
Introduction to Neural Networks
Linear representations of high-dimensional
patterns
Lateral inhibition

Introduction

Last time

Developed a generic neuron model and from there built a network. The model
was “structure-less, continuous signal, and discrete time”.

Basic linear algebra review. Motivated linear algebra concepts from neural
networks.

Today

We’ll first review some basics of linear algebra with a view to understanding one way to think about the
information that a population of neurons encodes about a meaningful pattern. We will look at an exam-
ple of how neural populations involved in image processing by the brain can be viewed either as analyz-
ing image information or as representing the image.

Then we will change gears a bit, and look at an explanation of a human perceptual phenomenon called
Mach bands, that involves a linear approximation based on a real neural network. This is an example of
neural filtering found in early visual coding. We will study two types of network that may play a role in
the perception of Mach bands: 1) feedforward; 2) feedback. The feedforward network will be a straightfor-
ward elaboration of the linear neural network model -- “applied linear algebra”. The feedback system will
provide our first example of a dynamical system. We will also look at how these networks are related to
the neural processing in the horseshoe crab (limulus) compound eye. Despite the (apparent) enormous
difference between your visual system and that of the horseshoe crab, our visual system shares a
fundamental image processing function with that of this lowly crustacean (and virtually all other studied
animals that process image patterns).

You will also see how two different mechanisms can produce equivalent input-output behavior.

And how a choice of parameters can produce winner-take-all behavior in a dynamic recurrent network.

Basis sets
Suppose we have a vector, g, that represents the inputs to a network of neurons. To be concrete, as
earlier, assume our input vectors live in an 8-dimensional space. Further, suppose that each of 8 neu-
rons receives information from all 8 inputs. Consider two different ways in which the weights (or recep-
tive fields, if a sensory neuron) might be organized. The collection of weights could be cartesian:

Suppose we have a vector, g, that represents the inputs to a network of neurons. To be concrete, as
earlier, assume our input vectors live in an 8-dimensional space. Further, suppose that each of 8 neu-
rons receives information from all 8 inputs. Consider two different ways in which the weights (or recep-
tive fields, if a sensory neuron) might be organized. The collection of weights could be cartesian:

In[267]:= u1 = {1,0,0,0,0,0,0,0};
u2 = {0,1,0,0,0,0,0,0};
u3 = {0,0,1,0,0,0,0,0};
u4 = {0,0,0,1,0,0,0,0};
u5 = {0,0,0,0,1,0,0,0};
u6 = {0,0,0,0,0,1,0,0};
u7 = {0,0,0,0,0,0,1,0};
u8 = {0,0,0,0,0,0,0,1};
cartesianset = {u1,u2,u3,u4,u5,u6,u7,u8};

or they could be like the walsh set:

In[276]:= nwalshset = HadamardMatrix[8];
{w1, w2, w3, w4, w5, w6, w7, w8} = nwalshset;

Both of these sets of vectors have the properties: 1) each vector in the set is orthogonal to every other;
2) the vector lengths are all equal to 1; 3) The set of 8 vectors is said to be “complete”, in that they
completely “span” the 8 dimensional space. Some basis sets are “over-complete”, e.g. if you added 9th
vector to the set. The 9th vector would be redundant in that you could always express it in terms of the
others. In this case the set of 9 is said to be “linearly dependent”. Our original set(s) of 8 are linearly
independent. (See previous lecture.)

In general, a set of vectors used in a linear weighted sum to represent an N-dimensional vector pattern
is called a basis set for that N-dimensional space.

It is pretty clear that given any vector whatsoever in 8-space, you can specify how much of it gets
projected in each of the eight directions specified by the cartesian set of unit vectors u1, u2, ...u8. But
you can also build back up an arbitrary vector by adding up all the contributions from each of the compo-
nent vectors. This is a consequence of vector addition and can be easily seen to be true in 2 dimen-
sions.

We can verify it ourselves. Pick an arbitrary vector g, project it onto each of the basis vectors, and then
add them back up again:

In[278]:= g = {2,6,1,7,11,4,13, 29};

In[279]:= (g.u1) u1 + (g.u2) u2 + (g.u3) u3 + (g.u4) u4 +

(g.u5) u5 + (g.u6) u6 + (g.u7) u7 + (g.u8) u8

Out[279]= {2, 6, 1, 7, 11, 4, 13, 29}

▶ 1. Exercise

Reconstruction works for any orthogonal basis set, such as {v1,v2,...v8}. What happens if you project g
onto the normalized Walsh basis set defined by {w1,w2,...} above, and then add up all 8 components?

In[14]:= (g.w1) w1 + (g.w2) w2 +(g.w3) w3 +(g.w4) w4 +
(g.w5) w5 +(g.w6) w6 +(g.w7) w7 +(g.w8) w8

Looks complicated, but if you simplify it:

2 Lect_5_LatInhibition.nb

In[280]:= Simplify[%]

Out[280]= {2, 6, 1, 7, 11, 4, 13, 29}

you get back the original vector.
{2, 6, 1, 7, 11, 4, 13, 29}

Spectrum

The projections, {g.wi} are sometimes called the spectrum of g. This terminology comes from the

Fourier basis set used in Fourier analysis. Also recall white light is composed of a combination of light of
different frequencies (colors). A discrete version of a Fourier basis set is similar to the Walsh set, except
that the elements fit a sine wave pattern, and so are not binary-valued.

Representations of patterns

Motivation: representation of high-dimensional visual information

Analyzing image input
In Lecture 4, we noted that the simplest feedforward neural network can often be usefully approximated
over a linear regime by a matrix operation:

yi = σ
j=1

n

wij xj ~
j=1

n

wij xj

In vector-matrix notation as: y = W.x, where W is a matrix and x and y are vectors.

It is hard to believe that much can be done with something so simple. The reason is that the complexity
lies in the potentially rich structure of the connections, W, and how they map input patterns to useful
and meaningful outputs. We turn to visual coding to motivate this.

To help keep in mind that we are using an image processing example, we’ll change notation so that:

yi → si and xi → flattened representation of image intensities I(x, y). Flattened meaning that we re-
represent the 2D input image I(x,y) by mapping it into a 1D vector, I, that we label in bold and use
later.

I(x, y) can be thought of as the intensity at pixel location (x,y). Then a visual transformation (or filtering)
of I(x,y) can be represented by a mapping of image intensities (or input activities I(x,y)) to firing rates si:

Wi(x,y) represents the effective synaptic weights (or spatial receptive field) of neuron i.

But what does Wi(x,y) mean? What does it do to the incoming image? One example in vision is that
neurons in primary visual cortex can be modeled by a set of receptive field weights, Wi(x,y) which acts
as a spatial filtering operation that amplifies responses to edges of different orientations indexed by i. In
fact all the built-in function GaborFilter[] does is exactly that. Under the hood, GaborFilter[] treats the
input image as a vector, and figures out what values to put in a matrix to multiply it with to amplify
spatial changes in intensity, i.e. the big values corresponding to the strengths of edges in a particular
direction.

Lect_5_LatInhibition.nb 3

Wi(x,y) represents the effective synaptic weights (or spatial receptive field) of neuron i.

But what does Wi(x,y) mean? What does it do to the incoming image? One example in vision is that
neurons in primary visual cortex can be modeled by a set of receptive field weights, Wi(x,y) which acts
as a spatial filtering operation that amplifies responses to edges of different orientations indexed by i. In
fact all the built-in function GaborFilter[] does is exactly that. Under the hood, GaborFilter[] treats the
input image as a vector, and figures out what values to put in a matrix to multiply it with to amplify
spatial changes in intensity, i.e. the big values corresponding to the strengths of edges in a particular
direction.

In[281]:= GaborFilter , 4, {1, 1} // ImageAdjust

Out[281]=

In other words, switching to a vector representation of input I and a set of receptive fields W, the activity
of the population of neurons can be written:

s = W.I

where again s and I are vectors, and W is a matrix. s= W.I describes how a set of effective weights (e.g.
synaptic weights or "receptive field" weights) turns the image input I into a pattern of neural responses--
a "neural image" s (equivalent to the notation, where now s=y, and x=I).

Synthesizing image input
It is useful to distinguish between 1) the weights Wi(x, y) that analyze an image to produce a pattern of
neural activity si and 2) the “features”, call them Ai(x, y) that explain, generate, or synthesize an input I.

Assume that an input image I(x,y) can be represented (synthesized) by a linear combination of a limited
set of “features”, Ai(x,y) :

Below we tie these “basis images” to the columns of a feature matrix.

For the moment, think of the A’s as providing a dictionary or vocabulary useful to describe any image in
some perhaps restricted set, say “human faces” or “natural images”, in terms of a weighted sum. The
A’s are a special collection of image patches or “dictionary” for which any image (in the set of interest)
can be efficiently composed. Fourier synthesis is a special example where an arbitrary image is
expressed as the sum of sinusoidal images weighted by a scalar (si) that says how much of each
needs to get added to equal the arbitrary image. The collection of sinusoidal images is the basis set.

Such a model is sometimes called a generative model for the patterns in the set of interest. (The term
“generative” is more specifically used in the context where one also has a probabilistic description of
generating parameters, si, and the outputs).

See: Hyvärinen, A. (2010). Statistical Models of Natural Images and Cortical Visual Representation.
Topics in Cognitive Science, 2(2), 251–264. doi:10.1111/j.1756-8765.2009.01057.x

4 Lect_5_LatInhibition.nb

Below we tie these “basis images” to the columns of a feature matrix.

For the moment, think of the A’s as providing a dictionary or vocabulary useful to describe any image in
some perhaps restricted set, say “human faces” or “natural images”, in terms of a weighted sum. The
A’s are a special collection of image patches or “dictionary” for which any image (in the set of interest)
can be efficiently composed. Fourier synthesis is a special example where an arbitrary image is
expressed as the sum of sinusoidal images weighted by a scalar (si) that says how much of each
needs to get added to equal the arbitrary image. The collection of sinusoidal images is the basis set.

Such a model is sometimes called a generative model for the patterns in the set of interest. (The term
“generative” is more specifically used in the context where one also has a probabilistic description of
generating parameters, si, and the outputs).

See: Hyvärinen, A. (2010). Statistical Models of Natural Images and Cortical Visual Representation.
Topics in Cognitive Science, 2(2), 251–264. doi:10.1111/j.1756-8765.2009.01057.x

Here is a simple example where the features are non-overlapping 16 x 16 pixel patches:

= s1 + s2 + s3 + s4 + s5 +

s6 + s7 + s8 + s9 + s10 + s11 +

s12 + s13 + s14 + s15 + s16

With the above sixteen highly specific dictionary elements (each of which is 16x16 pixels), we have only
16 degrees of freedom, so would be very limited. You couldn’t “span” the space of human faces with
this set.

However, you could expand the set to have many more patches, no longer orthogonal to each other,
and cover a larger range of the space of faces. At the far extreme, you could have a unique basis vector
for every face. Then the si value would be 1 for the ith face, and zero for all the others. But this set
would be vastly “overcomplete”. It would be a grandmother cell code. Alternatively, note that if the
patches were each just 1x1 pixels, you would have a cartesian basis set and could synthesize any 64 x
64 image (within the range of values of si). But now it may be too general--the human visual system
doesn’t need to represent any image (think of huge space of TV “snow”). Getting the “right” number of
basis vectors to efficiently represent a set of interest has been an active topic of research in signal
processing for many decades. In past studies, the “set of interest” has been defined to be “the set of
human faces”, “the set of english letters”, and even “the set of natural images”. Efficiency can be
interpreted in terms of “sparseness”--i.e. the number of active features to describe any image in the set
of interest, but more on this later. (There are small basis sets, around the same order of 16 elements,
that can do quite well on databases on human faces; cf. Sirovich, L., & Kirby, M. (1987). Low-dimen-
sional procedure for the characterization of human faces. Journal of the Optical Society of America A,
4(3), 519–524.).

Now let’s reformulate the example in terms of simple vectors and matrices. We “flatten” I(x,y) and each
Ai(x,y) to turn them into vectors and then write:

I = A.s,

where we identify the features Ai(x,y) as the "columns" of A, {Aj}, and the elements of s, {sj}, represent
the activity of the neurons representing how much each of those features contribute to (or explain) I:

I = s1*A1 + s2 *A2 +...

Again, we use the word "features" because we think of the input as being made up of (linear) combina-
tions of these particular patterns in the world.

Here is an example in which there are 5 feature vectors for an 4-dimensional input space:

Lect_5_LatInhibition.nb 5

With the above sixteen highly specific dictionary elements (each of which is 16x16 pixels), we have only
16 degrees of freedom, so would be very limited. You couldn’t “span” the space of human faces with
this set.

However, you could expand the set to have many more patches, no longer orthogonal to each other,
and cover a larger range of the space of faces. At the far extreme, you could have a unique basis vector
for every face. Then the si value would be 1 for the ith face, and zero for all the others. But this set
would be vastly “overcomplete”. It would be a grandmother cell code. Alternatively, note that if the
patches were each just 1x1 pixels, you would have a cartesian basis set and could synthesize any 64 x
64 image (within the range of values of si). But now it may be too general--the human visual system
doesn’t need to represent any image (think of huge space of TV “snow”). Getting the “right” number of
basis vectors to efficiently represent a set of interest has been an active topic of research in signal
processing for many decades. In past studies, the “set of interest” has been defined to be “the set of
human faces”, “the set of english letters”, and even “the set of natural images”. Efficiency can be
interpreted in terms of “sparseness”--i.e. the number of active features to describe any image in the set
of interest, but more on this later. (There are small basis sets, around the same order of 16 elements,
that can do quite well on databases on human faces; cf. Sirovich, L., & Kirby, M. (1987). Low-dimen-
sional procedure for the characterization of human faces. Journal of the Optical Society of America A,
4(3), 519–524.).

Now let’s reformulate the example in terms of simple vectors and matrices. We “flatten” I(x,y) and each
Ai(x,y) to turn them into vectors and then write:

I = A.s,

where we identify the features Ai(x,y) as the "columns" of A, {Aj}, and the elements of s, {sj}, represent
the activity of the neurons representing how much each of those features contribute to (or explain) I:

I = s1*A1 + s2 *A2 +...

Again, we use the word "features" because we think of the input as being made up of (linear) combina-
tions of these particular patterns in the world.

Here is an example in which there are 5 feature vectors for an 4-dimensional input space:

I1
I2
I3
I4

=

a11 a12
a21
a31
a41

a22
a32
a42

a13
a23
a33
a43

a14
a24
a34
a44

a15
a25
a35
a45

.

s1
s2
s3
s4
s5

= s1.

a11
a21
a31
a41

+ s2.

a12
a22
a32
a42

+ ... = s1.A1 + s2.A2 + ...

where

Ai = {a1 i, a2 i, a3 i, a4 i};

So the actual neural representation of an image I is only implicit in the firing rates and a definition of
what each Aj means. In other words, the activities s are a simple "code" for I which can be recovered
using the above formula...IF we know A. Neural models of image representation in the primary visual
cortex have been analyzed in terms of whether the high-dimensional images received (at the retina) are
projected into lower or higher dimensional spaces in cortex, and what the consequences might be for
biological image processing (Hyvärinen, 2010). The notion of a linear representation of features for an
input signal class has had a major impact on theories of neural representation in primary visual cortex,
as well as image processing more generally.

OK, now let’s make some strong, but greatly simplifying assumptions which will allow us to exploit
standard results in linear algebra.

From a linear algebra perspective, if I and s have the same number of elements, A is "square", and if A
is invertible, then W = A-1. (We’ll cover the definition of an inverse matrix later, but you can think of it as
analogous to division for scalars, but for matrices-- i.e. for scalars, if y=A.x, then one could solve for x as
x=(1/A).y or x=A-1.y)

Further, there is a theorem that says if the columns of A are orthogonal, then W is just the transpose of
A. The transpose ATof a matrix A just turns the rows of A into columns of AT . This means that the
"features" or basis vectors used to represent I (columns of A) are the same as the receptive field
weights (rows of W) used to analyze I. Under these assumptions, we can think of the pattern of a
receptive field as representing an image feature. Let’s now summarize the basic linear algebra of vector
representation in terms of basis vectors.

Mach bands & perception
Now let’s take a look at a famous problem in human visual perception and its relation to a linear neural
network model developed to explain image processing by the limulus or horseshoe crab. We first go
back to the 19th century.

Ernst Mach was an Austrian physicist and philosopher. In addition to being well-known today for a unit
of speed, and Mach's Principle in theoretical physics, he is also known for several visual illusions. One
illusion is called "Mach bands". Let's make and experience one.

6 Lect_5_LatInhibition.nb

In[283]:= width = 256;
y[x_, hix_] := Module[{low, hi, lowx},

low = 0.2; hi = 0.8;
lowx = .35 * width; Piecewise[{{low , x < lowx}, {((hi - low) / (hix - lowx)) x -

((hi - low) lowx) / (hix - lowx) + low , x >= lowx && x < hix}, {hi, x >= hix}}]];

In[285]:= Manipulate[
e3 = Table[y[i, hix], {i, 1, width}];
picture2 = Table[e3, {i, 1, 60}];
GraphicsGrid[{{Graphics[Raster[picture2, {{1, 1}, {120, 60}}, {0, 1}]], Plot[y[x,

hix], {x, 1, width}, PlotRange → {0, 1}]}}], {{hix, 87}, width / 3., width * 3 / 4}]

Out[285]=

hix

0 50 100 150 200 250

0.2

0.4

0.6

0.8

1.0

 PlotRange is used to scale the brightness.

What Mach noticed was that the left “knee” of the ramp looked too dark, and the right knee looked too
bright to be explained by the light intensity. Objective light intensity did not predict subjective brightness.

(Perceptual psychologists sometimes distinguish between “brightness” and “lightness, cf. Boyaci et al.,
2007 and Knill and Kersten, 1994. Lightness and related phenomena involve visual “filling-in”, believed
to involve cortical processes, cf. Komatsu et al., 2006. We’ll look at models for filling-in later.)

Mach's explanation in terms of lateral inhibition

Mach’s interpretation was that somewhere in the visual system, there are units whose outputs reflect a
process in which the light intensity at a point gets replaced by the weighted sum of intensities at nearby
points. The weights have a center-surround organization, in which weights are positive near the point of
interest, and negative further away. These so-called center-surround filters are illustrated in the above
concentric circles, where + indicates positive weights, and - indicates negative weights. This process is
called lateral inhibition. If you work through the consequences of a lateral inhibition filtering operation,
you will see that there is more inhibition (negative weight contributions) at the left knee, than just to the
left. And there is more positive contribution at the right knee, than at the point just to the right. In gen-
eral, lateral inhibition increases contrast at edges.

Neural basis?
Early visual neurons (e.g. ommatidia in horseshoe crab, ganglion cells in the mammalian retina and
even later cells in the lateral geniculate neurons of the thalamus, and some cells in V1 or primary visual
cortex of the monkey) have receptive fields with Mach's center surround organization. I.e. approximately
circular excitatory centers and inhibitory surrounds. Or the opposite polarity, inhibitory centers and
excitatory surrounds.

Some history:
Limulus (horseshoe crab)--Hartline won the 1967 Nobel prize for this work that began in the

20's with publications up to the 70's.
(See http://hermes.mbl.edu/marine_org/images/animals/Limulus/vision/index.html).

Frog -- Barlow, H. B. (1953). Summation and inhibition in the frog's retina. J Physiol, 119, 69-88.
Cat --S. W. Kuffler (1953). Discharge patterns and functional organization of mammalian retina .

Journal of Neurophysiology, 16:37--68.

Lect_5_LatInhibition.nb 7

Mach’s interpretation was that somewhere in the visual system, there are units whose outputs reflect a
process in which the light intensity at a point gets replaced by the weighted sum of intensities at nearby
points. The weights have a center-surround organization, in which weights are positive near the point of
interest, and negative further away. These so-called center-surround filters are illustrated in the above
concentric circles, where + indicates positive weights, and - indicates negative weights. This process is
called lateral inhibition. If you work through the consequences of a lateral inhibition filtering operation,
you will see that there is more inhibition (negative weight contributions) at the left knee, than just to the
left. And there is more positive contribution at the right knee, than at the point just to the right. In gen-
eral, lateral inhibition increases contrast at edges.

Neural basis?
Early visual neurons (e.g. ommatidia in horseshoe crab, ganglion cells in the mammalian retina and
even later cells in the lateral geniculate neurons of the thalamus, and some cells in V1 or primary visual
cortex of the monkey) have receptive fields with Mach's center surround organization. I.e. approximately
circular excitatory centers and inhibitory surrounds. Or the opposite polarity, inhibitory centers and
excitatory surrounds.

Some history:
Limulus (horseshoe crab)--Hartline won the 1967 Nobel prize for this work that began in the

20's with publications up to the 70's.
(See http://hermes.mbl.edu/marine_org/images/animals/Limulus/vision/index.html).

Frog -- Barlow, H. B. (1953). Summation and inhibition in the frog's retina. J Physiol, 119, 69-88.
Cat --S. W. Kuffler (1953). Discharge patterns and functional organization of mammalian retina .

Journal of Neurophysiology, 16:37--68.

Feedforward model
We’ll consider two types of models for lateral inhibition: feedforward and feedback (in our context,
"recurrent lateral inhibition").
Let’s look at a simple feedforward model. Let

f = w ′.e

where e is a vector representing the input intensities (the e3 or y[] values in the above demo), w ′ is a
suitably chosen set of weights (i.e. excitatory center and inhibitory surround as shown in the above
figure), and f is the output. The connectivity for two neurons would look like this:

but of course you’d have to add more neurons to get the circularly symmetric weights described by
Mach.

Programming implementation
Because changes in the stimulus are one-dimensional, we'll simulate the response in one dimension.
We specify the input vector e as above:

8 Lect_5_LatInhibition.nb

In[286]:= e4 := Table[y[i, 170], {i, 1, width}];
ListPlot[e4]

Out[287]=

50 100 150 200 250

0.2

0.4

0.6

0.8

Let's assign weights consistent with Ernst Mach's 19th century hypothesis. The receptive field for one
output unit will be represented by: 5 weights, with a center value of 6, and 4 surround values of -1:

In[288]:= wp = Table[0, {i, 1, Length[e4]}];
wp〚1〛 = -1;
wp〚2〛 = -1;
wp〚3〛 = 6;
wp〚4〛 = -1;
wp〚5〛 = -1;
ListPlot[wp, Joined → True, PlotRange → {{0, 10}, {-2, 7}}, Filling → Axis]

Out[288]=

...or we could get a little more sophisticated, and use a common formula to model center-surround
organization, the difference of two Gaussian functions with different widths, a so-called “DOG” filter.
Here is a specific choice that specifies a wider filter than above:

In[289]:= wp = Table[2.5 * Exp[-((i - 15) / 4)^2] - Exp[-((i - 15) / 8)^2], {i, 1, Length[e4]}];
ListPlot[wp, Joined → True, PlotRange → {{0, width / 8}, {-2, 2}}, Filling → Axis]

Out[290]=

The plot shows the "center-surround" organization of the filter. Filters of this sort that have an antagonis-
tic center-surround organization are sometimes referred to as "Mexican hat" filters.

Now assume that all units have the same weights, and calculate the response at each point by shifting
the weight filter wp right one by one, and taking the dot product with the input pattern e4, each time:

Lect_5_LatInhibition.nb 9

Now assume that all units have the same weights, and calculate the response at each point by shifting
the weight filter wp right one by one, and taking the dot product with the input pattern e4, each time:

In[291]:= response = Table[RotateRight[wp,i].e4,{i,1,width-30}];

This way we can mimic the response we want:

In[292]:= ListPlot[response, Joined → True, Axes → False]

Out[292]=

Note that we cut the rotation short to eliminate boundary effects.

▶ 2. Show that you can do this operation as matrix multiplication, where each subsequent row of a matrix
W is the vector wp shifted over by one.

Convolution
This kind of operation where the same filter gets applied repeatedly at different positions is common in
signal processing. It is called discrete convolution. (Convolution can be defined in the continuous
domain as a specific kind of integration. More later.). Convolution is used in neural network modeling
whenever 1) a linear model is reasonable; 2) the same filter gets applied repeatedly across space (or
time), as one might expect when processing an image.

Mathematica has a function ListConvolve[] that does discrete convolutions. It has additional argu-
ments that allow for handling of the boundaries at the beginning and end of an input vector.

What should you do when the filter gets close to the end of the stimulus? A common default is to let the
filter wrap around. Another common solution is to "pad" the ends of e with fixed values, such as zero.
What does the retina do?

Here's ListPlot[] with the simpler center-surround receptive field, {-1, -1, 6, -1, -1}. In mathematics, the
filter vector used in convolution is sometimes called a "kernel”.

In[293]:= ListPlot[ListConvolve[{-1, -1, 6, -1, -1}, e4], Joined → True]

Out[293]=

50 100 150 200 250

0.5

1.0

1.5

▶ 3. What is the response to the ramp if the sum of the weights is zero? Build a simple edge detector. Let
kernel={-1,2,-1} and plot ListConvolve[kernel, e4].

Feedback model: Recurrent lateral inhibition
The above model abstracts away any dependence on the temporal dynamics of lateral inhibitory cir-
cuitry.
Let’s develop a different, dynamical model for lateral inhibition that includes time and feedback, that is
nonetheless still linear, but now captures the behavior of the network as it evolves in time. In other
words, we will model the temporal evolution of the state vector given an input.

There is neurophysiological evidence for an implementation of lateral inhibition via feedback, called
recurrent lateral inhibition.

We’ll first assume time is discrete, and then generalize to continuous time.

10 Lect_5_LatInhibition.nb

The above model abstracts away any dependence on the temporal dynamics of lateral inhibitory cir-
cuitry.
Let’s develop a different, dynamical model for lateral inhibition that includes time and feedback, that is
nonetheless still linear, but now captures the behavior of the network as it evolves in time. In other
words, we will model the temporal evolution of the state vector given an input.

There is neurophysiological evidence for an implementation of lateral inhibition via feedback, called
recurrent lateral inhibition.

We’ll first assume time is discrete, and then generalize to continuous time.

Dynamical systems: difference equation for one neuron
State of neuron output f at discrete time k.

For one neuron, let the output at time interval k+1 be:

f[k + 1] = e[k] + w f[k] (1)

▶ 4. Suppose the initial state f[0] is known and e[k] is zero, can you find an expression for f[k]? What
happens if w is less than one? Greater than one?

Dynamical systems: Coupled difference equations for interconnected neurons
Now consider a two neuron system. The formalism will extend naturally to higher dimensions. To keep
this simple, the weights for the inputs e are fixed at one, but we will specify weights for the newly added
feedback connections in order to capture the behavior of lateral inhibition:

Let e be the input activity vector to the neurons, f is the n-dimensional state vector representing output
activity and W is a fixed nxn weight matrix. Then for a two neuron network we have:

f1k + 1 = e1k + w 12 f2k + w 11 f1k

f2k + 1 = e2k + w 21 f1k + w 22 f2k

or in terms of vectors and matrices

f1k + 1

f2k + 1
=

e1k

e2k
+

w11 w12
w21 w22

f1k

f2k

or in summation notation:

Lect_5_LatInhibition.nb 11

fi[k + 1] = ei[k] +
j

wij.fj[k] (2)

or in concise vector-matrix (and Mathematica) notation:

f[k + 1] = e[k] + W .f[k] (3)

where W =
w11 w12

w21 w22

This equation is an example of a simple dynamical system, with state vector f. The state of the dynami-
cal system changes with time (i.e. with each iteration k).

Are there solutions for which the state does not change with time? If there are, these solutions are
called steady state solutions.

In contrast to the way we set up the weights for the feedforward matrix (which included the forward
excitatory weights), we are going to assume later that all of these weights are inhibitory (because we
are modeling lateral inhibition). The positive contributions come from the input e.

Steady state solution is mathematically equivalent to a linear feedforward model
Recall that the feedforward solution is just a matrix operation on the inputs: f = W’.e, where the first row
of W’ has the center-surround organization of the weights, e.g. w1 = {-1,-1,6,-1,-1,0,0,0,0,0,...}, and the
second row is shifted: {0,-1,-1,6,-1,-1,0,0,0,0,,...} and so forth.

Let’s compare the feedforward model with the recurrent feedback after the latter has “settled down”--i.e.
with its steady-state solution.

A steady-state solution simply means that the state vector f doesn't change with time:

fk + 1 = fk

or in vector and Mathematica notation:
 f = e + W.f
where we drop the index k. Note that by expressing f in terms of e, this is equivalent to another linear
matrix equation, the feedforward solution:

 I.f = e + W.f,
 (I - W)f = e,

Assume that we can solve this equation for f:

 f = W’.e,

Later when we review the basics of matrix algebra, we’ll see that the solution, W’, is given by:

 W’ = (I - W)-1
where the -1 exponent means the inverse of the matrix in brackets. And I is the identity matrix, which in

two dimensions is:
1 0
0 1

We will review more later on how to manipulate matrices, find the inverse of a matrix, etc.. But for the
time being, think of an identity matrix as the generalization of unity: 1. 1 times x returns x. And the
inverse is the generalization of taking the reciprocal of a number.

The point of the above derivation is that the steady-state solution for recurrent inhibition (i.e. with feed-
back) which is equivalent to non-recurrent linear network (no feedback, just feedforward).

In general, there may be more than one underlying neural circuit to explain the external behavior of a
network. Telling them apart requires doing the right kind of experiment.

12 Lect_5_LatInhibition.nb

We will review more later on how to manipulate matrices, find the inverse of a matrix, etc.. But for the
time being, think of an identity matrix as the generalization of unity: 1. 1 times x returns x. And the
inverse is the generalization of taking the reciprocal of a number.

The point of the above derivation is that the steady-state solution for recurrent inhibition (i.e. with feed-
back) which is equivalent to non-recurrent linear network (no feedback, just feedforward).

In general, there may be more than one underlying neural circuit to explain the external behavior of a
network. Telling them apart requires doing the right kind of experiment.

Dynamical system with continuous time-- theory of coupled differential equations
("limulus" equations)
In our discussion of the different types of neural models, we noted that continuous time is a more
realistic assumption for a neural network. So what if time is modeled continuously, and not in discrete
clocked chunks? We’ll extend the discrete time model to a continuous time model. But then to simulate
the dynamics, we'll have to go back to a discrete approximation, while keeping in mind that the behavior
might depend on the temporal grain of our discrete approximation. Temporal grain refers to how finely
we chop up time.

The theory for coupled discrete equations
fk + 1 = ek + W .fk

parallels the theory for continuous differential equations where time varies continuously:
df

dt
= e[t] + W″ .f[t]

(W ″ is not the same matrix asW .) If you want to learn more about dynamical systems, a classic text is
Luenberger, 1979)

Let's see how this might work.

Let e(t) be the input activity to the neurons, f(t) is the n-dimensional state vector representing output
activity, now as a function of time. W is a fixed nxn weight matrix. The equation in the previous section
is the steady state solution to the following differential equation:

df

dt
= e[t] + W .f[t] - f[t]

(You can see this by noting that as before, "steady state" just means that the values of f(t) are not
changing with time, i.e. df/dt = 0). We are going to develop a solution to this set of equations using a
discrete-time approximation.

df
dt ~ f (t+Δt)-f (t)

ϵ

The state vector f at time t+Δt (ϵ = Δt) can be approximated as:

We will fix or "clamp" the input e, start with arbitrary position of the state vector f, and model how the
state vector evolves through time. We'll ask whether it seeks a stable (i.e. steady) state for which f(t) is
no longer changing with time, f(t + Δt) = f(t), i.e. when df/dt = 0. In the limit as Δt (or ϵ) approaches
zero, the solution is given by the steady state solution of the previous section. But neural systems take
time to process their information and for the discrete time approximation, the system may not necessar-
ily evolve to the steady state solution.

Lect_5_LatInhibition.nb 13

We will fix or "clamp" the input e, start with arbitrary position of the state vector f, and model how the
state vector evolves through time. We'll ask whether it seeks a stable (i.e. steady) state for which f(t) is
no longer changing with time, f(t + Δt) = f(t), i.e. when df/dt = 0. In the limit as Δt (or ϵ) approaches
zero, the solution is given by the steady state solution of the previous section. But neural systems take
time to process their information and for the discrete time approximation, the system may not necessar-
ily evolve to the steady state solution.

Simulation of the dynamics of recurrent lateral inhibition
First we will initialize parameters for the number of neurons (size), the space constant of the lateral
inhibitory field (spaceconstant), the maximum strength of the inhibitory weights (maxstrength), the
number of iterations (iterations), and the feedback delay ϵ:

The input stimulus

In[294]:= size = 30;
spaceconstant =5;
maxstrength = 0.05;
iterations = 10;
ϵ = .3;

Now make the stimulus

In[299]:= e = Join[Table[0,{i,N[size/3]}],Table[i/N[size/3],
{i,N[size/3]}], Table[1,{i,N[size/3]}]];

g0 = ListPlot[e, PlotRange -> {{0,30},{-0.5,1.1}},PlotStyle->{RGBColor[1,0,0]}];
picture = Table[e,{i,1,30}];

In[302]:= ListPlot[e]

Out[302]=

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1.0

We've stored the graphic g0 of the input for later use, we can show it later with Show[g0].

Initializing the state vector and specifying the weights
Now we'll initialize the starting values of the output f to be random real numbers between 0 and 1,
drawn from a uniform distribution.

In[303]:= f = RandomReal[{0, 1}, size];

Now let's set up synaptic weights which are negative, but become weaker the further they get from the
neuron. We assume that the weights drop off exponentially away from each neuron:

14 Lect_5_LatInhibition.nb

In[304]:= W =
Table[N[-maxstrength Exp[-Abs[i-j]/spaceconstant],1],

{i,size},{j,size}];

ListPlot3D[W,ImageSize->Small]

Out[306]=

Note how the weight structure assumes “self-inhibition” corresponding to the figures of the one and two-
neuron models above.

Simulating the response

We are going to use the Mathematica function Nest[] to iterate through the limulus equations.
Nest[f, expr, n] gives an expression with f applied n times to expr. For example, if we have defined a
function T[], Nest[T,x,4] produces as output:

T[T[T[T[x]]]].

Let's express our discrete approximation for the limulus dynamical system in terms of a function, T,
which will get applied repeatedly to itself with Nest:

In[307]:= T[f_] := f + ϵ (e + W.f - f);

In[308]:= iterations = 15;
g1 = ListPlot[Nest[T, f, iterations],PlotJoined->True,

PlotRange -> {{0,30},{-.5,1.0}},PlotStyle->{RGBColor[0,0,1]}];
Show[g0,g1, Graphics[Text[iterations "iterations",

{size/2,-0.4}]]]

Out[310]=

15 iterations

5 10 15 20 25 30

-0.5

0.5

1.0

How does the simulation match up to data from the Limulus eye?

Lect_5_LatInhibition.nb 15

From Hartline's Nobel lecture http://www.nobel.se/medicine/laureates/1967/hartline-lecture.pdf. Figure
from: F. Ratliff and H.K. Hartline, J. Gen. Physiol., 42 (1959) 1241.

▶ 5. Google limulus

Explore the parameter space

The effect of ϵ, strength of inhibition, and number of iterations

Define a function with inputs: ϵ, maxstrength and iterations, and outputs: a plot of
response
We can use the Module[] function to define a routine with local variables and a set of other functions to
define limulus[ϵ_,maxstrength_,iterations_]:

In[311]:= limulus[ϵ_, maxstrength_, spaceconstant_, iterations_] :=

Module{f, W}, W = TableN-maxstrength ⅇ
-

Absi-j

spaceconstant , 1, {i, size}, {j, size};

f = RandomReal[{0, 1}, size];
T[f_] := f + ϵ (e + W.f - f);
g1 = ListPlot[Nest[T, f, iterations], Joined → True,

PlotRange → {{0, 30}, {-.5, 1.}}, PlotStyle → {RGBColor[0, 0, 1]}];

Showg0, g1, GraphicsTextiterations "iterations",
size

2
, -0.4

16 Lect_5_LatInhibition.nb

In[312]:= Manipulate[limulus[ϵ, maxstrength, spaceconstant, i], {{ϵ, .3}, 0, 1},
{{maxstrength, .05}, 0, .5}, {{spaceconstant, 5}, 1, 15, 1}, {i, 1, 15, 1}]

Out[312]=

ϵ

maxstrength

spaceconstant

i

iterations

5 10 15 20 25 30

-0.5

0.5

1.0

▶ 6. What does the steady state response look like if the inhibition is small (i.e. small maxstrength)?

▶ 7. What does the steady state response look like if the inhibition is large?

▶ 8. What does the steady state response look like if the spaceconstant is very small or very large?

▶ 9. Modify the simulation to investigate what happens if the iteration step-size, ϵ, is large (e.g. 1.5). Run
it limulus[] several times--i.e. try different initial conditions.

Neural networks as dynamical systems

We've explored a simple linear neural network that is a good model of limulus processing, and seems to
provide a possible explanation for human perception of Mach bands. Real neural networks typically
have non-linearities. There is no general theory of non-linear systems of difference or differential equa-
tions. But the exploration of this linear set does lead us to ask questions which are quite general about
dynamical systems:

 What does the trajectory in state-space look like?
 Does it go to a stable point?
 How many stable points or "attractors" are there?

 There are non-linear systems which show more interesting behavior in which one sees:

 Stable orbits

Chaotic trajectories in state-space
 "Strange" attractors

 We will return to some of the above questions later when we introduce Hopfield networks.

Lect_5_LatInhibition.nb 17

We've explored a simple linear neural network that is a good model of limulus processing, and seems to
provide a possible explanation for human perception of Mach bands. Real neural networks typically
have non-linearities. There is no general theory of non-linear systems of difference or differential equa-
tions. But the exploration of this linear set does lead us to ask questions which are quite general about
dynamical systems:

 What does the trajectory in state-space look like?
 Does it go to a stable point?
 How many stable points or "attractors" are there?

 There are non-linear systems which show more interesting behavior in which one sees:

 Stable orbits

Chaotic trajectories in state-space
 "Strange" attractors

 We will return to some of the above questions later when we introduce Hopfield networks.

Recurrent lateral inhibition & Winner-take-all (WTA)

Sometimes one would like to have a network that takes in a range of inputs, but as output would like the
neuron with biggest value to remain high, while all others are suppressed. (In computational vision, see
“non-maximum suppression”, which is sometimes used in edge detection.) In other words, we want the
network to make a decision. The limulus equations can be set up to act as such a "winner-take-all"
network. We will remove self-inhibition by setting all the diagonal elements of W to zero. We will also
add a non-linear thresholding function ("rectification") to set negative values to zero, and we will
increase the spatial extent of the inhibition.

Make a rectifying threshold function

In[313]:= thresh[x_] := N[If[x < 0.0, 0.0, x]];
SetAttributes[thresh, Listable];

Make a "tepee" stimulus and initialize the neural starting values

In[315]:= size = 30;
e2 = Join[{0,0},Table[0,{i,N[size/4]}],

Table[i/N[size/4],{i,N[size/4]}],
Table[(N[size/4]-i)/N[size/4],{i,N[size/4]}],
Table[0,{i,N[size/4]}]];

g2 = ListPlot[e2, PlotRange -> {{0,size},{-1,2.0}},PlotStyle→{RGBColor[1,0,0]},Axes→False]

Out[317]=

18 Lect_5_LatInhibition.nb

Define winnertakeall[] as for limulus[], but with no self-inhibition:

In[318]:= winnertakeall[ϵ_, maxstrength_, iterations_, spaceconstant_] :=

Module{f, W}, W = TableN-maxstrength ⅇ
-

Absi-j

spaceconstant , 1, {i, size}, {j, size};

For[i = 1, i ≤ size, i++, W〚i, i〛 = 0.];
f = RandomReal[{0, 1}, size];
T[f_] := thresh[f + ϵ (e2 + W.f - f)];
g1 = ListPlot[Nest[T, f, iterations], Joined → True,

PlotRange → {{0, size}, {-1, 2.`}}, PlotStyle → {RGBColor[0, 0, 1]}];

Showg2, g1, GraphicsTextiterations "iterations",
size

2
, -0.8`

▶ 10. Use ListPlot3D[W] to see the modified structure of the weight matrix

Wwta = W;
For[i = 1, i ≤ size, i++, Wwta〚i, i〛 = 0.];
ListPlot3D[Wwta, ImageSize → Small]

▶ 11. Run simulation: Find a set of parameters that will select the maximum response and suppress the
rest

5 10 15 20 25 30

-1

-0.5

0.5

1

1.5

2

100 iterations

If we think of the number of iterations to steady-state as "reaction time", how is this neural network for
making decisions? How sensitive is its function to the choice of parameters?

If you are having a hard time finding a good set of parameters, select the cell below, then go to Cell-
>Cell Properties->Cell Open, and then run it.

Lect_5_LatInhibition.nb 19

In[322]:= winnertakeall[.25, .95, 100, size]

Out[322]=

100 iterations

Next time

Review matrices. Representations of neural network weights.

References
Anderson, J. A. (1995). An Introduction to Neural Networks . Cambridge, MA: MIT Press. (Chapter 4.)
Boyaci, H., Fang, F., Murray, S. O., & Kersten, D. (2007). Responses to lightness variations in early
human visual cortex. Curr Biol, 17(11), 989-993.
Hartline, H. K., & Knight, B. W., Jr. (1974). The processing of visual information in a simple retina. Ann
N Y Acad Sci, 231(1), 12-8.
http://www.mbl.edu/animals/Limulus/vision/index.html
Hartline, HK, Wagner, HG, & Ratliff , F. (1956) Inhibition in the Eye of Limulus, Journal of General
Physiology, 39:5 pp.651-673
Komatsu, H. (2006). The neural mechanisms of perceptual filling-in. Nature Reviews Neuroscience,
7(3), 220–231. doi:10.1038/nrn1869
Knill, D. C., & Kersten, D. (1991). Apparent surface curvature affects lightness perception. Nature, 351,
228-230. (pdf) .http://gandalf.psych.umn.edu/~kersten/kersten-lab/demos/lightness.html
Luenberger, D.G. (1979). Introduction to dynamic systems : theory, models, and applications. (pp. xiv,
446). New York: Wiley.
Morrone, M. C., & Burr, D. (1988). Feature detection in human vision: A phase-dependent energy
model. Proceedings of the Royal Society of London. Series B: Biological Sciences, 221–245.
Ratliff, F., Knight, B. W., Jr., Dodge, F. A., Jr., & Hartline, H. K. (1974). Fourier analysis of dynamics of
excitation and inhibition in the eye of Limulus: amplitude, phase and distance. Vision Res, 14(11),
1155-68.
Wallis, S. A., & Georgeson, M. A. (2012). Mach bands and multiscale models of spatial vision: The role
of first, second, and third derivative operators in encoding bars and edges. Journal of Vision, 12(13),
18–18. doi:10.1167/12.13.18

Appendix

20 Lect_5_LatInhibition.nb

Appendix

Use NestList[] to store all the iterations before showing the results.

In[323]:= T2[f_] := f + ϵ (e + W.f - f);
temp = NestList[T2, f, 15];
Animate[
Show[g0, ListPlot[temp[[i]], PlotJoined → True, PlotRange → {{0, 30}, {-.5, 1.0}},

PlotStyle → {RGBColor[0, 0, 1]}], Graphics[Text[iterations "iterations",
{size / 2, -0.4}]]], {i, 1, 15, 1}]

Out[325]=

i

15 iterations

5 10 15 20 25 30

-0.5

0.5

1.0

▶ 12. Exercise: Make a gray-level image of the horizontal luminance pattern shown below.

Does the left uniform gray appear to be the same lightness as the right patch? Can you explain what
you see in terms of lateral inhibition?

In[326]:= low = 0.2; hi = 0.8;
left = 0.5; right = 0.5;
y2[x_] := left /; x<40
y2[x_] :=

((hi-low)/40) x + (low-(hi-low)) /; x>=40 && x<80
y2[x_] := right /; x>=80

Lect_5_LatInhibition.nb 21

In[331]:= Plot[y2[x], {x, 0, 120}, PlotRange → {0, 1}]

Out[331]=

0 20 40 60 80 100 120

0.2

0.4

0.6

0.8

1.0

▶ 13. Exercise: Hermann grid

Below is the Hermann Grid. Notice the phantom dark spots where the white lines cross. Can you
explain what you see in terms of lateral inhibition?

In[332]:= width2 = 5; gap = 1; nsquares = 6;

In[333]:= hermann = Flatten[Table[{Rectangle[{x, y}, {x + width2, y + width2}]},
{x, 0, (width2 + gap) * (nsquares - 1), width2 + gap},

{y, 0, (width2 + gap) * (nsquares - 1), width2 + gap}], 1];

In[334]:= Show[Graphics[hermann, AspectRatio → 1]]

Out[334]=

© 1998-2016 Daniel Kersten, Computational Vision Lab, Department of Psychology, University of Minnesota.

22 Lect_5_LatInhibition.nb

