
Introduction to Neural Networks
Daniel Kersten

Clustering, K-Means,
Expectation-Maximization (EM)

Initialize

Read in Statistical and Graphics Add-in packages:

Off[General::spell1];
Needs["ErrorBarPlots`"];
Needs["MultivariateStatistics`"];

Review: neural architecture of vision
Hierarchical view of visual neural architecture consisting of lateral, feedforward and feedback computa-
tions.

Lateral organization/computation

Assumption is that lateral organization represents features or “concepts” at a given level of abstraction.
E.g. an “edge” is a concept, but so is “elbow”, “face”, “body” and “scene”.

Self-organization of maps based on bringing similar features at the same level of abstraction close
together on the cortical gray matter. E.g. edge orientation, spatial frequency, location in V1. Poses of
the human head in the columnar structure of temporal areas.

Self-organization of receptive fields based on efficient coding. With connections to classical dimensional-
ity reduction methods such as principal components analysis, sparse coding/dictionary methods
(including ICA), and contingent adaptation to maximize representational capacity. The idea is that
statistical regularities in visual sensory patterns can be exploited to recode information into forms that
are less redundant.

Examples of lateral computations involving active linking and supppression of features that are likely or
unlikely to be grouped.

Das A, Gilbert CD (1999) Topography of contextual modulations mediated by short-range interactions in primary visual cortex. Nature
399:655-661.

One of the problems of early local linking is that one may suffer from premature committment--i.e. pass
along the wrong assignments to a higher level.

2 Lect_EM.nb

This is an argument for a “probabilistic principle of least commitment”, and for probablistic representa-
tions of information which we discussed last week.

Motivation for today

Today we are going to study EM, the “expectation maximization” algorithm. We will be estimating the
parameters of probability distributions.

We’ll revisit linear regression but where the data come from one of two lines, but we aren’t told which
line. This problem is also encountered in vision where the visual system decides which of several
surfaces the visual features come from.

Lect_EM.nb 3

1 2 3 4 5 6

10

20

30

40

Given a distribution of pattterns, for example below where each point represents a pattern with 2 fea-
tures, can one discover an underlying organization that assigns each pattern to one of n clusters, either
exclusively or with a probability of membership:

Clustering
The larger goal is: given a set of unlabeled data x, 1) decompose them into M classes (w1, ...,wM),
where M may or may not be known. 2) Learn p(x|w); 3) Discover new classes.

We will look at the case of discovering classes when M is known, first with a deterministic model (K-
means), and then with a probablistic model where the underlying generative processes has hidden or
latent variables (EM).

4 Lect_EM.nb

K-means

Assume that data x in D is clustered around unknown mean values, ma. Assume the # of clusters is
known -- fixed at k.

Simulaneously associate data to the means and estimate the means by minimizing:

The third one is unsupervised learning. There are some hidden/latent/missing vari-
ables that are not specified by the training data. I.e., the training data is {x

1

, ..., x

n

} and
we assume that it is generated by a model P (x|w)P (w), where the w are unknown and
can be called latent/hidden/missing (Statisticians call them ’missing data’, Neural Net-
work researchers call them ’hidden units’, Machine Learning researchers call them ’latent
variables’). By contrast, in previous lectures, we assumed a model p(x) which was either
an exponential distribution or a non-parametric distribution.

We can think of this as learning a model P (x,w) and we can assume that this model
is of exponential form P (x,w) = 1

Z[�]

exp{� · �(x,w)}, i.e. an exponential distribution

defined over the observer units x and the unobserved units w (latent/hidden/missing). This
model can capture extremely complex models – stochastic grammars on natural language,
hierarchical models of objects, probabilistic models of reasoning. But these models are
harder to deal with than models without hidden variables. The models require: (i) learning
the structure – how the hidden and observed units interact (see later lectures) – which is
called ’structure induction’ and which is very di�cult, (ii) learning the parameters � of
the model if the structure is known – this is a non-convex optimization problem and so it
will have multiple minima. We will describe the basic algorithm for doing this – the EM
algorithm – later in this lecture. (Note: there is also a machine learning algorithm called
latent SVM which is like an approximation to EM). Note, there are also non-parametric
methods for learning P (x,w).

2 K-means

Basic Assumption:
the data D is clustered round (unknown) mean values m

1

, ...,m

k

, see figure 1. This is an
assumption about the ’structure of the model’.

Seek to associate the data to these means, and to simultaneously estimate the means.
For now, we assume that the number of means is known – i.e. k is fixed.

Idea: decompose D = [k

a=1

D

a

, where D

a

is data associated with mean m

a

Mean of Fit F ({D
a

}) =
P

k

a=1

P
x2D

a

(x�m

a

)2

Want to select {m
a

}, and assignment x 2 D

a

to minimize the fit F (·).

Assignment Variable:
V

ia

= 1, if data x

i

is assigned to m

a

2

There are various algorithms. Deterministic K-means works by 1) randomly choosing data points x and
put them in k sets Da, a = 1 to k. 2) calculate the mean of each cluster; 3) For each data point calculate
how far it is from each of these provisional means and assign it to the nearest one; 4) repeat 2 and 3
until convergence.

In[112]:= data = RandomReal[{-−1, 1}, {10^4, 2}];

In[116]:= cc = ClusteringComponents[data, 3, 1, Method → "KMeans",
"DistanceFunction" → SquaredEuclideanDistance, "RandomSeed" → 1];

In[117]:= means = Mean /∕@ {Pick[data, cc, 1], Pick[data, cc, 2], Pick[data, cc, 3]}

Out[117]= {{0.608332, -−0.0165405}, {-−0.360212, 0.528569}, {-−0.382107, -−0.526764}}

In[118]:= Graphics[{LightBrown, Point@Pick[data, cc, 1], LightPurple, Point@Pick[data, cc, 2],
LightCyan, Point@Pick[data, cc, 3], {Brown, PointSize[Medium], Point@means[[1]]},
{Purple, PointSize[Medium], Point@means[[2]]},
{Cyan, PointSize[Medium], Point@means[[3]]}}]

Out[118]=

Here’s a second example:

Generative model:

Lect_EM.nb 5

In[119]:= x1 = RandomVariate[MultinormalDistribution[{0, 0}, {{1, 0}, {0, 2}}], 500];
x2 = RandomVariate[MultinormalDistribution[{3, 0}, {{1, 0}, {0, 2}}], 500];
x3 = RandomVariate[MultinormalDistribution[{3, 3}, {{1, 0}, {0, 2}}], 500];
Graphics@{Red, Point@x1, Green, Point@x2, Blue, Point@x3}

Out[122]=

Given unlabeled data:

In[123]:= data2 = Join[x1, x2, x3];
ListPlot[data2, AspectRatio → 1, Axes → False]

Out[124]=

In[125]:= cc2 = ClusteringComponents[data2, 3, 1, Method → "KMeans",
"DistanceFunction" → SquaredEuclideanDistance, "RandomSeed" → 1];

In[126]:= means = Mean /∕@ {Pick[data2, cc2, 1], Pick[data2, cc2, 2], Pick[data2, cc2, 3]}

Out[126]= {{-−0.0867872, -−0.0846732}, {2.88889, 3.22616}, {3.10053, -−0.252354}}

6 Lect_EM.nb

In[130]:= Graphics[{LightBrown, Point@Pick[data2, cc2, 1], Purple, Point@Pick[data2, cc2, 2],
Cyan, Point@Pick[data2, cc2, 3], {Red, PointSize[Large], Point@means[[1]]},
{Red, PointSize[Large], Point@means[[2]]},
{Red, PointSize[Large], Point@means[[3]]}}]

Out[130]=

EM
The Expectation Maximization algorithm can be viewed as an example of unsupervised learning and
crops up in a wide range of applications, including probability density estimation, clustering, and discover-
ing prototypes from data. In principle, it is very general and is guaranteed to converge to a local likeli-
hood maximum. The EM algorithm is a common procedure for integrating out "hidden variables"--i.e. for
marginalizing.

Integrating out secondary variables

Suppose we have 5 (hidden) processes each of which can contribute to our data.

Generating samples from a Gaussian Mixture Distribution

Clear[ndist];
ndist[μ_, Σ_] := MultinormalDistribution[μ, Σ];

r = .05;
σ = 1.0;
μ = Table[3 *⋆ N[{Cos[2 Pi i], Sin[2 Pi i]}], {i, 0, 2 Pi, Pi /∕ 4}];
Σ = Table[{{σ, r}, {r, σ}}, {i, 0, 2 Pi, Pi /∕ 4}];

Det[{{σ, r}, {r, σ}}]

0.9975

The generator: randomindex := Random[Integer,{1,5}]; would give uniformly distributed mixing labels.

The following gives mixing probabilities of 1/7, 1/7, 3/7, 1/7 and 1/7 for subdistributions 1,2,3,4,5
respectively.

Lect_EM.nb 7

randomindex := {1, 2, 3, 3, 3, 4, 5}〚RandomInteger[{1, 7}]〛

Thus our stochastic generative process can be written:

RandomReal[ndist[μ[[t = randomindex]], Σ[[t]]]]

{-−0.412204, -−3.19202}

scatterdata = Table[Random[ndist[μ[[t = randomindex]], Σ[[t]]]], {i, 1, 1500}];

ListPlot[scatterdata, AspectRatio → Automatic, ImageSize → Small]

-−4 -−2 2 4 6

-−6

-−4

-−2

2

4

For mixture distributions, we may not be directly interested in the mixing probabilities--but are interested
in the parameters of the distributions, e.g. the 5 means and their standard deviations. The means, in an
N-dimensional space for example, could represent prototypes in memory, and standard deviations the
range of variability in the exemplars.

Simple case & intuition
Suppose there is some agent that randomly chooses whether to flash a bright (a=1) or a dim (a=2)
light, and for each flash we make a measurement x of the light intensity.

We want to estimate the two means from a series of measurements (e.g. photon counts corresponding
to light intensity), {x_i: i =1,...,N } , without knowing which measurement came from which light setting.

Of course, if we knew which measurement came from which switch setting, our job would be easy.

Let V_{ia}=1 if data x_i is generated by model P(x| mu _a, sigma ^2) and V_{ia}=0 otherwise, for
a=1,2.

(Recall that we've used indicator functions before, as in the example of interpolation with missing data.)

Then using the usual formula for the estimate of the mean:

8 Lect_EM.nb

Of course, if we knew which measurement came from which switch setting, our job would be easy.

Let V_{ia}=1 if data x_i is generated by model P(x| mu _a, sigma ^2) and V_{ia}=0 otherwise, for
a=1,2.

(Recall that we've used indicator functions before, as in the example of interpolation with missing data.)

Then using the usual formula for the estimate of the mean:

The problem is that the values of V_{ia} are unknown hidden variables that influence the observations.
However, if we could somehow estimate the probability of which switch generated each measurement
x_i , then the means could be approximated as:

where Via is the average value of Via and is given by Via = p(Via=1 | xi) = p(a | xi) . This brings us a
step closer to a solution, but raises another problem--to calculate V {ia} we will need to know the
means--the very parameters we were trying to estimate in the first place! This is because p(a | xi)
depends on the means for switch setting a=1 or a=2. In other words, we need the formula for p(a | xi,
μ𝜇a) (= p(a | xi)). But the K-means example provides a clue. We could guess the two means, then
assign each data point to one of them based on which is closer. Then estimate the means again based
on this provisional assignment. And then repeat these two steps.

Let's see how to justify our intuitive estimate of the means, and in the process solve the dilemma of how
to determine the probability of which switch generated each measurement. Our goal will be to find the
maximum likelihood estimates of the means (and eventually other state variables) conditional on the
observations. We will derive the EM rules for a mixture of multi-variate gaussians.Then we will derive a
more general rule for arbitrary discrete distributions.

Mixtures of multivariate gaussians
It is almost as easy to see the derivation for a random vector (i.e. multivariate) as a random scalar, so
we'll derive the results for the general vector case.

Let x represent a d-dimensional vector generated from a mixture of M Gaussian densities, with s=
{μ𝜇a, Ca } and h= {a} , where μ𝜇a, Ca , and p(a) are the vector means, covariance matrices, and
mixture probabilities, respectively.

The notation s, and h is used later for an unknown parameter s (or a set s)-- a "primary variable", that
we want to estimate, and another parameter h (or set h) that is hidden--a "secondary" or “latent” vari-
able. (But we'll also see how to estimate p(a)).

So the mixture probability distribution of x is:

Lect_EM.nb 9

where a = 1,...,M , and ∑ap(a) = 1 . The p(x | a) are the "class-conditional" probability densities:

We are given a sequence of vector measurements {xi : i =1,...,N } and wish to estimate the means, the
covariances and mixing parameters.

Let the probability that xi came from mixture component a be p(xi | a). We assume independence, so
the likelihood is:

The log-likelihood is given by:

For the moment to keep things simple, suppose the mixing parameters and covariance matrices are
known, and we want to estimate the means. The values of μ𝜇a which maximize E can be found analyti-
cally by finding values of the means where the gradient values of E are zero:

where we've used:

Solving for the μ𝜇 j ' s (= μ𝜇a ' s), we have

This corresponds to the intuition we had above for the bright/dim example.

Recall, the problem, of course, is that we don’t know p(a | xi). It depends on μ𝜇a which we want to
estimate..., so to get started we will just guess values for the means, μ𝜇a, and proceed....

10 Lect_EM.nb

E&M iteration steps

Estimate conditional mixing probabilities: E-step
 Let μ𝜇a, t be an initial guess at time step t. Then in the E-step (E for "expectation") we let:

We can think of this as estimating the probability of which process the data, xi, belongs to (e.g. a = the
bright vs. dim switch setting) based on our current guess of the mean.

And then find the mean that maximizes the likelihood of the data: M-step
Now that we have an estimate of the current conditional mixing probability, we proceed to update our
estimates of the mean.
This is the M-step ("maximization" step).

The EM algorithm then proceeds by going back to the E-step to recompute p(a | xi, μ𝜇a) using the
updated μ𝜇a, followed by another M-step, and so on, until convergence.

(It has been shown that in general, EM will converge to a local minimum of the likelihood function.)

How about the covariance?
Suppose we don't know the covariance matrix or the mixing probabilities? We can use the updated
values of p_t(a|x_i) ,

to progressively estimate the state parameters C_a and p(a) , as well as mu_a . The M-step for the
covariance is:

M-step for covariance & p(a)

(where ab^T is the outer product between vectors a and b). The mixing probabilities are estimated
by:

Lect_EM.nb 11

Demo: Two gaussians, unknown μ𝜇's σ𝜎's , and mixing
probabilities

Generating samples from a Gaussian Mixture Distribution

Generative model

In[148]:= μ1 = 1.3; σ1 = 1; μ2 = 6.5; σ2 = 0.8; a1 = 0.16; a2 = 1 -− a1;
p1dist = NormalDistribution[μ1, σ1];
p2dist = NormalDistribution[μ2, σ2];
p1[x_] := PDF[p1dist, x];
p2[x_] := PDF[p2dist, x];
samplemix := If[RandomReal[] < a1, RandomReal[p1dist], RandomReal[p2dist]];

In[151]:= data = Table[samplemix, {i, 1, 500}];
Histogram[data, Epilog →

{Text["μ1=" <> ToString[μ1] <> ", σ1=" <> ToString[σ1] <> ", pa1=" <> ToString[a1],
{μ1, 40}], Text["μ2=" <> ToString[μ2] <> ", σ2=" <>
ToString[σ2] <> ", pa2=" <> ToString[a2], {μ2 -− 2, 150}]}]

Out[152]=

EM algorithm--Now learn all the parameters--means, standard deviations, and
mixing probabilities from the data

In[153]:= pxdm[x_, mu_, σ_] := PDF[NormalDistribution[mu, σ], x];

E-step: The prob of mixing labels conditional on the data x is:

12 Lect_EM.nb

In Mathematica code,

In[154]:= pmcx[a_, x_] := pxdm[x, μ[[a]], σ[[a]]] *⋆
pa[[a]] /∕ (pxdm[x, μ[[1]], σ[[1]]] *⋆ pa[[1]] + pxdm[x, μ[[2]], σ[[2]]] *⋆ pa[[2]]);

SetAttributes[pmcx, Listable]; (*⋆pmcx is made listable so that
that it will automatically map over the data below*⋆)

M-step: The maximum likelihood estimate of the means is:

or in Mathematica:

μ𝜇[[1]]=pmcx[1,data].data/Plus@@(pmcx[1,#]&/@data)
μ𝜇[[2]]=pmcx[2,data].data/Plus@@(pmcx[2,#]&/@data)

Similarly, the variances and mixing probabilities are also weighted averages:

σ𝜎[[1]]=Sqrt[pmcx[1,data].(data-μ𝜇[[1]])^2/Plus@@(pmcx[1,#]&/@data)]
σ𝜎[[2]]=Sqrt[pmcx[2,data].(data-μ𝜇[[2]])^2/Plus@@(pmcx[2,#]&/@data)]

pa[[1]]=Plus@@(pmcx[1,#]&/@data)/Length[data]
pa[[2]]=Plus@@(pmcx[2,#]&/@data)/Length[data]

To estimate the unknown parameters from the data, we first initialize to random values:

In[156]:= μ = RandomReal[{-−10, 10}, 2]; σ = RandomReal[{0, 10}, 2];
pa = {temp = RandomReal[], 1 -− temp};

Then interate for i=1 to iter. Note that the E-step occurs on the right-hand side, where pmcx[] is a
function of the most recent value of the mean, std, and mixing parameters.

In[157]:= iter = 6;
μparameterList = Table[0, {a, 1, 2}, {k, 1, iter}];
σparameterList = μparameterList; paparameterList = μparameterList;
For[k = 1, k ≤ iter, k++,

For[a = 1, a ≤ 2, a++,
μ[[a]] = pmcx[a, data].data /∕ Plus @@ (pmcx[a, #] & /∕@ data);
σ[[a]] = Sqrt[pmcx[a, data].(data -− μ[[a]])^2 /∕ Plus @@ (pmcx[a, #] & /∕@ data)];
pa[[a]] = Plus @@ (pmcx[a, #] & /∕@ data) /∕ Length[data];
μparameterList[[a, k]] = μ[[a]];
σparameterList[[a, k]] = σ[[a]];
paparameterList[[a, k]] = pa[[a]];

];
];

Graph of the evolution of the mixing parameters
Blue line shows true values from the generative model.

Lect_EM.nb 13

In[161]:= ga = Show[{Plot[{pa〚1〛, pa〚2〛}, {x, 0, iter}, PlotStyle → Hue[0.5]],
ListPlot[{paparameterList〚1〛, paparameterList〚2〛}, Joined → True]},

PlotRange → {0, 1}, AxesOrigin → {0, 0}, AxesLabel → {"iteration", "pa"}];

Graph of the evolution of the means

In[162]:= gmeans = Show[{Plot[{μ〚1〛, μ〚2〛}, {x, 0, iter}, PlotStyle → Hue[0.5]],
ListPlot[{μparameterList〚1〛, μparameterList〚2〛}, Joined → True]},

PlotRange → {0, 8}, AxesOrigin → {0, 0}, AxesLabel → {"iteration", "μ"}];

Graph of the evolution of the standard deviations

In[163]:= gsds = Show[{Plot[{σ〚1〛, σ〚2〛}, {x, 0, iter}, PlotStyle → Hue[0.5]],
ListPlot[{σparameterList〚1〛, σparameterList〚2〛}, Joined → True]},

PlotRange → {0, 5}, AxesOrigin → {0, 0}, AxesLabel → {"iteration", "σ"}];

In[164]:= GraphicsRow[{ga, gmeans, gsds}, ImageSize → Large]

Out[164]=

1 2 3 4 5 6
iteration

0.2
0.4
0.6
0.8
1.0

pa

1 2 3 4 5 6
iteration

2

4

6

8

μ𝜇

1 2 3 4 5 6
iteration

1

2

3

4

5

σ𝜎

EM: Theory for arbitrary probability distributions
We'd like to generalize the theory, and also make clearer the function of EM in integrating out hidden or
secondary variables. The notation s is used for an unknown parameter s (or a set s), that we want to
estimate (e.g. the means and covariances), and another parameter h (or set {hi}) that is hidden (e.g. an
indicator variable representing the probability of mixing, p(a)).)

We'd like to find the value of s that maximizes the likelihood of the data {xi}, given other intervening
variables hi.

The log-likelihood of the observations is given by:

To find the maximum of the likelihood, we calculate the derivative of the log-likelihood with respect to s
, and then set the derivative equal to zero:

Where we have used the relation (that you can prove from basic calculus):

14 Lect_EM.nb

Bringing the summation over hi towards the front, we have:

Again using the above derivative of a log relation, we have

Using Bayes rule and setting the expression to zero, we want to find s that satisfy:

Summary of EM strategy
So following the above reasoning for the Gaussian case, the EM strategy for solving equation for s
involves two steps:

1) Given a guess, s=st at step t , calculate

2) Use this to solve

to find the next s=st+1 . Then iterate back to the E-step until convergence. Although the EM algorithm
does converge, it doesn't necessarily converge to the maximum likelihood estimate.

Expectation Maximization -- Segmentation simulation
We've studied the problem of interpolation given missing data. We motivated the problem by the visual
phenomenon of surface completion. In a previous example, we used a local smoothness constraint.
Another way is to do a parametric fit, which imposes global, rather than local, constraints. For example,
a global constraint might look for surface fits among planes or quadratic surfaces, or splines.
Or even more complex shape models could be invoked. In the earlier ape-human figure, one could use
a higher-level, global shape model to disambiguate local edge groupings where the noses meet.

Lect_EM.nb 15

Another aspect of surface perception is our ability to take noisy data (e.g. depth cues), and not only
interpolate the data, but also decide which of several surfaces the data belong. This problem appears
with stereo and motion data (Madarasmi et al., 1993; Kersten & Madarasmi, 1995) or optic flow
(Jepson, 1993; Weiss, 1997).

1 2 3 4 5 6

10

20

30

40

A number of ways have been proposed to deal with this problem. EM (described above) is a general
statistical technique developed in the 1970's that appears in various forms in many algorithms, including
belief propagation. The algorithm has been applied to the surface estimation problem, e.g. from optic
flow (Jepson, 1993; Weiss, 1997). We go to Yair Weiss again for a simple tutorial and demo.

Consider first Generative Model 1.

Generative models

Two lines with (slopes, intercepts) = (at1, bt1) and (at2, bt2).

In[165]:= ndist = NormalDistribution[0, 2];

Generative model 1

In[166]:= {at1, bt1} = {-−2, 40};
{at2, bt2} = {3, 1};
y1[x_] := at1 *⋆ x + bt1 + Random[ndist];
y2[x_] := at2 *⋆ x + bt2 + Random[ndist];
data = Table[{x, If[Abs[x -− 3] < 1.5, y1[x], y2[x]]}, {x, 0, 6, .1}];
{x, y} = Transpose[data];

16 Lect_EM.nb

Generative model 2 (you will need to make the cell property "evaluatable" to work)

{at1, bt1} = {-−2, 15};
{at2, bt2} = {3, 1};

ndist = NormalDistribution[0, .25];
y1[x_] := at1 *⋆ x + bt1 + Random[ndist];
y2[x_] := at2 *⋆ x + bt2 + Random[ndist];

data = Table[{x, If[RandomReal[] < 0.5, y1[x], y2[x]]}, {x, 0, 6, 0.1}];
{x, y} = Transpose[data];

In[172]:= gdata = ListPlot[data]

Out[172]=

1 2 3 4 5 6

10

20

30

40

EM algorithm

We now pretend we don’t know the values of the slopes and intercepts, and want to estimate them from
the data.

The simplified logic of the EM algorithm is as follows. Start with random parameter values (slopes and
intercepts, or a's and b's) for the two models. Iterate the E and M steps until convergence:

1. E-step: assign points to the line that are the best fit
2. M-step: update the line parameters using only the points assigned to it

...but with EM we will do “soft” assignment where probabilities are given to each data point as to
whether it might have been caused by line 1 vs. line 2. And in the M-step, we will uses these weights to
do weighted linear regression.

Initialize parameters to random values

In[173]:= σ = 0.1;
{a1, b1, a2, b2} = Table[10 RandomReal[], {4}];

E-step
Compute residuals r1, r2, the error in the predicted and actual y values under each of the two models.

Lect_EM.nb 17

In[184]:= r1 = a1 *⋆ x + b1 -− y;
r2 = a2 *⋆ x + b2 -− y;

Now we could just assign points based on which line parameters give the smallest residual. But we'd
like to take into account our model of the conditional mixing probabilities, which also depend on the
noisiness in the data. So we'll compute weights that correspond to the conditional mixing probabilities.

Using the residuals, compute weights. We'll assign these weights to data in the M-step later.

In[186]:= w1 = Exp[-−r1^2 /∕ σ] /∕ (Exp[-−r1^2 /∕ σ] + Exp[-−r2^2 /∕ σ]);
w2 = Exp[-−r2^2 /∕ σ] /∕ (Exp[-−r1^2 /∕ σ] + Exp[-−r2^2 /∕ σ]);

M-step
Standard linear regression doesn't assume that the data may have come from different sources. The
least-squares solution (derivable from i.i.d. gaussian model for the data) is equivalent to solving:

But if the data come from different sources, with above weights we can compute weighted linear regres-
sion to estimate the slope and intercept parameters:

(For simplicity, we've dropped the subscript on the weights that indicates whether it is line 1 or line 2,
and just keep the subscript indicating the weight for point i).

In[188]:= {a1, b1} = Inverse[{{w1.(x x), w1.x}, {w1.x, Apply[Plus, w1]}}].{w1.(x y), w1.y};
{a2, b2} = Inverse[{{w2.(x x), w2.x}, {w2.x, Apply[Plus, w2]}}].{w2.(x y), w2.y};

In[190]:= gfit = Plot[{a1 x + b1, a2 x + b2}, {x, 0, 6}];

Show

gfit, GraphicsPointSize[0.03], Transpose(Hue[#1] &) /∕@
w1

2
, Point /∕@ data,

PlotRange → All

Out[191]=

1 2 3 4 5 6

10

20

30

40

Now manually run through the E and M steps again...and again, until convergence.

18 Lect_EM.nb

In[192]:= {{at1, bt1}, {a1, b1}, {at2, bt2}, {a2, b2}} /∕/∕ TableForm
Out[192]//TableForm=

-−2 40
-−1.32923 37.8966
3 1
3.0105 1.72034

Exercises

Run EM with Generative Model 2. Increase the additive noise. How does attribution accuracy change? ("attribution" means assigning a point to
its correct line)

N=5 Multivariate gaussians, only data known: Implement EM to estimate means, variance, and mixing probabilities

Implement EM to estimate means, variance, and mixing probabilities

References
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum Likelihood from Incomplete Data via the
EM Algorithm. J. Roy. Stat. Soc., B39, 1-38.
Frey, B. J. (1998). Graphical Models for Machine Learning and Digital Communication. Cambridge,
Massachusetts: MIT Press.
Gershenfeld, N. A. (1999). The nature of mathematical modeling. Cambridge ; New York: Cambridge
University Press.
Jepson, A., & Black, M. J. (1993). Mixture models for optical flow computation. Paper presented at the
Proc. IEEE Conf. Comput. Vsion Pattern Recog., New York.
Kersten, D., & Madarasmi, S. (1995). The Visual Perception of Surfaces, their Properties, and Relation-
ships. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 19, 373-389.
Madarasmi, S., Kersten, D., & Pong, T.-C. (1993). The computation of stereo disparity for transparent
and for opaque surfaces. In C. L. Giles & S. J. Hanson & J. D. Cowan (Eds.), Advances in Neural
Information Processing Systems 5. San Mateo, CA: Morgan Kaufmann Publishers.
Weiss, Y. (1997). Smoothness in Layers: Motion segmentation using nonparametric mixture estimation.
Paper presented at the Proceedings of IEEE conference on Computer Vision and Pattern Recognition.
Yuille, A., Coughlan J., Kersten D.(1998) (pdf)

Lect_EM.nb 19

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum Likelihood from Incomplete Data via the
EM Algorithm. J. Roy. Stat. Soc., B39, 1-38.
Frey, B. J. (1998). Graphical Models for Machine Learning and Digital Communication. Cambridge,
Massachusetts: MIT Press.
Gershenfeld, N. A. (1999). The nature of mathematical modeling. Cambridge ; New York: Cambridge
University Press.
Jepson, A., & Black, M. J. (1993). Mixture models for optical flow computation. Paper presented at the
Proc. IEEE Conf. Comput. Vsion Pattern Recog., New York.
Kersten, D., & Madarasmi, S. (1995). The Visual Perception of Surfaces, their Properties, and Relation-
ships. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 19, 373-389.
Madarasmi, S., Kersten, D., & Pong, T.-C. (1993). The computation of stereo disparity for transparent
and for opaque surfaces. In C. L. Giles & S. J. Hanson & J. D. Cowan (Eds.), Advances in Neural
Information Processing Systems 5. San Mateo, CA: Morgan Kaufmann Publishers.
Weiss, Y. (1997). Smoothness in Layers: Motion segmentation using nonparametric mixture estimation.
Paper presented at the Proceedings of IEEE conference on Computer Vision and Pattern Recognition.
Yuille, A., Coughlan J., Kersten D.(1998) (pdf)

© 2000, 2001, 2003, 2005, 2007, 2009, 2011, 2012, 2014 Daniel Kersten, Computational Vision Lab, Department of Psychology, University
of Minnesota.
 (http://vision.psych.umn.edu/www/kersten-lab/kersten-lab.html)

20 Lect_EM.nb

