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Kalman filter: Bayesian background

Assume we are given states yt that evolve with time, together with a set of
measurements xt of those states. We have a model of how the states evolve
given past states, p(yt+1|yt, ...), but we can’t observe them directly. We can
make measurements that are related, but noisy: p(xt, ...|yt). We make two
specific assumptions:

Markov assumption–only immediate past matters:

p(yt+1|y0, y1, ..., yt) = p(yt+1|yt)

Measurements are conditionally independent given yt+1

p(xt+1, xt, xt−1, ...|yt+1) = p(xt+1|yt+1)p(xt|yt+1)p(xt−1|yt+1)...

Prediction step:

p(yt+1|x0, x1, ..., xt) =
∑
yt

p(yt+1, yt|x0, x1, ..., xt)

=
∑
yt

p(yt+1|yt)p(yt|x0, x1, ..., xt)

The result, p(yt+1|x0, x1, ..., xt), is used in the next,

Measurement/Correction step:
where we update the posterior with a new measurement xt+1

p(yt+1|x0, x1, ..., xt, xt+1) =
p(xt+1|yt+1)p(yt+1|x1, x2, ..., xt)∑

yt+1
p(xt+1|yt+1)p(yt+1|x1, x2, ..., xt)

p(yt+1|x0, x1, ..., xt, xt+1) provides the updated distribution which becomes
the “next p(yt|x0, x1, ..., xt)” to use on the right hand side of the prediction
step.
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Kalman filter: Simple 1D example

We can build our intuitions with a simple concrete 1D example, inspired
by Max Welling’s tutorial1. Imagine a ship that at time t = 0 starts from
harbor at position y = y0. It sets off with constant velocity, gaining distance
c at each time step, so we could predict its position into the future as:
yt+1 = yt + c. But there could be some uncertainty due to various factors,
such as buffeting by waves. Thus we can write a generative model for the
prior in terms of the true state plus a gaussian noise term:

yt+1 = yt + c+ wt

Taking the expectation, E[·] and the variance var[·], of the above, we have:

ŷt+1 = ŷt + c

σ2
t+1 = σ2

t + σ2
w

So if there was no uncertainty, σw = 0, then given an initial state yt=0 = y0,
we could recursively predict any future value of y precisely. However, if σw >
0, then as time goes on, we would become increasingly uncertain of where
the ship is. We’d need some measurement, x, such as from a GPS signal, to
tell us where the ship might be. But a typical measurement isn’t perfectly
accurate either, so with another additive gaussian noise assumption, we
write:

xt = yt + v

where v represents the noise. Thus we have two pieces of information–first,
a mean based on the prior model, and the second on some data. How
should we combine them? We’ve seen before how to integrate information
about separate sources–we add them, weighted by their reliabilities. For
conditionally independent pieces of information, with gaussian distributions,
the rule is:

m̂ =
r1

r1 + r2
m̂1 +

r2
r1 + r2

m̂2

where

ri =
1
σ2

i

1http://www.ics.uci.edu/~welling/classnotes/papers_class/KF.ps.gz

2



Exercise refresher: To see this, suppose we are trying to estimate the
mean of a distribution, call it y, and assume that we have two noisy mea-
surements m1 and m2 of y:

m1 = y + v1

m2 = y + v2

Assuming the measurements are independent given y,

p(m1,m2|y) = p(m1|y)p(m2|y)

and gaussian, we have:

= κ
∏
i

e

−(mi−y)
2

σ2
i

Taking the derivative of the log shows that the peak occurs when y is:

µ2σ
2
1

σ2
1 + σ2

2

+
µ1σ

2
2

σ2
1 + σ2

2

This suggests that we can combine our two sources of information about the
ship as:

ŷ′t+1 =
σ2

v

σ2
v + σ2

t+1

ŷt+1 +
σ2

t+1

σ2
v + σ2

t+1

xt+1

What is the uncertainty in ŷ′t+1? Recall that variance of a linear sum of
random variables u and v is given by, var[αu + βv] = α2var[u] + β2var[v].
So we have:

σ′2t+1 =
σ2

t+1σ
2
v

σ2
t+1 + σ2

v

Let’s see if things make sense. Suppose we totally trust the measurement
xt. Total trust means σ2

v = 0. Then ŷ′t+1 = xt+1. On the other hand, suppose
we have no confidence in the measurement: ŷ′t+1 = ŷt+1. Although it didn’t
help that time, in general a measurement “never hurts”–uncertainty either
stays the same or goes down.

We can put our equations into a standard form by defining the Kalman
gain, K as:
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Kt+1 =
σ2

t+1

σ2
t+1 + σ2

v

and then writing the update equations for the variance and state as:

σ′2t+1 = (1−Kt+1)σ2
t+1

ŷ′t+1 = ŷt+1 +Kt+1(xt+1 − ŷt+1)

Note that complete trust in the data corresponds to K = 1, and no trust to
K = 0.

Kalman filter: General linear case

We now write down, without proof, the corresponding generalization to
vector states, yt, vector measurements, xt, and multivariate gaussian noise
vectors wt and vt. The prior, generative model is given by:

yt+1 = Ayt + wt

and the measurement vector by:

xt = Hyt + vt

The dimensionality of the state vector may be greater than the measurement,
and thus the matrix H, would be rectangular. The covariance matrix Pt

replaces the variance σt
2, representingtheuncertaintyinthestateestimates.

Q is the covariance matrix for w replacing σw
2, and R is the covariance

matrix for v, replacing σv
2.

Initialization: Assume starting values.

yt=0 = y0

Pt=0 = P0

Model Prediction: Predict next state and covariance at time t+ 1 using
knowledge from the generative model:

ŷ′t+1 = Aŷt
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P ′t+1 = APtA
T +Q

Note that in general, P incorporates the change in uncertainty brought by a
measurement at time t. (If we included the control vector u, and we would
have: ŷ′t+1 = Aŷt +Bu.)

Measurement/Correction equations:

Kt+1 = P ′t+1H
T (HP ′t+1H

T +R)−1

ŷt+1 = ŷ′t+1 +Kt+1(xt+1 −Hŷ′t+1)

Pt+1 = (I −Kt+1H)P ′t+1

Now cycle back to the Prediction step using these updated state and co-
variance estimates for the new time t. Note that we’ve used the “prime sym-
bol” e.g. P ′, to mark the variables differently than in the ship illustration–we
use the prime to distinguish the state and covariance variables at each time
step in the algorithm.

The Mathematica notebook for Lecture 27 implements the 1D ship exam-
ple, and a 2D tracking example. The 2D example includes a four dimensional
state vector, and 2D measurements.
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