
$z^{\prime}\left\{z^{\prime} I^{\prime} 0^{\prime} I^{\prime} z\right\}=x(q$

Define a threshold function thresh[s] that is zero for \mathbf{s} less than zero, and equal to \mathbf{s} for values of \mathbf{s} greater than or equal to 0 .
$:\left\{z^{\prime} \tau\right.$ - $\left.^{\prime} 9^{\prime} \tau^{\prime} z^{-}\right\}=M$
 รччв̊!
 † әธ!эләхヨ
 Later on, when we study back-propagation networks we will need to use the derivative of the non-linear squashing function
 2) Alternatively, you may wish to use the Mathematica rule for replacing a variable with a value in an expression. This
would also enable you to define the derivative function all on one line. 1) You can use the function Evaluate[] to do the define dsquash all in one line. Mathematica Hint: You can't just define a function dsquash[x_]:=D[squash, etc..]. But there are (at least three ways of doing
it).

logistic function:
Using Mathematica's ability to find derivatives of functions, define a function dsquash[] to be equal to the derivative of the

 : \{8, $\left.L^{\prime} 9^{\prime} S^{\prime} \nabla^{\prime} \varepsilon^{\prime} Z^{\prime} \tau\right\}=\mathrm{Y}$

