
Lateral organization
& neural codes

How do neural populations represent information?
Working assumptions:  

Lateral organization involves a population of neurons representing features at the 
same level of abstraction 

Receptive fields organized along a topographically mapped dimension with 
overlapping selectivities 

Decoding — inferring world property from spikes— requires extracting information 
from the population
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Perceptual encoding:  
learning to represent world properties in terms of firing 
patterns

Perceptual decoding:  
interpretation of encoded pattern by subsequent neural 
processes



Poisson noise

 Imagine the following process: we bin time into small 
intervals, δt. Then, for each interval, we toss a coin 
with probability, P(head) =p. If we get a head, we 
record a spike. This is the Bernoulli process of PS#1. 

 For small p, the number of spikes per second follows 
a Poisson distribution with mean p/δt spikes/second 
(e.g., p=0.01, δt=1ms, mean=10 spikes/sec).



Properties of a Poisson process 

• The variance should be equal to the mean 
• A Poisson process does not care about the past, i.e., at 

a given time step, the outcome of the coin toss is 
independent of the past (“renewal process”). 

• As a result, the inter-event intervals follow an 
exponential distribution (Caution: this is not a good 
marker of a Poisson process)



Poisson process and spiking

The inter spike interval (ISI) distribution is close to an 
exponential except for short intervals (refractory period) and 
for bursting neurons

Actual data Simulated Poisson Process



Poisson process and spiking

The variance in the spike count is proportional to the 
mean but the the constant of proportionality can be 
higher than 1 and the variance can be an polynomial 
function of the mean. Log σ2 = β Log a +log α

Poisson model



Is Poisson variability really noise? 

Where could it come from? 

Neurons embedded in a recurrent network with sparse connectivity 
tend to fire with statistics close to Poisson (Van Vreeswick and 
Sompolinski, Brunel, Banerjee) 

Could Poisson variability be useful for probabilistic computations? 
I.e. where knowledge of uncertainty is represented and used?

Poisson-like representations can be used for Bayesian integration of information



to illustrate population coding return to orientation selectivity
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Population Code

Tuning Curves Pattern of activity (r)
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The decoding problem
Given a stimulus with unknown orientation s, 
what can one say about s given a vector r 
representing the pattern of neural activity?

Bayesian approach: estimate the posterior 
 p(s|r)

Estimation theory: come up with a single value 
estimate from r



Advantages of a probabilistic 
representation
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Visuo-Tactile Integration

(Ernst and Banks, Nature, 2002)

Recall Ex 3 in PS #3: Derive the optimal rule for integrating 
two noisy measurements to estimate the mean
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Bimodal 
p(s|Vision,Touch)= 

Cue integration

S (Width)

αp(s|Vision) p(s|Touch)



Population codes

-45 0 45
0

20

40

60

80

100

Preferred stimulus

Population  
vector

r

Standard approach: estimating
A

ct
iv

ity
 (s

pi
ke

 c
ou

nt
)

Underlying assumption: population codes 
encode single values.



Probabilistic population codes
Alternative: compute a posterior distribution, p(s|r) from (Foldiak, 

1993; Sanger 1996).  
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Variability in neural 
r e s p o n s e s f o r a 
constant stimulus: 
Poisson-like

Preferred stimulus
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