at the end of
its trajectory. Shortly after completing the trajectory, the stimulus disc disap-
peared. Although its complete path is shown here, subjects saw only the
instantaneous position of the disc. B: when subjects reproduced the disc’s
trajectory, a smaller disc moved on the screen according to the movements of
the stylus on the tablet. Path that the stylus traveled was displayed to the
subject as a thin line. Disc in this example is shown at the end of the subject’s
reproduction of the model. C: on lifting the stylus from the tablet, subjects
were shown their own reproduction (thin line), as well as the original model
(thick line), so information about the quality of the imitation was available to
them.
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2004). To eliminate verbal encoding of the stimuli, models were also
constrained so that segments could not intersect, cross one another, or
even approach one another more closely than one half the length of a
segment. The generation algorithm also ensured that each stimulus
model contained movements in at least one of the four cardinal and in
at least one of four diagonal directions. Finally, the change in
direction between two consecutive segments, ��, could not be con-
stant along the entire stimulus pattern. These constraints prevented the
generation of motion trajectories whose shapes would be easy to label
verbally, such as regular polygons.

Reproduction of disc trajectory

Subjects reproduced the movement of the disc by drawing with a
stylus on a 15 � 20-cm graphic tablet positioned directly in front of
a subject’s preferred hand. One second after each model presentation,
a brief beep sounded and a small blue disc appeared on the screen, at
the same point from which the movement of the yellow stimulus disc
had begun. The blue disc’s location on the screen was yoked to the
position of the stylus, moving along with the stylus. Furthermore, the
moving disc left a thin blue, visible trace of its movement path, giving
subjects a real-time record of their movements (Fig. 1B).

The recording of an imitation began when the stylus first touched
the graphic tablet, and ceased when the stylus was lifted from the
tablet. When the subject’s reproduction was complete, the entire
n-segment trajectory of the stimulus model was displayed in yellow.
Subjects could then see the trace of their attempted imitation super-
imposed on the trajectory of the stimulus model (Fig. 1C). Such
outcome feedback was meant to provide subjects with trialwise
information about the quality of their performance.

Recording of stylus movement

The position of the stylus on the graphic tablet was sampled at 50
Hz. To scale the tablet’s drawing area to the larger area of the
computer display, the graphic tablet’s software driver was configured
so that 1 cm of stylus movement on the tablet produced 1.4 cm of
movement on the computer display. After the imitation had ended and
the stylus was lifted from the graphic tablet, the captured array of
stylus coordinates and associated time-based information were saved
to computer disk for later analysis.

Segment identification

One of the greatest challenges in studying movement imitation is
the development of sound methods for characterizing the quality of an
imitation. As Schaal et al. (2003) noted, the quality of any movement
imitation can be expressed in a number of alternative metrics. When
multicomponent models are being imitated, part of the challenge is to
identify the breakpoints between components in the imitation. An
algorithm we used to segment each imitation into its component parts
was based on behavioral and functional imaging studies of human
observers’ segmentation of complex everyday actions (e.g., Newtson
et al. 1977; Zacks et al. 2001). Such studies show that perceptual
segmentation depends mainly on marking spatiotemporal discontinui-
ties (see also Abend et al. 1982; Lewis et al. 2003). To identify
segment breakpoints in subjects’ imitations, our algorithm scanned
sampled imitations for points at which the stylus remained motionless
for �40 ms. From these potential segment breakpoints, the algorithm
identified points at which the direction of stylus movement shifted
instantaneously by �15°. In addition, points where a shift of �30°
occurred (without regard to time) were also selected as potential
breakpoints. When this selection process left several candidate points
clustered together �40% of model segment length apart, we desig-
nated the cluster’s midpoint as the breakpoint. The segmentation
algorithm yielded a set of coordinates corresponding to the reproduc-
tion’s presumed segment breakpoints. We discarded trials that yielded

fewer than two or more than ten segments (about 4%) because they
likely resulted from algorithm errors or technical glitches during data
acquisition.

In scoring each trial’s imitation for its similarity to the correspond-
ing model, we were not interested in subjects’ drawing ability per se.
Therefore the algorithm minimized errors that resulted exclusively
from motor artifacts, such as high-frequency “wiggles,” by breaking
the reproduced path into discrete segments and treating them as
straight lines (see Fig. 2). This approach is consistent with the natural
assumption that subjects parsed each trajectory into a set of discrete,
directed line segments. Once the imitation had been broken down into
individual segments, we used similarity in segment orientation as a
measure of accuracy. For this calculation, the absolute orientation of
each stimulus segment was compared with the orientation of the
corresponding segment in the reproduced path, and the absolute value
of the difference between them was regarded as the reproduction error
for that segment.

As would be the case for any segmentation algorithm’s perfor-
mance with a noisy spatiotemporal input stream (e.g., Calic and
Izquierdo 2002), we recognize that our algorithm was not foolproof.
In an attempt to examine the validity of the algorithm, we randomly
selected 50 imitations of six- and seven-segment models, and asked
four human judges to view them and break each one into its compo-
nent segments. The judges, none of whom had been subjects in the
actual experiments, watched as the reproductions were shown in real
time; they saw the path forming on the screen at the same speed as it
had during the actual experiment. The judges could replay the path,
and the path remained on the screen once it had appeared. With
temporal and spatial data available to them, the judges were asked to
“read the mind” of the subject who originally generated the path,
marking any and all points that seemed to represent the beginning or
end of a segment. On almost a third (16/50) of the trials, the four
independent judges failed to agree on how many segments were in the
models. On 30 of the 34 trials where all the judges agreed on the
number of segments, the algorithm generated the same number of
segments as the judges did. Analogous differences in segmentation
were found when subjects observed and attempted to segment videos
of complex everyday tasks (Speer et al. 2003; Zacks et al. 1999). Lack
of unanimity among human judges exemplifies the challenge pre-
sented by inherently noisy data, such as those generated by subjects’
unconstrained movements, and implies that there may not be an “ideal
segmenter” against which we could benchmark our algorithm. Figure
2 shows examples of the segmentation algorithm’s output, including
cases where the algorithm seemed to be at risk of error. An additional,
parametric analysis of the segmentation algorithm is found in the
supplementary material for this article.1

R E S U L T S

Number of reproduced segments

The analysis of subjects’ performance began by identifying
imitations in which the number of segments matched the
number of segments in the corresponding stimulus model.
Figure 3A shows the proportion of segment-matching imita-
tions for models of varying length. The proportion of matching
imitations clearly decreases as the number of segments in the
model increases, a result confirmed by a repeated-measures
ANOVA (P � 0.001).

Two kinds of errors characterized imitations in which the
number of segments did not match that of the corresponding
model: the insertion of an extra segment, i.e., reproduction of
n � 1 segments for models with only n segments, or the

1 The Supplementary Material for this article is available online at http://
jn.physiology.org/cgi/content/full/00366.2005/DC1.
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omission of one segment, i.e., reproduction of n � 1 segments
for models with n segments. We were interested in how often
these two types of errors occurred for different model lengths,
so we sorted the identified trials according to the actual number
of segments in the corresponding model stimuli. In cases where
an extra segment had been inserted into the reproduction, the
proportion of errors appeared to be unrelated to stimulus length
(Fig. 3B, P � 0.20, ANOVA). However, when a segment had
been omitted, the proportion of omission errors clearly in-
creased with model length (Fig. 3C, P � 0.001, ANOVA).

To characterize these two types of error in more detail, we
set out to determine where in the reproduction sequence a
segment was most likely to have been omitted or inserted.
Because there were very few omissions in the shorter models,
we concentrated on six- and seven-segment models. To iden-
tify the serial position at which an extra segment had been

inserted, we used an iterative procedure, removing one seg-
ment from the reproduction, each time from a different serial
position within the reproduction, and calculating the mean
orientation error for the remaining segments, as if the correct
number of segments had been reproduced. The segment whose
removal produced the lowest mean error was taken to be the
segment that had been added. We were especially interested in
testing a hypothesis suggested by the work of Fujii and Gray-
biel (2003), that is, that extra segments might result from a
failure of neural end-state markers. Those researchers proposed
that such markers were as integral to sequential action codes as
to other sequential biological codes, including those in DNA. If
segment insertion did arise from failures of end-state markers,
extra segments should be most common at or near the end of
an imitation sequence. Contrary to this hypothesis, extra seg-
ments were not restricted to the end of imitations, but occurred

FIG. 2. A–F: segmentation algorithm examples.
Thin, solid lines represent imitation attempts by
various subjects. Filled circles represent the segment
endpoints found by the algorithm, based on the
imitation’s spatial and temporal characteristics. De-
tected endpoints were used to form straight seg-
ments, shown here as dashed lines, with the dashed
circles representing the models’ starting points.
Good reproductions usually resulted in successful
automatic detection of endpoints (A and B). Unclear
or ambiguous attempts (C–F), however, tend to
cause difficulty in correctly interpreting the intended
number of segments. Note that model segments
were of constant length; here, models and their
reproductions have been scaled so as to occupy
roughly a constant area within the figure. Horizontal
scale bars in each panel represent the actual size of
a segment in the stimulus model. G and H: move-
ment speed profiles for 2 representative trials. G:
speed at which the stylus moved during the imita-
tion described in A. Filled dots along the horizontal
axis indicate the times at which the algorithm iden-
tified segment breakpoints. H: speed profile and
identified segment breakpoints for the imitation pre-
sented in E. Jaggedness of the speed profiles reflects
the relatively coarse, 50-Hz sampling of stylus po-
sition.

FIG. 3. A: errors in the number of seg-
ments in imitations. Plot shows the percentage
of trials on which the correct number of seg-
ments had been reproduced, for different
model lengths. B and C: segment omission,
but not insertion, occurs more frequently for
longer models. Plots show the percentage, out
of the total number of trials, where a false
insertion (B) or omission (C) of one segment
occurred, for each model length. Error bars
are within-subject SE (Loftus and Masson
1994).
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at about the same frequency for all serial positions [Fig. 4, A
and B: P � 0.70 (A), P � 0.90 (B), ANOVA].

To identify the likely serial position of a segment that was
missing from the reproduction, we iteratively removed one
segment from the stimulus model, from a different serial
position each time, and compared the reproduction to each of
these modified stimulus models. The serial position at which a
deletion produced the lowest mean orientation error was taken
to be the serial position from which the subject’s imitation had
most likely omitted a segment. This analysis showed that a
segment was more likely to be omitted in reproducing a
model’s end than in reproducing a model’s beginning. Figure
4, C and D shows the percentage of segment omissions at each
serial position, out of all the trials on which an omission
occurred [P � 0.035 (C), P � 0.001 (D), ANOVA].

Quality of segment reproduction

For a more detailed segment-by-segment analysis we used
only trials on which the number of recovered segments had
been correct, that is, matched the number of segments in the
model. To characterize the dependency of imitation error on
model length, we calculated the mean absolute orientation
error over each model for which the correct number of seg-
ments had been reproduced. The mean orientation error for all
segments per trial was taken as the overall error score for that
imitation. Figure 5A shows that this mean error increases with
the number of segments in the stimulus model (ANOVA, P �
0.001). This is consistent with results reported by Sekuler et al.
(2003).2

We next examined how serial position affected the accuracy
with which individual segments in the model were reproduced.
Figure 5B shows the orientation error for segments in each
serial position for models of different lengths. Note that there
is a strong primacy effect: for all model lengths, the error in
reproduction is smallest for the earliest serial positions. In
addition, all model lengths show at least a modest recency
effect: the error associated with the final serial position is less
than that associated with the next-to-last serial position. In
other words, the final segments’ errors violate the general
upward trend observed across nonfinal serial positions. Also
noteworthy is the difference in error levels at any serial
position across models of different lengths. In other words, at
any serial position performance degrades with increasing
model length. This systematic increase in error at any partic-
ular serial position—for example, the third—implies a striking
retroactive interference, with subsequent events degrading
mnemonic storage of preceding information.

Analysis of transposition errors

According to some competitive queuing (CQ) models, se-
quencing errors increase with sequence length because the
activity level differences that are available to represent relative
priority are necessarily smaller in the representations of longer
sequences (for review see Rhodes et al. 2004). This limit arises
because only a small number of distinct analog values can be
reliably stored and discriminated within the finite activity range
available for neural representation. As the differences between
the activities representing individual segments decrease (with
longer sequences and with serial position within a sequence),
these representations, and their processing, become more vul-
nerable to corruption by noise. The resultant misprocessing of
relative priority shows up in behavior as transposition errors:
Items are recalled, but in the wrong serial positions. In some
CQ variants, activity decay (which has a longer time to operate
for later items in longer lists) and noise combine to produce a
similar result. Because noise is much less likely to erroneously
promote an item’s relative priority by two (or more) positions
than by just one position, all CQ models predict that the
preponderance of transposition errors will reflect an exchange
of items that were adjacent in the model.

We first considered the full set of opportunities for transpo-
sitions between adjacent and nonadjacent serial positions. For
every pair of serial positions, we could swap the corresponding
two segments in the model to “reverse” the candidate transpo-
sition involving that pair. We could then recalculate the abso-
lute orientation errors for the two swapped segments and
compare those errors with the errors of the unswapped seg-
ments. If a transposition error had occurred, then reversing the
transposition should, in general, reduce the error at both serial
positions. However, if segments at the two positions differed
by 0°, their transposition would not inflate error, and so a

2 The literature on orientation anisotropies predicts that our subjects would
have represented verticals and horizontals more accurately than other orienta-
tions. We found no systematic difference in errors for horizontal versus vertical
segments, but we saw a modest difference between obliques and these cardinal

directions, as expected from past literature on the “oblique effect” (e.g.,
McMahon and MacLeod 2003). Mean errors were about 2° larger for oblique
segments than for cardinal (horizontal or vertical) segments. This effect is
largely irrelevant to explanation of all the main error patterns, which are
functions of serial position, sequence length, and within-model repetitions.
Because segment directions were randomized and uniformly distributed across
model lengths and serial positions, the oblique effect would have been
averaged out in all but one respect. It would have added about 1° of total error,
on average, for each additional segment in an imitation.

FIG. 4. Omission and insertion errors. A and B: position after which
insertion is most likely to have happened, 0 being before the first segment. C
and D: position where a segment is most likely to have been omitted. All error
bars are within-subject SE.
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reversal could not reduce the error. Thus such cases should be
excluded from an analysis of the percentage of cases for which
a swap reduces error. In our paradigm, adjacent segments could
differ by 45, 90, or 135°, whereas nonadjacent segments could
differ by 0, 45, 90, 135, or 180°. To accommodate the 0°
“exception” just noted, and to remove any potential bias arising
from the 180° differences found only across nonadjacent po-
sitions, we used only segment pairs that differed by 45, 90, or
135°. The five matrices in Table 1 show the percentage of
opportunities on which segment swaps reduced the error at
both serial positions for those segment pairs. (As shown in the
online supplemental materials, nearly identical distributions of
these three angular difference were found in the adjacent vs.
nonadjacent opportunities for exchange errors.) Each matrix
shows results for models of a particular length. The position of
the first segment in a pair is given by the row number, and the
position of the item it could have exchanged with is given by
the column number. All values on the main diagonal are zero
because a self-exchange leads to no reduction in error; the
lower half of each matrix is omitted because it would be
redundant with the upper half. The effect of swapping imme-
diately adjacent segments in an imitation is represented by the
highlighted values in the cells lying just above the main
diagonal. Without exception, for each matrix the largest per-
centage in the matrix lies on this diagonal (P � 0.015) and is
at least twice the size of any of the off-diagonal percentages
(which are drawn from nonadjacent cases). Out of 175 com-
parisons, there are only four minor exceptions (found in the
matrices for five- and six-segment models) to the rule that
percentages for adjacent swaps are larger than any percentages
in the remainder of the matrix. This strong ordering supports
the prediction from CQ models that the preponderance of
transposition errors should arise from misorderings of adjacent

items. Additional analysis of transposition errors appears in the
supplementary material for this article.

Absolute versus relative orientation errors

To this point, our principal error metric (i.e., the deviation
between corresponding segments in the model and the imita-
tion) has presupposed that subjects encode and represent seg-
ments’ absolute orientations and rely on that representation
when reproducing a model. However, it is possible instead that
subjects coded each segment in terms of the angular change
between it and the prior segment. If noise were introduced as
each successive segment were encoded, relative (and therefore
absolute) orientation errors would increase with serial position
and with the total number of segments in an imitation, so
results qualitatively similar to those already seen for absolute
orientation errors might arise.

It is difficult to analyze relative orientation errors separately
from absolute orientation errors because the two are highly
correlated. However, one would expect that if performers were
encoding and controlling a given variable, then its error would
be less than that of a correlated, but not explicitly controlled,
variable because performers do not care about the latter, as
such. In that case, a transposition analysis that searches for
error-inflating exchanges of an actually controlled variable
should produce many more cases of error reduction than the
same analysis using a correlated, but not explicitly coded,
variable. To test whether these two expected rank orderings
would favor relative or absolute encoding, we conducted ad-
ditional error and transposition analyses, but this time under
the assumption of relative orientation coding.

For each pair of successive segments in the stimulus, the
change in orientation of each segment in the imitation was

FIG. 5. A: mean orientation error over all trajectory
segments as a function of model length. B: orientation
errors broken down by serial position. Each curve corre-
sponds to stimuli of a different length: E 	 3 segments;
� 	 4 segments; and � 	 5 segments; ✕ 	 6 segments;
� 	 7 segments. Error bars are within-subject SE, for
each curve independently.

TABLE 1. Results of the transposition analysis

3 Segments 4 Segments 5 Segments 6 Segments 7 Segments

0 3.8 1.0 0 4.4 1.1 1.2 0 3.5 2.8 2.0 1.4 0 11.1 5.9 2.8 7.4 3.4 0 13.1 3.6 5.3 1.9 4.1 2.5
0 2.6 0 5.1 3.0 0 4.8 2.1 2.6 0 9.4 10.5 6.2 4.6 0 18.7 8.7 7.3 7.4 3.0

0 0 8.2 0 13.1 4.7 0 17.3 6.9 10.2 0 20.9 6.0 5.6 7.4
0 0 17.0 0 24.2 12.1 0 23.6 9.8 12.5

0 0 16.8 0 21.4 7.7
0 0 32.3

0

The value in each row and column represents the percentage of trials for which swapping segments in the corresponding serial positions reduced the error in
both positions. Numbers in boldface type represent percentage values for adjacent pairs of segments.
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compared with the change in orientation of corresponding
segments in the model. Finally, the error in imitation was
defined as the absolute value of the difference between the two
measures of change. Figure 6 shows the serial position curves
for errors in relative orientation. Because the analysis com-
pares the difference in orientation between pairs of adjacent
segments, only n � 1 data points are available for models of n
segments. With a few exceptions Fig. 6 looks much like Fig.
5B, as expected, given the correlation between absolute and
relative errors. However, relative errors are greater than abso-
lute errors by 10 to 20° (chance level is 90° for both). By the
logic that a controlled variable should have less error than an
uncontrolled correlated variable, this result favors the hypoth-
esis of absolute orientation coding. Moreover, if we compare
both sets of serial position curves to the curves commonly
found in the immediate serial recall literature, curves defined
with the absolute metric better replicate the typical shape,
including the recency effect.

A second expectation was that the incidence of error-reduc-
ing swaps should be higher when the search for such swaps is
based on the actually controlled variable than when purported
reversals of a correlated but uncontrolled variable are sought.
To examine this prediction, we conducted a transposition
analysis identical to that for Table 1, except that relative error
was used instead of absolute error. This search for all swaps
that could reduce relative error at both swapped positions
resulted in much smaller percentages than those presented in
Table 1. Thus when compared with absolute error, plots of
relative error produced more error (Fig. 6), yet reversals of
putative exchanges causing relative errors resulted in many
fewer cases of error reduction in a transposition analysis. The
two results are mutually consistent and both favor the hypoth-
esis that what performers cared about, i.e., were preferentially
encoding and controlling, were absolute orientations rather
than relative orientations.

Finally, the two encoding hypotheses predict different out-
comes for the segment immediately after a transposed pair.
Indeed, this predicted difference is an important reason why
subjects who are susceptible to transposition errors should
prefer absolute orientation representations. Absolute orienta-
tion storage allows for recovery from a transposition error,
whereas with relative encoding, the next segment is prone to
very large error (if the error criterion being used is absolute
error) because its change adds to the incorrect prior orientation.
For every pair of adjacent segments for which swapping
reduced absolute error at both positions in six- and seven-
segment models, we therefore calculated the difference be-
tween the error in the segment immediately after the swapped
pair and the average error the subject made at that position
(taken from Fig. 5B). If performance were dominated by
encoding of relative orientation, then we would expect the
error in those cases to be larger than its respective average (the
average error for that position, for a particular subject). Con-
trary to this expectation, the errors were 12.7 and 12.4° smaller
than average in six- and seven-segment imitations, respec-
tively. In summary, analyses consistently favor the hypothesis
that imitations are based on a representation of the absolute
orientations, rather than the relative orientations, of segments
in a model.

The effect of repetition of segment orientation

Research on the serial recall of verbal items has shown that
memory capacity declines (recall errors increase) as items
become less discriminable from one another (see Page and
Norris 1998). In the extreme, any pair of segments in our
model stimuli would be minimally discriminable from one
another when they were identical except for their serial posi-
tion, that is, maximum similarity would occur when the same
item was repeated at different list positions. Note that the
protocol we have used so far to generate models produced an
association between model length and repetition of a segment’s
orientation: As models grew in length, so too did the proba-
bility that a segment orientation presented early in the model
might be repeated later in the model. To illustrate this point,
Monte Carlo simulations showed that for four-segment models,
the probability that the last segment’s orientation would repeat
the orientation of a prior segment was 0.33; for five-segment
models, the corresponding probability was 0.45. Because the
probability of a repetition had not been controlled, and because
such repetition might influence quality of imitation, we set out
to measure the effect of segment repetition directly, controlling
the occurrence or nonoccurrence of segment repetitions.

To examine the possible effect of repetition, we conducted a
second series of sessions with a new group of eight subjects,
none of whom had served in the main experiment. These new
subjects viewed and reproduced models of four and five seg-
ments. On half the trials no segment direction was repeated; on
the remaining trials, the final segment in the model repeated the
direction of one preceding segment.

Figure 7 shows reproduction errors for stimuli with and
without repetitions, for models of four (A) and five (B) seg-
ments. Errors are shown for each serial position. With the
exception of one set of data points, the difference between
performance with and without a repetition of a segment orien-
tation was small. However, in eight of nine comparisons, the

FIG. 6. Serial position curves based on errors in relative changes of orien-
tation between segments. Numbers on the x-axis indicate the serial positions of
the segments whose relative orientation is being compared. Curves show
results from models with different number of segments. Symbols used to
represent each model length are identical to those used in Fig. 5B. Error bars
are within-subject SE, for each curve independently.
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mean error with a segment repetition was larger than that with
no repetition (P � 0.05, sign test), suggesting that repetition is
a weak but significant factor in the quality of reproduction.

Higher-level factors: errors in segment location and length

There is one likely influence on imitation that has not so far
been explicitly mentioned: the heterogeneity of models com-
posed of the same number of segments. Complexity in serial
recall of sequences is usually defined by the number of ele-
ments in the sequence (Rhodes et al. 2004), but it is reasonable
to hypothesize other, related influences on movement imita-
tion. In particular, all n-segment models may not be equally
easy to encode and then imitate. We just showed that imitation
quality is influenced by the structural relationship among
components in a model, that is, whether an element has been
repeated (see Fig. 7). Also, various factors might cause a
moving object’s path to be misperceived (Brown and Voth
1937; Sekuler et al. 2003; Tripathy and Barrett 2003), which
would reduce an ensuing imitation’s fidelity to the model’s
physical characteristics. This source of error would arise from
the particular sequence of movements in a trajectory, espe-
cially the pattern of directional change from one segment to
another. A final source of heterogeneity in our task resides in
the perceived, overall trajectory generated by the linked move-
ment segments. Because the entire trajectory of the model’s
movement was never visible on the screen, any representation

of that trajectory had to be generated by the subject, probably
using an integrative mechanism akin to working memory’s
visuospatial sketchpad (Baddeley 2003).

Although accounts of movement imitation built on segment
by segment production leave out such gestalt effects, we
believe that a model’s overall shape or trajectory could affect
imitation quality. Figure 8A illustrates this point, showing
serial position curves for different model lengths, but using a
2D spatial error criterion instead of the discrepancy in segment
orientation between model and imitation, as in Fig. 5B. To
generate this measure of spatial error, the x–y coordinates of
the midpoint of every stimulus segment were compared with
the corresponding coordinates of the reproduced segment’s
midpoint for imitations with the correct number of segments.
The absolute Euclidean distance was taken as the error score
for that segment. Figure 8A shows that for all model lengths,
but especially for longer ones, serial position curves flatten
toward the end of an imitation. It is possible that this flattening
was driven not by the process responsible for segment-by-
segment execution of the initial portion of the imitation, but by
a real-time response to a recognition that the ongoing imitation
was deviating significantly from the remembered model. This
hypothesis assumes that in addition to information about indi-
vidual segments, subjects have some, perhaps imperfect, mem-
ory of the trajectory’s overall shape or endpoint. If an imita-
tion’s cumulative position error grows with successive seg-
ments, memory of the model’s overall shape or endpoint

FIG. 7. Effect of repetition of segment orientation on
the quality of imitation. A: errors with 4-segment models.
B: errors with 5-segment models. Filled symbols repre-
sent performance with segment repetition in models;
open symbols represent performance with no repetition.
Error bars are within-subject SE.

FIG. 8. A: serial position curves based on a spatial
location metric. y-axis shows the 2D discrepancy
between the coordinates of each segment’s midpoint
and the midpoint of the corresponding segment in the
imitation. Units are percentage of the length of a
segment in the stimulus model; a value of 100, the
entire length of a segment, would be an error of 1.15°
visual angle. B: length of reproduced segments. Units
are percentage of the segment length in the stimulus
model. In both A and B, curves show results from
models with a different number of segments, repre-
sented by symbols identical to those in Fig. 5B. Error
bars are within-subject SE, for each curve indepen-
dently.
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allows subjects to recognize in real time their reproduction’s
growing deviation from the remembered model, and to make a
late-course correction.

There are, however, interesting alternative explanations for
the flattening of the longer curves shown in Fig. 8A. One
possibility is that as imitation of any model proceeds, the
length of successive segments is reproduced with increasing
fidelity. To evaluate this hypothesis we examined the accuracy
in the length of reproduced segments at different serial posi-
tions. Figure 8B shows the result, plotting the length of repro-
duced segments at each serial position, expressed as percentage
of segment length in the model. The curves represent models of
different lengths. A slight decrease in error can, indeed, be seen
from the first to the penultimate position, but the sharp rise in
error in the last segment rules out accuracy in segment length
as the sole underlying factor in the flattening of the position
error curves (Fig. 8A). Subjects may have attempted to match
the distance from the start of the first segment to the end of the
last one and adjusted the length of the last segment to com-
pensate for accumulated errors. However, this striking increase
in the final segment’s length is consistent with predictions of a
self-normalizing CQ model (Bullock 2004). Because the rep-
resentation of the final segment in imitation has no competition
from a succeeding element, the level of activation for that final
segment would be higher than that for preceding elements if
the working memory were self-normalizing. The result could
be larger segment amplitudes for the final movements, espe-
cially if the planning field represents movement vectors (as we
have assumed), rather than movement endpoints. On the other
hand, the longer segments at the end of an imitation might be
an artifact of subjects’ having to lift the stylus at the end of the
final segment, or could result from an accentuation at the end
of a drawing, in a manner similar to the flourish that often
accompanies the ending of someone’s handwritten signature.
Finally, note in Fig. 8B that the number of segments consti-
tuting a model has an influence on the magnitude of this error,
with a tendency for reproduced segments in short models (n 	 3)
to be larger than reproduced segments in longer models (n 	 7).
Although this tendency is consistent with the operation of a
renormalizing process, as postulated in some CQ models (Bul-
lock 2004), a firm conclusion on this point must await results
from experiments specifically designed to address this predic-
tion.

D I S C U S S I O N

This study introduced a new approach to imitation. By
decomposing reproduced models into their individual seg-
ments, we were able to examine the fine structure of the
imitative process. Studies by Zacks and colleagues showed that
humans analyze various seen events into discrete segments
with distinct spatiotemporal boundaries, and that this process
dominates perception of complex actions and the planning of
actions (Speer et al. 2003; Zacks et al. 1999, 2001). It thus
seemed wise to approach imitation as a sequence of compo-
nents, rather than as a single, integrated whole.

Our results can be compared with those from previous
studies of visuospatial working memory. Because there was a
delay in our task between seeing the trajectory and reproducing
it, the representation of information guiding the imitation must
have been stored in working memory. Our procedure, however,

differs in several ways from those in prior studies, arguably
making it more appropriate for generalization to imitation in
everyday life. First, the stimulus here is generated by a single,
continuously moving object, rather than a series of different
objects shown at some single discrete location. Second, serial
recall of imitation components was assessed by means of free
imitation of the stimulus model, as opposed to the constrained,
discrete measures used in most other studies. Finally, error is
regarded as a continuous variable, rather than a binary one,
such as correct or incorrect (see Farrand et al. 2001; Rhodes et
al. 2004). This is arguably more applicable to real-life tasks,
which often involve dynamic objects, and are repeated by an
observer whose goal is a reproduction that is roughly isomor-
phic with the model, but not necessarily identical to it (Schaal
et al. 2003).

Henriques et al. (2004) followed a related line of inquiry,
asking subjects to feel geometrical shapes and then reproduce
them using a robot manipulandum. Their data indicate that
errors in reproduction arose principally from distortions of
individual segments; integration of segments into a complete
shape introduced little error of its own. Despite the difference
in modality, this study shares some similarities with ours:
Several connected, directional segments are seen or felt, stored
in working memory, and then reproduced. Henriques et al.
(2004), on the other hand, used only sequences with fewer
segments than the span of normal working memory (four
segments for closed shapes, three for open shapes), whereas
our stimulus models ranged from subspan (three segments) to
superspan (seven segments).

Insertion and omission of segments

Subjects’ ability to reproduce the correct number of seg-
ments declined with stimulus length, from nearly total success
for three-segment models to only 60% success for seven-
segment models. An interesting finding is the difference be-
tween the two most common types of error in the number of
reproduced segments: the omission of a segment from the
imitation or the insertion of an extra segment. Segment omis-
sions clearly tended to occur more frequently as stimuli grow
longer and to occur more toward the end of the model than at
the beginning. This can be thought of as another manifestation
of the primacy effect. In contrast, with the other type of error,
segment insertion, neither length nor serial position seem to
have an effect. This result is inconsistent with the hypothesis
that extra segments arise from a failure of a neural end-state
encoder, such as that recently proposed to exist in monkey
frontal cortex (Fujii and Graybiel 2003). An important question
to be asked is to what extent this type of error might result from
incorrect output by the segmentation algorithm. On probability
grounds, if the extra segments were generated by algorithm
failure, the proportion of trials with such errors would grow
with model length, which is not the case (see Fig. 3B). To be
certain that the extra segments were not a result of the algo-
rithm mistaking small shifts in movement direction for entirely
new segments, we examined the distribution of change in
direction between a segment that our analysis indicated was
wrongly inserted and the segments that preceded and followed
it. If algorithm failures were at fault, one should expect such
direction changes to be relatively small. However, the size of
changes in direction showed a broad, approximately uniform
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distribution (data not shown), indicating that insertions were
not the result of false alarms by the segmentation algorithm,
that is, a spurious response to a near-threshold, unintended
direction change in an imitation. Nevertheless, we cannot
currently explain the origin of these inserted segments, which
deserve further exploration in future studies. They may be
evidence of one or more constructive processes that affect
memory for movement sequences. Such processes can be seen
as the motor domain equivalents of reconstructive processes
that have been demonstrated in other domains of memory (e.g.,
Bartlett 1932; Bower et al. 1979; Miller and Gazzaniga 1998;
Roediger et al. 2001).

Accuracy in reproducing individual segments

Our procedure enabled us to evaluate the quality of imitation
on a segment-by-segment level. Consistent with results by
Sekuler et al. (2003), we found that the mean error in repro-
ducing a segment’s orientation increased with stimulus model
length. In addition, our serial position results show a strong
primacy effect, consistent with most, if not all, studies of
ordered serial recall, verbal (Crowder 1970; Drewnowski
1980; Drewnowski and Murdock 1980) and nonverbal (Blake
et al. 1997; Farrand et al. 2001; Smyth and Scholey 1996). In
addition, also in agreement with results from other serial recall
paradigms, there appears to be a strong retroactive effect—
errors in a same position are larger if additional, succeeding
items must also be remembered. Our results also show a small
recency effect, which is expressed mostly in a flattening of the
curve, rather than an actual decline in error between the final
positions. One should use caution, however, when interpreting
this result. Page and Norris (1998) indicated that in immediate
serial recall of short lists, in which error data are dominated by
immediate exchanges, i.e., transpositions of adjacent list items
(see Henson et al. 1996), the first and last list items are
privileged because each faces only one chance to exchange
positions with an immediate neighbor, whereas all nonterminal
list elements have two such chances. Although our analysis of
transposition errors in imitation is not entirely conclusive, it
does seem to support such an account of transpositions.

Our repetition experiment raised the interesting possibility
that the stark differences in performance between trials with
different model lengths can be accounted for, at least in part, by
the higher probability of repeating a segment orientation in
longer models. Higher probability of repetition is also more
likely toward the end of models, which might help explain the
serial position curves. Our results do, indeed, show a modest
but consistent effect of repetition. This finding replicates re-
sults of prior studies in which lowering the discriminability
between items on a list reduced the accuracy of immediate
serial recall. Yet, one cannot draw a definitive answer from
these data. First, the effect is quite small. Second, note that
even when no repetitions are present, performance on five-
segment models is worse than that on four-segment models
(Fig. 7). Serial position effects are also apparent in the nonre-
peating case. This suggests that another process is taking place,
along with the interfering effect of repetition. The data from
the repetition trials show an interesting pattern, where the error
in the next-to-last position (the segment before the repeating
segment) tends to be the highest. We believe this effect
deserves to be explored more deeply in a separate study.

Underlying neural mechanisms

What neural mechanisms likely account for the strong ef-
fects of model length and segment serial position on imitation
quality? Lashley (1951) postulated simultaneous representa-
tion of a series of movements before their execution. Lashley
also asserted that some errors, notably exchange (or transpo-
sition) errors, seem to be caused by interactions between
parallel representations. Later theorists (Grossberg 1978;
Houghton 1990) specified parallel neural models in which
relative activity level implicitly specified the relative serial
positions of the corresponding movements in a forthcoming
serial action. This implicit representation is read out by a
competitive queuing mechanism, which iteratively searches for
the highest remaining activation, performs the action corre-
sponding to that activation, deletes the representation of that
action, searches again, and so forth. In such models, maintain-
ing the relative activation level differences needed for a reli-
able representation of relative order becomes more difficult for
longer sequences because of the limited “bandwidth ” afforded
by the small range of neural activity levels. Representations of
items later in a sequence have similarly small activations,
which can be corrupted (e.g., reordered) by noise, or simply
dropped from the working memory because of decay. Note that
this account does not currently include any obvious route by
which additional, erroneous components might be inserted into
the produced sequence.

Measurements consistent with this coding principle and with
CQ were reported recently in awake behaving monkeys (Aver-
beck et al. 2002, 2003a,b). Neural activity in the dorsolateral
prefrontal cortex (area 46) was recorded while monkeys were
cued to reproduce visually displayed geometric figures using a
prescribed, highly practiced, stroke sequence. Although not
observed during an imitation task per se, these neural responses
in area 46, long associated with working memory (Goldman-
Rakic 1990), suggest that this area provides a working memory
substrate for imitation of novel sequences. Averbeck and
colleagues found evidence for parallel processing of serial
movements. Before sequence initiation, there was a primacy
gradient: the forthcoming sequence was represented by parallel
activity in distinct neuronal populations whose relative activa-
tion levels anticipate the relative performance order of the
represented strokes. During sequence production, the represen-
tations were serially deleted, in order, from the initially most
active representation to the initially least active, consistent with
CQ. Furthermore, by examining error trials, Averbeck and
colleagues showed that copying errors may have been caused
by disordering of the relative strength of activity in two
populations representing neighboring segments, which results
in the monkey “jumping ahead of itself.” This is similar to the
pairwise exchanges we observed between segments at adjacent
serial positions.

The general trend in Table 1 suggests that transpositions
involving nearest-neighbor segments are the prevalent type of
error, as has been seen in other domains of serial recall from
memory (Henson et al. 1996; Smyth and Scholey 1996).
Recently, Farrell and Lewandowsky (2004) noted that several
models, in addition to what we have called CQ models, have
been formulated or reformulated to explain why transpositions
involving nearest neighbors might be the most prevalent type.
Thus CQ models are not unique in their ability to make this
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prediction. However, all CQ models—defined by a primacy
gradient across plans, choice of the maximum, and serial
deletion of executed plans—make a further prediction that is
(so far) unique: that the latency of a transposed response should
be a monotonically decreasing function of transposition dis-
placement, measured in serial positions. Here, anticipation
errors are considered to have a negative transposition displace-
ment and deferral errors a positive transposition displacement.
With a task involving speeded verbal sequence recall mediated
by working memory, Farrell and Lewandowsky (2004) pro-
duced data that confirmed this unique CQ prediction, whereas
the same data disconfirmed the (nonmonotonic) predictions of
all alternative models. This important result with verbal mate-
rials suggests that future tests of models for sequence imitation
in nonverbal tasks may benefit from a combined analysis of
error and latency. Above, we noted that normalized CQ models
might make further predictions (such as enhanced lengths of
final segments) that distinguish them from other CQ, as well as
non-CQ, models.

Two other areas, aside from the prefrontal cortex, that have
been shown to play a crucial role in sequential movement are
the supplementary motor area (SMA) and the pre-SMA, just
anterior to the SMA. Anatomically, the pre-SMA mediates
between prefrontal cortex and the SMA. In monkeys, neurons
in SMA and pre-SMA may encode the serial relations among
movements in a sequence (Tanji 2001; Tanji and Shima 1994).
Some SMA neurons are active primarily during execution of
one of the movements, again showing a primacy gradient, i.e.,
more neurons corresponding to the earliest serial positions
(Clower and Alexander 1998). In humans, transcranial mag-
netic stimulation (TMS) over the SMA interferes with the
organization of subsequent movements in a sequence, whereas
stimulation over the primary motor cortex affects only the
movements that would otherwise have been performed during
the stimulation (Gerloff et al. 1997). It is therefore reasonable
to assume that activity in both SMA and pre-SMA strongly
influences the quality of performance in our task.

In conclusion, by analyzing movement imitation at the level
of individual components, we have shown how the quality of
imitation depends on the complexity of the modeled move-
ment, and, furthermore, how it varies as the imitation is
executed. By examining error patterns across serial positions,
we found support for competitive queuing, a parallel process-
ing model of serial behavior. A full understanding of imitation
must also take into account other spatial and temporal aspects
of individual segments, which we have not considered fully,
and higher-order properties of the model, such as the relation-
ship between its individual components and the overall shape
that they constitute together.
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