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Lecture 1-Introduction

Goal
Understand the functioning of the brain as a computational device. Tools to explain brain & behavior. Relation to connec-
tionist, neuromorphic, computational neuroscience research, and cognitive science.

Relation to Cognitive Science
Cognitive Science: The interdisciplinary study of the acquisition, storage, retrieval and utilization of knowledge.

Problems: perception, learning, memory, planning, action

Often, we don't know how to solve a problem even in principle. For others, we have solutions, but they don't resemble 
how a biological system might solve the problem.

What kinds of problems can large interconnected systems of model neurons solve? What are the limitations? What are the 
strengths?

How do neural networks relate to the larger field of statistical pattern recognition?

Understanding the relation between brain and behavior requires...
A multidisciplinary approach

Multiple levels of explanation.

Multidisciplinary approach
Three primary areas or disciplines influence current neural network research:

‡ Neuroscience, computational neuroscience



‡

Neuroscience, computational neuroscience
Understand the basic building blocks or "hardware" of the nervous system

these are: nerve cells or neurons, and their connections, the synapses

Our emphasis is on: large scale neural networks. Requires great simplification in the model of the 

neuron...in order to compute and theorize about what large numbers of them can do.

Compare with other areas of Computational Neuroscience that emphasize the biology. Here we emphasize "brain-style""

computation. Often wrong in detail, but driven by a curiosity about how the complex processes of

perception, and memory  work.

What can these large scale neural systems do? That is, what can they compute? And how?

‡ Computational theory, mathematics, statistical pattern recognition
Statistical inference, engineering (information and communication theory), statistical physics and computer science.

Provide the tools and analogs to abstract and formalize for analysis and simulation.

One of the characteristics of this course is to try to relate the neural models to statistical methods of inference and regres-
sion in order to understand the computational principles and power behind a neural implementation.

What should these large scale neural systems compute? What are the ways in which information is represented? How can 
a system be designed to get from input to output representations?

‡ Behavioral sciences, psychology, cognitive science and ethology
Understand what subsystems are supposed to do as a functioning organism in the environment.

Psychology & Computational theory =>The brain is NOT a general purpose computer.
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‡ How do different theoretical neural network approaches relate? A little history and future...

Statistical pattern
recognition ê machine

learning--
behavioral ê functional tests

Computational
neuroscience--
neural tests

1950s Present
Bayesian
models?

Multiple levels of explanation

‡ Functional/Behavioral level
Psychology/Cognitive Science/Ethology tells us what is actually solved by functioning behaving organisms. Descriptions 
of behavior.
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‡ Statistical Inference level
Theories of pattern recognition, inference &  estimation.

Functionalities supported by neural network computing provide a useful way of categorizing models in terms of the 
computational tasks required:

1. Learning input/ouput mappings from examples (learning as regression, classification boundaries)

associative memory (->neural networks: Hopfield net, back-prop, local minima can be useful.)

2. Inferring outputs from inputs (continuous estimation, discrete classification)

memory recall, perceptual inference

optimization or constraint satisfaction (->neural networks: Hopfield net, Boltzmann machine,  global minimum is 
desired, local minima  are problems)

3. Modeling data (learning as probability density estimation)

self-organization of sensory data into useful representations or classes (e.g principal components analysis, cluster-
ing)

(Can view 1. Learning input/output mappings as a special case)

‡ Neural network level: Algorithms, implementation
Algorithms: Mathematics of computation tells us what is computable and how. Practical limits. Parallel vs. serial.

Input and output representation, and algorithms for getting from input to output. Programming rules, data structures.

Implementation: Wetware, hardware.

Neuroscience, neurophysiology and anatomy tell us the adequacies and inadequacies of our modeling assumptions.

‡ Emphasis in this course
Understand high-level functions such as vision, pattern recognition, learning, memory, inference and control. In the brain 
these functions involve large-scale systems each with many "modules" and 10s to 100s of thousands of neurons in each. 
Appropriate level tends towards more abstract where we can manage the complexity through mathematical models.

The interaction between levels of analysis considers a function (e.g. pattern recognition), the theory to understand the 
function (e.g. through statistical inference), and how the function may be realized in a neural system (neural networks):
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The Big Picture: Overview of the Brain
Before we look at models of neurons and their interactions, let us get an overview of the large scale context. 

Understanding function means understanding how an organism's information processing is determined by the structure of 
its environmental inputs (e.g. natural images, objects to be avoided, places to go), and the nature of its outputs (e.g. 
estimates of shapes of objects to be manipulated, terrain to walk on, movements, and decisions). The brain doesn't operate 
in isolation, these inputs and outputs are intimately tied to the sensory and motor neurons that make up the peripheral 
nervous system, as well as the physical make-up of the  body itself.

The brain has both surface and interior structures. Surface structures that are visible in the side view below are: frontal, 
temporal, parietal and occipital lobes, and the cerebellum. But apart from the cerebellum, it isn't totally obvious where one 
part stops and another begins. Landmarks are the sulci (valleys) and gyri (bumps). E.g. the lateral fissure (sulcus) is 
perhaps the easiest to spot. It separates the temporal lobe from the frontal and parietal lobes.

There are internal components too: Thalamus (sensory and motor relays), hypothalamus (control of endocrine activity, 
temperature, food intake, etc..), basal ganglia (relay for motor behavior), limbic system (expression of emotion), medulla 
(part of lower brain stem, breathing, heart rate).

We believe that much of what makes us interesting as humans, our thoughts, imaginations, words and actions, depends on 
having a large and complex cortex. 

 A common view shows the surface or cortex--the gray matter.
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From: http://www.utdallas.edu/~kilgard/brain.jpg

Check out: http://psychology.uwo.ca/fmri4newbies/PrimeronCorticalSulci.html

The anatomy provides an important, but static view of the brain. Recent exciting progress in functional imaging provides 
dynamic pictures that illustrate relationships between human functions (seeing, imagining, etc.) are related to various 
cortical areas. (From our own lab, see: http : êê gandalf.psych.umn.edu ê ~kersten êkersten - lab êPerceptual.html

6 Lect_1_Introduction.nb



Levels of organization, scales

From: Churchland & Sejnowski.  (10,000 A to a micron)

Example: Visual system
Let's take a look from two points of view: 1) information flow through a specific system--the visual system; 2) levels of 
organization at successive stages. 

At a very coarse spatial scale, we know that we have eyes and a portion of the brain that processes the incoming images. 
This system enables us to recognize and manipulate objects, and that help us to navigate.
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‡ Anatomical view of a system

(From wikipedia entry for "Visual System")

The above picture ends at primary visual cortex (V1, area 17), but there are more than 30 other visual areas after that.

‡ Visual cortex & maps (~ 1 cm scale)

Higher visual areas in cortex. Maps.
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From: Tootell, R. B., Tsao, D., & Vanduffel, W. (2003). Neuroimaging weighs in: humans meet macaques in "primate" visual cortex. J Neurosci, 23(10), 
3981-3989.
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‡ Cortical layers & circuits (~ 1 mm scale)

Structure within maps. 

Casual inspection shows that the brain has gross structure. What is not immediately apparent  is that structures  do not 
consist of randomly connected nerve cells. There is a medium-level organization into multiple functional groupings. 

The neocortex has 6 more or less distinguishable layers, there is a microorganization into vertical columns. In the primary 
visual cortical area (V1, see above figure), there are ocular dominance and orientation selectivity columns which are 
believed to form a functional unit called a hypercolumn (1 to 2 mm). Each hypercolumn takes into account local image 
intensities and colors to represent information or features for a single point of the visual field.

http://www.ualr.edu/~klwennstrom/hypercolumn.gif
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‡ Retina, circuits (~100 microns)

Above Adapted from Rodieck 1998

Rods, cones. Rods & rhodopsin molecules. Synapses. Different types of neurons: Spike-generating neurons, the ganglion 
cells.

Networks of neurons that behave as "image filters". M & P pathways.
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‡ Functional view of a process 

(example from Simon Thorpe's lab: http://www.cerco.ups-tlse.fr/fr_vers/cerco_eng/index.php?url=objet.htm)
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From Serre, T., Oliva, A., & Poggio, T. (2007). A feedforward architecture accounts for rapid categorization. 
Proc Natl Acad Sci U S A, 104(15), 6424-6429.

‡ Some brain specs

"cortico-centric" cognitive neuroscience

The human brain is:: volume - 1.4 liters, Cortex 2 mm, volume 0.32 liters

Cortex: 1.6 x 10^10 neurons, with about 4000 synapses/neuron, about 6x10^13 connections.

Table 1

Area of cortex 1.60 E + 05 mm^2
Thickness of cortex 2.00 E + 00 mm
Volume of cortex 3.20 E + 05 mm^3 3.20 E - 01 liters
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Table 1

Cortex synapse density 4.00 E + 03 synapse ê neuron
Cortex connectivity 2.00 E + 08 synapses ê mm^3
connectivity ê neuron 5.00 E + 00 mm
connection length ê mm^3 2.50 E + 04 mm
neuron density in cortex 5.00 E + 04 neurons ê mm^3
Total brain volume 1.40 E + 00 liters
Total neurons in cortex 1.60 E + 10
Total visual neurons 8.00 E + 09

H50 % visual neurons is often quoted and used here,
but is difficult to pin downL

Total visual connection lengths 4.00 E + 09 mm
4.00 E + 07 m or 24 874 miles of connections

Habout the distance around the earth at the equator, 24, 901 milesL

Some reference numbers taken or inferred from those published by :
Cherniak, J. of Cog. Neurosc., 1990, vol 2., pp 58 - 68

Getting started with Mathematica
Mathematica vs. Matlab vs. neural network simulation packages.
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‡ Front-end and Notebooks: Organize, outline, document. Program, evaluations, data all in one place

Kernel: Separate program does the calculations

To get an overview of Mathematica and its help resources:

‡ In Mathematica 7, go to Welcome Screen under the Help menu of Mathematica and check out the links 

under, GETTING STARTED and LEARN AND EXPLORE. In Mathematica 6, go to the Startup 

palette, and check out the "First Five Minutes with Mathematica". In either version, the 

Documentation Center is a good place to go and return to, to find information. 
‡ Then check out the Virtual Book under COMPLETE DOCUMENTATION

Let's practice

‡ Numerical Calculations. You can do arithmetic. For example, type 5+7 as shown in the cell below, and 

then hit the "enter" key. Note that if you

try division, e.g. 2/3, you get the exact answer back. To get a decimal approximation, type N[2/3].

5+7

12

N[2/3]

0.666667

You can go back and select an expression by clicking on the brackets on the far right. These brackets serve to organize text 
and calculations into a Notebook with outlining features. You can group or ungroup cells for text, graphs, and expressions 
in various ways to present your calculations. Explore these options under Cell in the menu.  You can see the possible cell 
types under the Style menu.

Try some other operations, 5^3, 4*3 (note that 4 3, where a space separates the digits is also interpreted as multiplication. 
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Evaluate 4*3

Compare with 4 3 (i.e. 4 followed by a space, and then 3). Note that 4 3, where a space separates the digits is 
also interpreted as multiplication. 

Seems pretty dumb so far...but you can see that Mathematica's default handling of arithmetic is special:

Compare the square roots of: 12345678987654321 and 12345678987654321.0

Compare (2^.000000000001)^1000000000000 with (2^(1/1000000000000))^1000000000000

If you don't explicitly tell Mathematica that your expressions involving floating point numbers, it will treat the numbers as 
true integers. And in general, Mathematica will do symbolic processing as a default, and assume you want as general an 
answer as possible. Because symbolic processing demands considerably more computer resources than numerical process-
ing, this can be annoying. So remember to include a decimal point somewhere, or use N[] to force a floating point represen-
tation, and consequently numerical computations.

‡ Front-end stuff

There's a lot to explore stylistically in Notebooks, but one of the most common things you will do is to select and manipu-
late the brackets on the far right. You can go back and select an expression by clicking on the brackets on the far right. 
These brackets are features of the user interface and serve to organize text and calculations into a Notebook with outlining 
features. You can group or ungroup cells for text, graphs, and expressions in various ways to present your calculations. 
Explore these options under Cell in the menu.  You can see the possible cell types under the Style menu.

‡ By ending an expression with ; you can suppress the output--this is useful later when the output might 

be a list of a 10,000 neural activity levels!

(3/4)/6;
(3 4)/6;

Before Mathematica 6, you had to be particularly careful... without a semi-colon before evaluating the next cell, you could 
end up with a Notebook full of 50,000 "hi"s:
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a = Table@"hi", 850 000<D

A very large output was generated. Here is a sample of it:

8hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi,
hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, á49 894à,
hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi,
hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi, hi<

Show Less Show More Show Full Output Set Size Limit...

The most recent result of a calculation is given by %, the one before by %%, and so forth.  Try it on the 
previous two outputs

Built-in functions
Mathematica has a very large library of built-in functions. They all begin with an uppercase letter and the arguments are 
enclosed by square brackets. Knowing that, you can often guess the form of a function.

Try taking the logarithm of 8.0

Did it return log to the base 10 or e? Check the definition by typing "?Log" or by typing "Log[E]" and 
"Log[10]"

You can get information more about a function, by clicking on the resulting link >>

Try Log[8,2]

 You can get information about a function, e.g. for the exponential of a function, or for plotting graphs by selecting the 
function (e.g. Exp) and going to "Find Selected Function" in the Help menu. Or you can enter:

?Exp

Exp@zD is the exponential function. à

and then click on >> to take you to the documentation page.
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?Plot

Plot@ f , 8x, xmin, xmax<D generates a plot of f as a function of x from xmin to xmax.
Plot@8 f1, f2, …<, 8x, xmin, xmax<D plots several functions fi. à

If you type two question marks before a function, ??Plot, you'll get more information. Try it. What does the Random 
function do?

Defining your own functions
Let's illustrate function definition by building a really simple model of a neuron. We'll see the justification later.  Suppose 
a neuron takes a set of inputs, say x1, x2, x3,  (e.g. from the outputs of three other neurons in the network) and produces an 
output signal, call it y. For a so-called linear model, the output is the weighted sum of the inputs. We'll assume the weights 
are fixed and given by w1, w2, w3. 

w1 = -1; w2 = 2; w3 = -1;

y@x1_, x2_, x3_D := w1 * x1 + w2 * x2 + w3 * x3;

(This is pretty primitive and not very general--don't worry, we'll get more sophisticated later). 

The underscore in x1_ is important because it tells Mathematica that x1 represents a slot, not an expression. 

‡ := vs.  =

Note that when defining a function, we used a colon followed by equals ( := ) instead of just an equals sign (=). When you 
use an equals sign, the value is calculated and assigned immediately. When there is a colon in front of the equals, the value 
is calculated only when called on later. So we use := for function definition because we need to define the function for 
later use and evaluation,  when we may have new values for its arguments.

A double equals (==) has yet another meaning and is used to represent a symbolic equation which evaluates to True if left 
and right hand sides are identical.

Let's define xv using :=, and xf using =

xv := RandomInteger@10D;
xf = RandomInteger@10D;
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Now evaluate r1 and r2 three times each. What is the difference between the two definitions?

8xv, xf<

85, 7<

..but if we evaluate xf = RandomInteger[10] again, we re-initialize it:

xf = RandomInteger@10D

1

xf = RandomInteger@10D;
y@xf, xf, xfD

0

y@xv, xv, xvD

-15

Why does our neuron model always output a zero when the inputs  all have the same value? What other 
family of inputs will all produce zero output? 
Hint: The weights we defined can be thought of as a discrete approximation to a 2nd derivative operator 
in differential calculus.

Define a new function squashedExp[ ] that applies squash to an exponentiated value (i.e. takes Exp[x] as 
the argument of squash[ ])

(There's a hidden cell just above this text. In the menu, go to Cell -> Cell Properties to open it if curious.)

Graphics & more function definitions
Later on we'll  require defining a function that suppresses small outputs and "squashes" or clamps large outputs to a 
maximum level. Here is an example:
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squash[x_] := N[1/(1 + Exp[-x+4])];

Also note that our squashing function was defined with N[]. Again, remember that Mathematica trys to keep everything 
exact as long as possible and thus will try to do symbol manipulation if we don't explicitly tell it that we want numerical 
representations and calculations.

Let's plot a graph of the squash function using the syntax we discovered above for -5<x<10

Plot@squash@xD, 8x, -5, 10<D

-4 -2 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

We'll use this and similar functions to model the small-signal compression and large signal saturation characteristics of 
neural output.
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Plot squashedExp[ ] for x going from -5 to 5

PlotA9‰x, squashedExp@xD=, 8x, -5, 5<E

-4 -2 2 4

2

4

6

8

10

Even though Exp grows exponentially fast with x (by definition!), squash keeps a lid on it.

Ask Mathematica for the definition of squashedExp[ ]

It can be important to check your definitions like this. One reason is that, as we will see later, Mathematica definitions can 
be built up with multiple constraints. And sometimes you might add to a function unwittingly and it appears to misbehave. 
You can check your defintion by asking Mathematica for it.
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Redefine squash to include a steepness term l, and use Manipulate to control  l

dsquash[x_,l_] := N[1/(1 + Exp[(-x+4)/l])];
Manipulate[Plot[dsquash[x,l], {x, -5, 10}],{{l,1},0.1,2}]

l

-4 -2 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

Mathematica 7 has a very useful and easy-to-program GUI tools. One of the most common is   Manipulate[]
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Manipulate@Plot3D@Exp@-x^2 - y^2D * Sin@a * x + b * yD, 8x, -2, 2<,
8y, -2, 2<, PlotRange Ø 8-10, 10<D, 8a, 1, 6<, 8b, 1, 6<D

a

b

Try using your mouse and mouse button to rotate the above plot. What does the Option or Alt key do?

Mathematica Demonstrations project

Check out the Demonstrations center at the Wolfram Mathematica site for some cool examples, such as:
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Manipulate@Module@8bluecol, colfunc<,
bluecol@n_D := Blend@8Black, Blue, White<, nD;
If@usecol, colfunc = bluecol, colfunc = GrayLevelD;

Graphics@8colfunc@leftD, Rectangle@80, 0<, 83, 3<D, colfunc@rightD,
Rectangle@83, 0<, 86, 3<D, colfunc@midD, Rectangle@81, 1<, 82, 2<D,
Rectangle@84, 1<, 85, 2<D<DD, 88left, .35, "left square"<, .2, .8<,

88right, .75, "right square"<, .2, .8<,
88mid, .5, "middle squares"<, .2, .8<,
88usecol, True, ""<, 8True Ø "blues", False Ø "grays"<,
ControlPlacement Ø Bottom<D

left square

right square

middle squares

blues grays

"The Simultaneous Contrast Effect" from The Wolfram Demonstrations Project http://demonstra-
tions.wolfram.com/TheSimultaneousContrastEffect/

References
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