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Clustering, K-Means,
Expectation-Maximization (EM)
Note on probabilistic population codes

Review: neural architecture of vision
Hierarchical view of visual neural architecture consisting of lateral, feedforward and feedback computa-
tions. 

Lateral organization/computation

Assumption is that lateral organization represents features or “concepts” at a given level of abstraction. 
E.g. an “edge” is a concept, but so is “elbow”, “face”, “body” and “scene”.

Self-organization of maps based on bringing similar features at the same level of abstraction close 
together on the cortical gray matter. E.g. edge orientation, spatial frequency, location in V1. Poses of 
the human head in the columnar structure of temporal areas.

Self-organization of receptive fields based on efficient coding. With connections to classical dimensional-
ity reduction methods such as principal components analysis, sparse coding/dictionary methods 
(including ICA), and contingent adaptation to maximize representational capacity. The idea is that 
statistical regularities in visual sensory patterns can be exploited to recode information into forms that 
are less redundant. 

Examples of lateral computations involving active linking and suppression of features that are likely or 
unlikely to be grouped. 



Left panel: patches from fox emerging behind tree. Middle panel: MRFs. Third panel: Das A, Gilbert CD (1999) Topography of contextual 
modulations mediated by short-range interactions in primary visual cortex.
Nature 399:655-661.

One of the problems of early local linking is that one may suffer from premature commitment--i.e. 
passing along the  wrong assignments to a higher level.

This is an argument for a “probabilistic principle of least commitment”, and for probabilistic representa-
tions of information, discussed in the last section of this notebook.

Motivation for today

Today we are going to continue the general topic of methods lateral organization or grouping as unsuper-
vised learning. We’ll first discuss a simple clustering algorithm callled K-Means, and then proceed to 
study EM, the “expectation maximization” algorithm, where we will be estimating the parameters of 
probability distributions. 

We’ll revisit linear regression but in the more general case where the data come from one of two lines, 
but we aren’t told which line. This problem is also encountered in vision where the visual system 
decides which of several surfaces the visual features come from.
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Given a distribution of patterns, for example below where each point represents a pattern with 2 fea-
tures, can one discover an underlying organization that assigns each pattern to one of n clusters, either 
exclusively or with a probability of membership:

Clustering
The larger goal is: given a set of unlabeled data x, 1) decompose them into M classes (w1, ...,wM), 
where M may or may not be known. 2) Learn p(x|w); 3) Discover new classes. 

We will look at the case of discovering classes when M is known, first with a deterministic model (K-
means), and then with a probabilistic model where the underlying generative processes has hidden or 
latent variables (EM).
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The larger goal is: given a set of unlabeled data x, 1) decompose them into M classes (w1, ...,wM), 
where M may or may not be known. 2) Learn p(x|w); 3) Discover new classes. 

We will look at the case of discovering classes when M is known, first with a deterministic model (K-
means), and then with a probabilistic model where the underlying generative processes has hidden or 
latent variables (EM).

K-means

Assume that data x in D is clustered around unknown mean values, ma. Assume the # of clusters is 
known -- fixed at k. 

Simultaneously associate data to the means and estimate the means by minimizing:

The third one is unsupervised learning. There are some hidden/latent/missing vari-
ables that are not specified by the training data. I.e., the training data is {x

1

, ..., x

n

} and
we assume that it is generated by a model P (x|w)P (w), where the w are unknown and
can be called latent/hidden/missing (Statisticians call them ’missing data’, Neural Net-
work researchers call them ’hidden units’, Machine Learning researchers call them ’latent
variables’). By contrast, in previous lectures, we assumed a model p(x) which was either
an exponential distribution or a non-parametric distribution.

We can think of this as learning a model P (x,w) and we can assume that this model
is of exponential form P (x,w) = 1

Z[�]

exp{� · �(x,w)}, i.e. an exponential distribution

defined over the observer units x and the unobserved units w (latent/hidden/missing). This
model can capture extremely complex models – stochastic grammars on natural language,
hierarchical models of objects, probabilistic models of reasoning. But these models are
harder to deal with than models without hidden variables. The models require: (i) learning
the structure – how the hidden and observed units interact (see later lectures) – which is
called ’structure induction’ and which is very di�cult, (ii) learning the parameters � of
the model if the structure is known – this is a non-convex optimization problem and so it
will have multiple minima. We will describe the basic algorithm for doing this – the EM
algorithm – later in this lecture. (Note: there is also a machine learning algorithm called
latent SVM which is like an approximation to EM). Note, there are also non-parametric
methods for learning P (x,w).

2 K-means

Basic Assumption:
the data D is clustered round (unknown) mean values m

1

, ...,m

k

, see figure 1. This is an
assumption about the ’structure of the model’.

Seek to associate the data to these means, and to simultaneously estimate the means.
For now, we assume that the number of means is known – i.e. k is fixed.

Idea: decompose D = [k
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a
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There are various algorithms. Deterministic K-means works by 
1) randomly choosing data points x and put them in k sets Da, a = 1 to k. 
2) calculate the mean of each cluster; 
3) for each data point calculate how far it is from each of these provisional means and assign it 

to the nearest one; 
4) repeat 2 and 3 until convergence.

In[12]:= data = RandomReal[{-1, 1}, {10^4, 2}];

In[13]:= cc = ClusteringComponents[data, 3, 1,
Method → "KMeans", "DistanceFunction" → SquaredEuclideanDistance];

In[14]:= means = Mean /@ {Pick[data, cc, 1], Pick[data, cc, 2], Pick[data, cc, 3]}

Out[14]= {{0.0262886, 0.609233}, {-0.561074, -0.329898}, {0.524062, -0.371086}}

In[15]:= Graphics[{LightBrown, Point@Pick[data, cc, 1], LightPurple, Point@Pick[data, cc, 2],
LightCyan, Point@Pick[data, cc, 3], {Brown, PointSize[Medium], Point@means[[1]]},
{Purple, PointSize[Medium], Point@means[[2]]},
{Cyan, PointSize[Medium], Point@means[[3]]}}]

Out[15]=

Here’s a second example:
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Generative model:

In[31]:= x1 = RandomVariate[MultinormalDistribution[{0, 0}, {{1, 0}, {0, 2}}], 500];
x2 = RandomVariate[MultinormalDistribution[{3, 0}, {{1, 0}, {0, 2}}], 500];
x3 = RandomVariate[MultinormalDistribution[{3, 3}, {{1, 0}, {0, 2}}], 500];
ggenerativem = Graphics@{Red, Point@x1, Green, Point@x2, Blue, Point@x3}

Out[34]=

Given unlabeled data:

In[25]:= data2 = Join[x1, x2, x3];
ListPlot[data2, AspectRatio → 1, Axes → False]

Out[26]=

In[28]:= cc2 = ClusteringComponents[data2, 3, 1,
Method → "KMeans", "DistanceFunction" → SquaredEuclideanDistance];

In[29]:= means = Mean /@ {Pick[data2, cc2, 1], Pick[data2, cc2, 2], Pick[data2, cc2, 3]}

Out[29]= {{2.58404, 0.348759}, {-0.273624, -0.633823}, {3.03263, 3.59689}}
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In[41]:= gkmeans =

Graphics[{Green, Point@Pick[data2, cc2, 1], Red, Point@Pick[data2, cc2, 2], Blue,
Point@Pick[data2, cc2, 3], {Yellow, PointSize[Large], Point@means[[1]]},
{Yellow, PointSize[Large], Point@means[[2]]},
{Yellow, PointSize[Large], Point@means[[3]]}}];

GraphicsRow[{ggenerativem, gkmeans}, ImageSize → Medium]

Out[42]=

Expectation Maximization (EM)
The Expectation Maximization algorithm crops up in a wide range of applications, including probability 
density estimation, clustering, and discovering prototypes from data. In principle, it is very general and 
is guaranteed to converge to a local likelihood maximum. The EM algorithm is a common procedure for 
integrating out "hidden variables"--i.e. for marginalizing.

Integrating out secondary variables

Generating samples from a Gaussian Mixture Distribution
Similar to the generative model used above, suppose we have several (hidden) processes each of 
which can contribute to our data.  In particular, let’s assume a mixture distribution consisting of five 
different bivariate gaussian distributions.

In[55]:= Clear[ndist];
ndist[μ_, Σ_] := MultinormalDistribution[μ, Σ];

In[57]:= r = .05;
σ = 1.0;
μ = Table[3 * N[{Cos[2 Pi i], Sin[2 Pi i]}], {i, 0, 2 Pi, Pi / 4}];
Σ = Table[{{σ, r}, {r, σ}}, {i, 0, 2 Pi, Pi / 4}];

Det[{{σ, r}, {r, σ}}]

Out[61]= 0.9975

The generator: randomindex := Random[Integer,{1,5}]; would give uniformly distributed mixing labels.

The following gives mixing probabilities of 1/7, 1/7, 3/7, 1/7 and 1/7 for distributions 1,2,3,4,5 
respectively.
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The following gives mixing probabilities of 1/7, 1/7, 3/7, 1/7 and 1/7 for distributions 1,2,3,4,5 
respectively.

In[63]:= randomindex := {1, 2, 3, 3, 3, 4, 5}〚RandomInteger[{1, 7}]〛

Thus our stochastic generative process can be written:

In[64]:= RandomReal[ndist[μ[[t = randomindex]], Σ[[t]]]]

Out[64]= {-0.521357, -1.08368}

In[65]:= scatterdata = Table[RandomReal[ndist[μ[[t = randomindex ]], Σ[[t]]]], {i, 1, 1500}];

In[66]:= ListPlot[scatterdata, AspectRatio → Automatic, ImageSize → Small]

Out[66]= -6 -4 -2 2 4
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The means, in an N-dimensional space for example, could represent prototypes in memory, and stan-
dard deviations the range of variability in the exemplars.

Given the kind of unlabeled data in the above example, how could one go about estimating not only the 
mixing probabilities, but also the means and covariances of the underlying generative processes?

Simple case & intuition
Let’s see how to estimate means in the simplest case of two unknown distributions.

Suppose there is some agent that randomly chooses whether to flash a bright ( a=1 ) or a dim ( a=2 ) 
light, and for each flash we make a measurement  x of the light intensity.

We want to estimate the two means (μa, where a =1 or 2) from a series of measurements (e.g. photon 
counts corresponding to light intensity),   {xi: i =1,...,N } , without knowing which measurement came 
from which light setting. 

Of course, if we knew which measurement came from which switch setting, our job would be  easy. 

Let Via be an indicator variable, where Via=1  if data point  xi  is generated by model  P(x| μa,  sigma ^2)  
and  Via = 0  otherwise, for  a=1,2. 

(Recall that we've used indicator functions before, as in the example of interpolation with missing data.)

Then using the usual formula for the estimate of the mean:
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Of course, if we knew which measurement came from which switch setting, our job would be  easy. 

Let Via be an indicator variable, where Via=1  if data point  xi  is generated by model  P(x| μa,  sigma ^2)  
and  Via = 0  otherwise, for  a=1,2. 

(Recall that we've used indicator functions before, as in the example of interpolation with missing data.)

Then using the usual formula for the estimate of the mean:

The problem is that the values of  Via  are unknown hidden variables that influence the observations. 
However, if we could  somehow estimate the probability of which switch generated each measurement  
xi, then the means could be approximated as:

where  Via  is the average value of  Via  and is given by  Via = p(Via=1 | xi) = p(a | xi) . This brings us a 
step closer to a solution, but raises another problem--to calculate  Via  we will need to know the means--
the very parameters we were trying to estimate in the first place! This is because p(a | xi) depends on 
the means for switch setting a=1 or a=2. In other words, we need the formula for p(a | xi, μa)  (= p(a | xi) 
). But the K-means example provides a clue. 

We could: 1) guess the two means, then assign each data point to one of them based on 
which is closer. Then,

2) estimate the means again based on this provisional assignment. 
And then repeat these two steps until convergence

Let's see how to justify our intuitive estimate of the means, and in the process solve the dilemma of how 
to determine the probability of which switch generated each measurement. Our goal will be to find the 
maximum likelihood estimates of the means (and eventually other state variables) conditional on the 
observations. We will derive the EM rules for a mixture of multi-variate gaussians.Then we will derive a 
more general rule for arbitrary discrete distributions.

Mixtures of multivariate gaussians
It is almost as easy to understand the derivation for a random vector (i.e. multivariate) as a random 
scalar, so we'll derive the results for the general vector case. 

Let  x  represent a d-dimensional vector generated from  a mixture of  M  Gaussian densities, with  s= 
{μa, Ca }  and  h= {a} , where   μa,  Ca , and  p(a)  are the vector means, covariance matrices, and 
mixture probabilities, respectively. 

(The notation s, and h is used later for an unknown parameter s (or a set s)-- a "primary variable", that 
we want to estimate, and another parameter h (or set h) that is hidden--a "secondary" or “latent” vari-
able. But we'll also see how to estimate p(a)). 

So the mixture probability distribution of x is:
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It is almost as easy to understand the derivation for a random vector (i.e. multivariate) as a random 
scalar, so we'll derive the results for the general vector case. 

Let  x  represent a d-dimensional vector generated from  a mixture of  M  Gaussian densities, with  s= 
{μa, Ca }  and  h= {a} , where   μa,  Ca , and  p(a)  are the vector means, covariance matrices, and 
mixture probabilities, respectively. 

(The notation s, and h is used later for an unknown parameter s (or a set s)-- a "primary variable", that 
we want to estimate, and another parameter h (or set h) that is hidden--a "secondary" or “latent” vari-
able. But we'll also see how to estimate p(a)). 

So the mixture probability distribution of x is:

where  a = 1,...,M , and   ∑ap(a) = 1 . The  p(x | a )  are the "class-conditional" probability densities, 
given by the standard expression for a multivariate gaussian distribution:

We are given a sequence of vector measurements   {xi : i =1,...,N }, where  xi now represents the ith 
sample vector (not the ith element of a vector x),  and wish to estimate the means, the covariances and 
mixing parameters. 

Let the probability that  xi  came from mixture component  a  be  p(xi | a). We assume independence, so 
the likelihood is given by the product:

Again taking the logs will help by turning products into sums. The log-likelihood is:

To maximize the likelihood, we can find the distribution parameters (μa,Ca) that minimize E. For the 
moment to keep things simple, suppose the mixing parameters and covariance matrices are known, 
and we want to estimate the means. The values of μa which maximize  E  can be found analytically by 
finding values of the means where the gradient values of E are zero:

where we've used Bayes rule:

Solving for the μ j ' s ( = μa ' s), we have

Lect_26_ClusteringEM.nb    9



This corresponds to the intuition we had above for the bright/dim example. 

Recall, the problem, of course, is that we don’t know p(a | xi). It  depends on  μa which we want to 
estimate..., so to get started we will just guess values for the means, μa,  and proceed with fingers 
crossed....

E&M iteration steps

Estimate conditional mixing probabilities: E-step
 Let  μa, t  be an initial guess of the mean for class a at time step t. Then in the E-step (E for 
"expectation") we let:

We can think of this as estimating the probability of which process the data, xi, belongs to (e.g. a = the 
bright vs. dim switch setting) based on our current guess of the mean.

And then find the mean that maximizes the likelihood of the data: M-step
Now that we have an estimate of the current conditional mixing probability, we proceed to update our 
estimates of the mean. 
This is the M-step ("maximization" step).

The EM algorithm then proceeds by going back to the E-step to recompute p(a | xi, μa) using the 
updated μa, followed by another M-step, and so on, until convergence. 

(It has been shown that in the general case of non-Gaussian distributions discussed below that EM will 
converge to a local minimum of the likelihood function.)

How about the covariance?
Suppose we don't know the covariance matrix or the mixing probabilities?  We can use the updated 
values of  pt(a|xi) ,

to progressively estimate the state parameters  Ca  and  p(a) , as well as   μa .  The M-step for the 
covariance is:
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to progressively estimate the state parameters  Ca  and  p(a) , as well as   μa .  The M-step for the 
covariance is:

M-step for covariance & p(a)

(where  ab^T  is the outer product between vectors  a  and  b). 

The mixing probabilities are estimated by:

Demo: Two gaussians, unknown μ's, σ's , and mixing 
probabilities

Generating samples from a Gaussian Mixture Distribution

Generative model

In[67]:= μ1 = 1.3; σ1 = 1; μ2 = 6.5; σ2 = 0.8; a1 = 0.16; a2 = 1 - a1;
p1dist = NormalDistribution[μ1, σ1];
p2dist = NormalDistribution[μ2, σ2];
p1[x_] := PDF[p1dist, x];
p2[x_] := PDF[p2dist, x];
samplemix := If[RandomReal[] < a1, RandomReal[p1dist], RandomReal[p2dist]];
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In[70]:= data = Table[samplemix, {i, 1, 500}];
Histogram[data, Epilog →

{Text["μ1=" <> ToString[μ1] <> ", σ1=" <> ToString[σ1] <> ", pa1=" <> ToString[a1],
{μ1, 40}], Text["μ2=" <> ToString[μ2] <> ", σ2=" <>

ToString[σ2] <> ", pa2=" <> ToString[a2], {μ2 - 2, 150}]}]

Out[71]=

EM algorithm--Now learn all the parameters--means, standard deviations, and 
mixing probabilities from the data

In[72]:= pxdm[x_, mu_, σ_] := PDF[NormalDistribution[mu, σ], x];

E-step: The prob of mixing labels conditional on the data x is:

In Mathematica code,

In[73]:= pmcx[a_, x_] := pxdm[x, μ[[a]], σ[[a]]] *

pa[[a]] / (pxdm[x, μ[[1]], σ[[1]]] * pa[[1]] + pxdm[x, μ[[2]], σ[[2]]] * pa[[2]]);
SetAttributes[pmcx, Listable]; (*pmcx is made listable so that
that it will automatically map over the data below*)

M-step: The maximum likelihood estimate of the means is:

or in Mathematica:

μ[[1]]=pmcx[1,data].data/Plus@@(pmcx[1,#]&/@data)
μ[[2]]=pmcx[2,data].data/Plus@@(pmcx[2,#]&/@data)

Similarly, the variances and mixing probabilities are also weighted averages:

σ[[1]]=Sqrt[pmcx[1,data].(data-μ[[1]])^2/Plus@@(pmcx[1,#]&/@data)]
σ[[2]]=Sqrt[pmcx[2,data].(data-μ[[2]])^2/Plus@@(pmcx[2,#]&/@data)]
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σ[[1]]=Sqrt[pmcx[1,data].(data-μ[[1]])^2/Plus@@(pmcx[1,#]&/@data)]
σ[[2]]=Sqrt[pmcx[2,data].(data-μ[[2]])^2/Plus@@(pmcx[2,#]&/@data)]

pa[[1]]=Plus@@(pmcx[1,#]&/@data)/Length[data]
pa[[2]]=Plus@@(pmcx[2,#]&/@data)/Length[data]

To estimate the unknown parameters from the data, we first initialize to random values:

In[75]:= μ = RandomReal[{-10, 10}, 2];
σ = RandomReal[{0, 10}, 2];
pa = {temp = RandomReal[], 1 - temp};

Then iterate for i=1 to iter. Note that the E-step occurs on the right-hand side, where pmcx[] is a function 
of the most recent value of the mean, std, and mixing parameters.

In[76]:= iter = 6;
μparameterList = Table[0, {a, 1, 2}, {k, 1, iter}];
σparameterList = μparameterList; paparameterList = μparameterList;
For[k = 1, k ≤ iter, k++,

For[a = 1, a ≤ 2, a++,
μ[[a]] = pmcx[a, data].data / Plus @@ (pmcx[a, #] & /@ data);
σ[[a]] = Sqrt[pmcx[a, data].(data - μ[[a]])^2 / Plus @@ (pmcx[a, #] & /@ data)];
pa[[a]] = Plus @@ (pmcx[a, #] & /@ data) / Length[data];
μparameterList[[a, k]] = μ[[a]];
σparameterList[[a, k]] = σ[[a]];
paparameterList[[a, k]] = pa[[a]];

];
];

Graph of the evolution of the mixing parameters
Blue line shows true values from the generative model.

In[80]:= ga = Show[{Plot[{pa〚1〛, pa〚2〛}, {x, 0, iter}, PlotStyle → Hue[0.5]],
ListPlot[{paparameterList〚1〛, paparameterList〚2〛}, Joined → True]},

PlotRange → {0, 1}, AxesOrigin → {0, 0}, AxesLabel → {"iteration", "pa"}];

Graph of the evolution of the means

In[81]:= gmeans = Show[{Plot[{μ〚1〛, μ〚2〛}, {x, 0, iter}, PlotStyle → Hue[0.5]],
ListPlot[{μparameterList〚1〛, μparameterList〚2〛}, Joined → True]},

PlotRange → {0, 8}, AxesOrigin → {0, 0}, AxesLabel → {"iteration", "μ"}];

Graph of  the evolution of the standard deviations

In[82]:= gsds = Show[{Plot[{σ〚1〛, σ〚2〛}, {x, 0, iter}, PlotStyle → Hue[0.5]],
ListPlot[{σparameterList〚1〛, σparameterList〚2〛}, Joined → True]},

PlotRange → {0, 5}, AxesOrigin → {0, 0}, AxesLabel → {"iteration", "σ"}];
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In[83]:= GraphicsRow[{ga, gmeans, gsds}, ImageSize → Large]

Out[83]=
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EM: Theory for arbitrary probability distributions
We'd like to generalize the theory, and also make clearer the function of EM in integrating out hidden or 
secondary variables. The notation s is used  for an unknown parameter s (or a set s), that we want to 
estimate (e.g. the means and covariances), and another parameter h (or set {hi}) that is hidden (e.g. an 
indicator variable representing the probability of mixing, p(a)).)

We'd like to find the value of s that maximizes the likelihood of the data {xi}, given other intervening 
variables hi.

The log-likelihood of the observations is given by:

To find the maximum of the likelihood, we calculate the derivative of the log-likelihood with respect to  s 
, and then set the derivative equal to zero:

Where we have used the relation (that you can prove from basic calculus):

Bringing the summation over hi towards the front, we have:

Again using the above derivative of a log relation, we have

Using Bayes rule and setting the expression to zero, we want to find s that satisfy:
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Summary of EM strategy in the general case
So following the above reasoning for the Gaussian case, the EM strategy for solving equation for  s  
involves two steps:

1) Given a guess,  s=st at step t , calculate 

2) Use this to solve 

to find the next  s=st+1 . Then iterate back to the E-step until convergence. Although the EM algorithm 
does converge, it doesn't necessarily converge to the maximum likelihood estimate.

Expectation Maximization -- Segmentation simulation
We've studied the problem of interpolation given missing data. We motivated the problem by the visual 
phenomenon of surface completion.  In a previous example, we used a local smoothness constraint. 
Another way is to do a parametric fit, which imposes global, rather than local, constraints. For example, 
a global constraint might look for surface fits among planes or quadratic surfaces, or splines.

Or even more complex shape models could be invoked. In the earlier ape-human figure, one could use 
a higher-level, global shape model (homo sapiens vs. Pan troglodyte) to disambiguate local edge 
groupings where the noses meet.

Another aspect of surface perception is our ability to take noisy data (e.g. depth cues), and not only 
interpolate the data as we saw with the Markov Random Field example, but also decide which of sev-
eral surfaces the data belong. This problem appears  with stereo and motion data (Madarasmi et al., 
1993; Kersten & Madarasmi, 1995) or optic flow  (Jepson, 1993; Weiss, 1997). 
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Free-fusing the above sparse stereogram pair produces a perception of two surfaces in depth, as 
illustrated by the depth vs. horizontal distance plot on the right.

A number of ways have been proposed to deal with this problem. EM (described above) is a general 
statistical technique developed in the 1970's that appears in various forms in many algorithms, including 
belief propagation. The algorithm has been applied to the surface estimation problem, e.g. from optic 
flow  (Jepson, 1993; Weiss, 1997). We go to Yair Weiss for a simple tutorial and demo.

Consider first Generative Model 1.
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Free-fusing the above sparse stereogram pair produces a perception of two surfaces in depth, as 
illustrated by the depth vs. horizontal distance plot on the right.

A number of ways have been proposed to deal with this problem. EM (described above) is a general 
statistical technique developed in the 1970's that appears in various forms in many algorithms, including 
belief propagation. The algorithm has been applied to the surface estimation problem, e.g. from optic 
flow  (Jepson, 1993; Weiss, 1997). We go to Yair Weiss for a simple tutorial and demo.

Consider first Generative Model 1.

Generative models

Two lines with (slopes, intercepts)  = (at1, bt1) and (at2, bt2). 

In[84]:= ndist = NormalDistribution[0, 2];

Generative model 1

In[85]:= {at1, bt1} = {-2, 40};
{at2, bt2} = {3, 1};
y1[x_] := at1 * x + bt1 + Random[ndist];
y2[x_] := at2 * x + bt2 + Random[ndist];
data = Table[{x, If[Abs[x - 3] < 1.5, y1[x], y2[x]]}, {x, 0, 6, .1}];
{x, y} = Transpose[data];
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Generative model 2 (you will need to make the cell property "evaluatable" to work)

{at1, bt1} = {-2, 15};
{at2, bt2} = {3, 1};

ndist = NormalDistribution[0, .25];
y1[x_] := at1 * x + bt1 + Random[ndist];
y2[x_] := at2 * x + bt2 + Random[ndist];

data = Table[{x, If[RandomReal[] < 0.5, y1[x], y2[x]]}, {x, 0, 6, 0.1}];
{x, y} = Transpose[data];

In[91]:= gdata = ListPlot[data]

Out[91]=
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EM algorithm

We now pretend we don’t know the values of the slopes and intercepts, and want to estimate them from 
the data.

The simplified logic of the EM algorithm is as follows. Start with random parameter values (slopes and 
intercepts, or a's and b's) for the two models. Iterate the E and M steps until convergence:

1. E-step: assign points to the line that are the best fit
2. M-step: update the line parameters using only the points assigned to it

...but with EM we will do “soft” assignment where probabilities are given to each data point as to 
whether it might have been caused by line 1 vs. line 2. And in the M-step, we will uses these weights to 
do weighted linear regression.

Initialize parameters to random values

In[92]:= σ = 0.1;
{a1, b1, a2, b2} = Table[10 RandomReal[], {4}];
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E-step
Compute residuals  r1, r2, the error in the predicted and actual y values under each of the two models.

In[111]:= r1 = a1 * x + b1 - y;
r2 = a2 * x + b2 - y;

Now we could just assign points based on which line parameters give the smallest residual. But we'd 
like to take into account our model of the conditional mixing probabilities, which also depend on the 
noisiness in the data. So we'll compute weights that correspond to the conditional mixing probabilities.

Using the residuals, compute weights. We'll assign these weights to data in the M-step later.

In[113]:= w1 = Exp[-r1^2 / σ] / (Exp[-r1^2 / σ] + Exp[-r2^2 / σ]);
w2 = Exp[-r2^2 / σ] / (Exp[-r1^2 / σ] + Exp[-r2^2 / σ]);

M-step
Standard linear regression doesn't assume that the data may have come from different sources. The 
least-squares solution (derivable from i.i.d. gaussian model for the data) is equivalent to solving:

But if the data come from different sources, with above weights we can compute weighted linear regres-
sion to estimate the slope and intercept parameters:

(For simplicity, we've dropped the subscript on the weights that indicates whether it is line 1 or line 2, 
and just keep the subscript indicating the weight for point i). 

In[115]:= {a1, b1} = Inverse[{{w1.(x x), w1.x}, {w1.x, Apply[Plus, w1]}}].{w1.(x y), w1.y};
{a2, b2} = Inverse[{{w2.(x x), w2.x}, {w2.x, Apply[Plus, w2]}}].{w2.(x y), w2.y};
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In[117]:= gfit = Plot[{a1 x + b1, a2 x + b2}, {x, 0, 6}];

Show

gfit, GraphicsPointSize[0.03], Transpose(Hue[#1] &) /@
w1

2
, Point /@ data,

PlotRange → All

Out[118]=
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Now manually run through the E and M steps again...and again, until convergence.

In[102]:= {{at1, bt1}, {a1, b1}, {at2, bt2}, {a2, b2}} // TableForm
Out[102]//TableForm=

-2 40
10.0913 5.21563
3 1
3.39444 3.61352

▶  1. Run EM with Generative Model 2. Increase the additive noise. How does attribution accuracy 
change? ("attribution" means assigning a point to its correct line)

▶  2. N=5 Multivariate gaussians, only data known: Implement EM to estimate means, variance, and 
mixing probabilities

Implement EM to estimate means, variance, and mixing probabilities

Neural representation of probability distributions?
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Neural representation of probability distributions?

Population codes
Lecture 24 supplementary material described an influential model of population coding for orientation 
that has been around for many decades.

-10 -5 5 10

0.5

1.0

1.5

2.0

Receptive fields of visual neurons typically overlap in space (e.g. a bright spot at one location creates a 
neural point spread function, the "projective field"). E.g. a bar at one orientation will more or less acti-
vate cells within a certain feature range (+/- 15 deg in V1).  Cell S firing at a rate of g spikes per second 
may not tell us the orientation of the stimulus (because the rate per second also depends on other 
dimensions of the stimulus, such as contrast). But suppose we have access to the responses of a 
bunch (i.e. population) of neurons all "seeing" the same stimulus bar. How can information (e.g. about 
orientation) be extracted from this pattern of activity? 

One can combine information across a population in terms of a "population vector".  Let xkbe a vector 
representing a stimulus feature (e.g. the kth 2-D position, or kth motion direction, or kth orientation, 
etc.). Let the firing rate of the ith cell be Ri(xk) in response to input xk. Let the feature that produces the 
peak response of the ith cell be xi

p -- i.e. xi
pis the ith cell's preferred feature, the one that fires the cell 

the most (the center of the tuning function, so Rixi
p is the maximum firing rate). 

Given an input feature xk, the firing rate of the ith cell can be interpreted as the strength of its "vote" for 
its preferred feature. So for the example of positional coding, position could be represented by the 
weighted average over the population of cells, each responding with various firing rates to xk:

x = 
i

Ri (xk) xi
p

This can be interpreted as a weighted average. (With a grandmother cell code, Ri (xk) = δik.)

Analogous to computing the center of mass, or an average, we can normalize the estimate by the total 
activity:

x = 
i

Ri (xk) xi
p
 

i

Ri (xk)

This measure has been applied to modeling sensory coding, and in the motor system, and cognitive 
processes involving direction of movement (Georgopoulos et al., 1993). In certain tasks the population 
vector can be measured in real neuronal ensembles and be seen to evolve in time consistent with 
behavioral measures (mental rotation, reach planning).

Population codes as probability distributions
How to avoid (or correct) problems with ealry, local commitment. 
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The Lecture 24 web page includes material on a probabilistic interpretation of population codes.

There are several ideas relevant to this lecture 26, and earlier course material on integrating information 
based on reliability. 

First, a probabilistic representation can be viewed as a specific example of the principle of least commit-
ment--i.e. represent the probabilities of ambiguous early features such as information for edge orienta-
tion, rather than make a decision. So if you have a local measurement say of an orientation at one 
location, and of another orientation at another location, decide whether to link them based on a 
weighted average. (Recall homework assignment on combining information from two different estimates 
of means.)

But the weights needs to be represented somehow in the brain. This is where probabilistic coding 
becomes important. The work by Pouget, Zemel, Ma, Knill, Latham and others provides the theoretical 
framework for how neural populations could not only represent probability distributions, but also com-
pute with them, including information integration, and do marginalization.
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