Lateral organization
& computation cont’'d

lateral organization

Why the organization? The level of abstraction?

« Keep similar features together for feedforward
integration.

Lateral computations to group features of
similar type—segmentation

Efficiency constraints

One location column

1 _% (entire darkened area)

¢ Minimum wiring constraint

to keep stmilar features near..
but Vi is ~ 2B, and many features!

« Efficient representation of sensory input &
cost of neural activity

Right and left Set of orientation
ocular dominance columns from
o X . columns 0 to 180 degrees
« Efficient representations for learning Figure 3.30

how can Layout be Learned?

Durbin, R., & Mitchison, G. (1990). A dimension reduction
Ts'o, D. Y., Frostig, R. D., Lieke, E. E., & Grinvald, A. (1990, 27 framework for understanding cortical maps. Nature, 343,
July 1990). Functional Organization of Primate Visual Cortex
Revealed by High Resolution Optical Imaging. Science, 249,
417-420

Kohonen map demo: Mapping 2D to 1D

Tanaka, K. (2003). Columns for complex visual object features
? in the inferotemporal cortex: clustering of cells with similar but
Just viz? slightly different stimulus selectivities. Cereb Cortex, 13(1),
90-99.

lateral organization:“maps”’

Why the organization? The level of abstraction?

* Keep similar features together for
feedforward integration.

» Lateral computations to group features of
similar type—segmentation e

 Efficiency constraints
* Minimum wiring constraint

« Efficient representation of sensory input
& cost of neural activity

» Efficient representations for learning

Markov Random Fleld models




Grouping
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link contours with similar
orientations
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link regions with similar
colors, textures

what should the Local features be? How many different types?

orior + likelihood

. ..but would the visual system
prior need to “denoise”?

what is notse anyway?

Human fMRI evidence for lateral computations?

Craik-O’Brien-Cornsweet illusion

What are the features that are being linked?

image = f(pigment, illumination) ~ r(x,y) x e(x,y)

reflectance pattern, r(x,y) iIIumination,U
N\
AN

image pattern JI/

estimate pigment property--the reflectance, and discount illumination

perceptual .-’
inference

prior probabilistic structure:
illumination spatially smooth
reflectance is piece-wise constant.
E.g. gibbs sampler texture demo
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V1 response follows
perceived lightness,
not physical intensity

Purely lateral? Don'’t
know. But neuroimaging
effect persists with when
attention is diverted.

LOcalized V1

responses here should be the
same with standard feedforward
model

Boyaci, H., Fang, F, Murray, S. O., & Kersten, D. (2007). Current Biology, 17(1 1), 989-993.

lateral organization

Why the organization? The level of abstraction?

» Keep similar features together for
feedforward integration.

» Lateral computations to group features of
similar type—segmentation

« Efficiency constraints
* Minimum wiring constraint

» Efficient representation of sensory input how caw receptive field weights
& cost of neural activity be Learned?

« Efficient representations for learning

both unsupervised, and supervised learning
methods

Unsupervised learning of
receptive fields

« Unsupervised learning assumes there is statistical
structure to be discovered in the sensory input

» Exploit regularities in natural image input to either
reduce redundancy or dimensionality, or reduce
#active neurons with minimal loss of information.

“efficient coding theories”

Types of structure

1rst order
What to do with the structure?

Recode to eliminate it
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Types of structure
2nd order

Kersten, D. (1987). Predictabilty
and redundancy of natural images
J Opt Soc Am A, 4(12), 2395-2400

Pixel colors can predict the colors of
their neighbors

Gives rise to neural network models that
are closely related to principles of
image compression developed in signal
processing theory, as in “difference
coding”

R(x) = L(x) - L(x-1)

which exploits the observation that L(x)
is often ~ L(x-1)

this looks Like Lateral tnhibition!

R(2) = L(2) = X0, w(e — #/)L()

Types of structure

2nd order

Dimensionality reduction via
Principal Components Analysis (PCA)

decorrelates the input

2 pixel example:
and provides the basis for
throwing out dimensions
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I(x,y) = 21‘11'(7‘7)’)51'

Principal Components Analysis (PCA) with neural networks

X, 9 Y,
3
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Hebbian learning + Oja’s rule to normalize weights:
quj =a(xjyi_ qijyiz)

Oja’s rule automatically normalizes:

XA
ij

..but because of symmetry, this network will only pull out the
first principal component, and does it twice (in this case)

A solution?

Agq; = arxjyi =Y Eqkjyk\\
\ =

Sanger, T. (1989). Optimal unsupervised learning in a single-layer linear feedforward
neural network. Neural Networks, 2, 459-473.

...but this still seems dissatisfying because one neuron would
do lots of work, the next less so, and the next even less, etc..

A solution?




“autoencoder networks”

use backprop to find weights that encourage L to predict its
own values: input L close to the output L :

training pairs: {L;,L;}
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L~L expand

finds subspace that captures larger dimensionality

fraction of the variance

In PCA, the number of basis functions or vectors is less
than or equal to the dimensionality of the input

But what if “efficiency” has another meaning, e.g. represent
the input with as few features as possible?

..and we allow for over-complete representations where
the number of feature detectors could be more than the
dimensionality of the input

I(x,y) = iA,-(x,y)s,- 5= Z Wi(x,»)1(x,y).
=1 xy

RPN PR

(see Lecture 5)

s12+ s+ S1+ 15+ s16
e

only a few features required for one image...but what if we
wanted to have a set of features, or “dictionary” that was
n “good” for all natural images?

Good, efficient representation is interpreted as finding the receptive field
weights that minimize the sum of squared errors AND # active neurons

so given L(x,y) in a set of images find the Aj(x,y)’s that minimize:

T,y) — Z sidi(z,y)]” + Z B(si)

the Aj(x,y)’s

Olshausen & Field’s model of V1 receptive fields

captures localized sensitivities to orientation and spatial
frequency




Higher-order structure!?

Other Neurons

Figure 1: Illustration of image statistics as seen through two neighboring recepiive fields.
Left image: Joint conditional histogram of two linear coefficients. Pixel intensity corre-
sponds to frequency of occurrence of a given pair of values, except that each column has
been independently rescaled to fill the full intensity range. Right image: Joint histogram of
divisively normalized coefficients (see text).

responses of linear model neurons with receptive fields
that are close in space, preferred orientation or spatial
frequency are not statistically independent

Schwartz, O., & Simoncelli, E. P. (2001). Natural signal statistics and sensory
gain control. Nature Neuroscience, 4(8), 819-825.

Higher-order structure!

Linear spatial filter
Accounts for neurophysiological responses

.O._, @ —— g
of neurons in V1. f
Schwartz, O., & Simoncelli, E. P. (2001). ﬂ-ﬁ‘—

Natural signal statistics and sensory gain Outputs from other cortical cells
control. Nature Neuroscience, 4(8), 819—
825.
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The middle disks have the same physical
luminance variance, but the one on the right
appears more “contrasty”, i.e. to have higher
variance.

This may be a behavioral consequence of
an underlying non-linearity in the spatial

filtering properties of V1 neurons involving
From Heeger “divisive normalization” derived from
measures of the activity of other nearby
neurons.

More on decorrelation:

contingent adaptation

Contingent Adaptation: McCollough effect

Edge-Detectors in the Human Visual System. Science, 149,

Out[215)= 1115-1116.

‘ ‘ McCollough, C. (1965, 3 September 1965). Color Adaptation of
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Barlow, H. B., & Foldiak, P. (1989). Adaptation and decorrelation in due to adaptation

the cortex. In C. Miall, R. M. Durban, & G. J. Mitchison (Ed.), The
Computing Neuron Addison-Wesley.




Lateral organization

How do neural populations represent information?

Assumption: lateral organization involves features at
the same level of abstraction

Mathematica notebook




