
Introduction to Neural Networks
U. Minn. Psy 5038

Lecture 9
Summed vector memories, sampling,
Intro. to non-linear models

Initialization

In[3]:= Off[SetDelayed::write]
Off[General::spell1]

Introduction

Last time

A common distinction in neural networks is between supervised and unsupervised learning ("self-organization"). The
heteroassociative network is supervised, in the sense that a "teacher" supplies the proper output to associate with the input.
Learning in autoassociative networks is unsupervised in the sense that they just take in inputs, and try to organize a useful
internal representation based the inputs. What "useful" means depends on the application. We explored the idea that if
memories are stored with autoassociative weights, it is possible to later "recall" the whole pattern after seeing only part of
the whole.

‡ Simulations

Heterassociation

Autoassociation

Superposition and interference

Today

‡ Summed vector memories

‡ Introduction to statistical learning

‡ Generative modeling and statistical sampling

Summed vector memories

Generalized Hebb rule

‡ Taylor series expansion

Recall that a smooth function h(x) can be expanded in a Taylor's series:

In[5]:= Series@h@xD, 8x, 0, 3<D
Out[5]= hH0L + h£ H0L x +

1
ÅÅÅÅÅ2 h££ H0L x2 +

1
ÅÅÅÅÅ6 hH3L H0L x3 + OHx4 L

where we've used Series[] to write out terms to order 3, and O@xD4 means there are more terms (potentially infinitely
more), but whose values are fall off as the fourth power of x, so are small for x<1. hHnL@0Dmeans the nth derivative of h
evaluated at x=0.

If we only include terms up to first order, this corresponds to approximating h[x] near x=0 by a straight line. What if we
have a surface h[x,y]? We can approximate it near (0,0) by a plane:

In[10]:= Series@h@x, yD, 8x, 0, 1<, 8y, 0, 1<D
Out[10]= HhH0, 0L + hH0,1L H0, 0L y + OHy2 LL + HhH1,0L H0, 0L + hH1,1L H0, 0L y + OHy2 LL x + OHx2 L

2 Lect_9_SummedVector.nb

‡ The "generalized Hebb rule":

In general, we might model the change in synaptic weights between neuron i and j by DW@fi, gjD , where as before
fi, gj are scalars representing the pre- and post-synaptic neural activities. Then with DW@fi, gjD playing the role of
h[x,y] in the above expansion, we have that DW@fi, gjD is approximately equal to:

In[6]:= Expand@Normal@Series@DW@fi, gjD, 8fi, 0, 1<, 8gj, 0, 1<DDD
Out[6]= DWH0, 0L + gj DWH0,1L H0, 0L + fi DWH1,0L H0, 0L + fi g j DWH1,1L H0, 0L
(where we've used Normal[] to remove O[] terms from the expression, and Expand[] to expand out the products). By
generalizing the learning rule to any smooth function, we see that the Hebbian rule used in the linear associator models
(both auto and heteroassociation) corresponds to using only the last term.

What if we used just the first term? In other words, suppose learning depended only on the input strength fi ? Is there any
useful function for such "strengthening-by-use" synapses? Suppose we have a set of k normalized input vectors { fk }. The
learning rule says that the synaptic weights w, for a single neuron would be

(1)w = ‚
k

fk

Learning is easy, but it seems that the information about the set of input vectors is pretty messed up due to superposition.
There are two cases where a template matching operation (i.e. dot product) could pull out useful information. Consider,

(2)w.fl = ‚
k

 fl.fk = fl.fl + ‚
l∫k

 fl.fk

We know that fl.fl >fl.fk for l≠k, but potentially we have lots of terms in the sum that could swamp out fl.fl .
However, if their directions are randomly distributed, we could have many cancellations. Later you'll see that random large
dimensional vectors tend to be orthogonal.

Further, suppose one of the inputs appears more frequently than the others, say fl , the this term would dominate the sum w,
and we might expect that a template matching operation (w.fl) could provide information that a high output neuron in
effect is saying "yes, this input pattern looks like something I've seen frequently"). Conversely, an unusually low value of
the dot product would mean that "...mm this is novel, maybe I should pay more attention to this one". One potential disdvan-
tage is that a high rate of firing would be the norm, and there is substantial evidence that the cortex of the brain is very
economical when it comes to "spending" spikes.

How familiar is X, compared to what has been seen before?

‡ Learning: input vector sums

Let's simulate the case where DW@fi, gjD∂ fi .

Lect_9_SummedVector.nb 3

In[12]:= Imatrix = {
 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
 {0, 0, 0, 0, 0, 0, 1, 0, 0, 0},
 {0, 0, 0, 0, 0, 0, 1, 0, 0, 0},
 {0, 0, 0, 0, 0, 0, 1, 0, 0, 0},
 {0, 0, 0, 0, 0, 0, 1, 0, 0, 0},
 {0, 0, 0, 0, 0, 0, 1, 0, 0, 0},
 {0, 0, 0, 0, 0, 0, 1, 0, 0, 0},
 {0, 0, 0, 0, 0, 0, 1, 0, 0, 0},
 {0, 0, 0, 0, 0, 0, 1, 0, 0, 0},
 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};

In[13]:= Tmatrix = {
 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
 {0, 0, 0, 0, 1, 0, 0, 0, 0, 0},
 {0, 0, 0, 0, 1, 0, 0, 0, 0, 0},
 {0, 0, 0, 0, 1, 0, 0, 0, 0, 0},
 {0, 0, 0, 0, 1, 0, 0, 0, 0, 0},
 {0, 0, 0, 0, 1, 0, 0, 0, 0, 0},
 {0, 0, 0, 0, 1, 0, 0, 0, 0, 0},
 {0, 0, 0, 0, 1, 0, 0, 0, 0, 0},
 {0, 1, 1, 1, 1, 1, 1, 1, 0, 0},
 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};

General::spell1:
 Possible spelling error: new symbol name "Tmatrix"
 is similar to existing symbol "Imatrix".

General::spell1:
 Possible spelling error: new symbol name "Tmatrix"
 is similar to existing symbol "Imatrix".

General::spell1:
 Possible spelling error: new symbol name "Tmatrix"
 is similar to existing symbol "Imatrix".

4 Lect_9_SummedVector.nb

In[14]:= Pmatrix = {
 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
 {0, 1, 0, 0, 0, 0, 0, 0, 0, 0},
 {0, 1, 0, 0, 0, 0, 0, 0, 0, 0},
 {0, 1, 0, 0, 0, 0, 0, 0, 0, 0},
 {0, 1, 1, 1, 1, 1, 0, 0, 0, 0},
 {0, 1, 0, 0, 0, 0, 1, 0, 0, 0},
 {0, 1, 0, 0, 0, 0, 1, 0, 0, 0},
 {0, 1, 0, 0, 0, 0, 1, 0, 0, 0},
 {0, 1, 1, 1, 1, 1, 0, 0, 0, 0},
 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};

In[15]:= Xmatrix = {
 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
 {0, 1, 0, 0, 0, 0, 0, 0, 1, 0},
 {0, 0, 1, 0, 0, 0, 0, 1, 0, 0},
 {0, 0, 0, 1, 0, 0, 1, 0, 0, 0},
 {0, 0, 0, 0, 0, 1, 0, 0, 0, 0},
 {0, 0, 0, 0, 1, 0, 0, 0, 0, 0},
 {0, 0, 0, 1, 0, 0, 1, 0, 0, 0},
 {0, 0, 1, 0, 0, 0, 0, 1, 0, 0},
 {0, 1, 0, 0, 0, 0, 0, 0, 1, 0},
 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};

In[16]:= normalize[x_] := N[x/Sqrt[x.x]];
Tv = normalize[Flatten[Tmatrix]];
Iv = normalize[Flatten[Imatrix]];
Pv = normalize[Flatten[Pmatrix]];
Xv = normalize[Flatten[Xmatrix]];

In[21]:= sv = Tv+Iv+Pv;

In[22]:= ListDensityPlot[Partition[sv,10]];

0 2 4 6 8 10
0

2

4

6

8

10

Lect_9_SummedVector.nb 5

‡ Recall: Matched filter (cross-correlator)

Let's look at the outputs of the summed vector memory to the three inputs it has seen before (T,I,P) and to a new input X.
We will use a Mathematica graphics package that has some extra plot styles in it--in particular, the BarChart[].

In[23]:= <<Graphics`Graphics`

In[24]:= matchedfilterout = {sv.Tv,sv.Iv,sv.Pv,sv.Xv};
BarChart[matchedfilterout,BarLabels->{"T","I","P","X"}];

T I P X

0.25

0.5

0.75

1

1.25

1.5

‡ Signal-to-noise ratio

How well does the output separate the familiar from the unfamiliar (X)? We'd like to compare the output of the model
neuron when the input is the novel stimulus X, vs. the output we might expect for familiar inputs. There are several ways of
summarizing performance, but one simple formula calculates the ratio of the squared output to the average squared input.

We first read in an add-on statistics package that provides us with extra functions, including Mean[].

In[26]:= << Statistics`DescriptiveStatistics`

In[38]:= Hsv.XvL^2 ê Mean @8Hsv.TvL^2, Hsv.IvL^2, Hsv.PvL^2<D
Out[38]= 0.153137

‡ Center vectors about zero , i.e. each has zero mean

In the above representation of the letters, all the input vectors lived in the positive "quadrant", so their dot products are all
positive. What if we center the vectors about zero?

6 Lect_9_SummedVector.nb

In[39]:= normalize[x_] := N[x/Sqrt[x.x]];
Tv = normalize[Flatten[Tmatrix]];
Iv = normalize[Flatten[Imatrix]];
Pv = normalize[Flatten[Pmatrix]];
Xv = normalize[Flatten[Xmatrix]];

In[44]:= Tv = Tv - Mean@TvD;
Iv = Iv - Mean@IvD;
Pv = Pv - Mean@PvD;
Xv = Xv - Mean@XvD;

In[48]:= sv = Tv+Iv+Pv;

In[49]:= ListDensityPlot[Partition[sv,10]];

0 2 4 6 8 10
0

2

4

6

8

10

In[50]:= matchedfilterout = {sv.Tv,sv.Iv,sv.Pv,sv.Xv};
BarChart[matchedfilterout,BarLabels->{"T","I","P","X"}];

T I P X

0.2

0.4

0.6

0.8

1

Lect_9_SummedVector.nb 7

In[52]:= Hsv.XvL^2 ê HMean êü 88Hsv.TvL^2, Hsv.IvL^2, Hsv.PvL^2<<L
Out[52]= 80.0245508<
‡ What happens if the summed vector memory has seen many I's and P's, but only one T?

In[53]:= sv = Tv + 20 Iv+ 10 Pv;
matchedfilterout = {sv.Tv,sv.Iv,sv.Pv,sv.Xv};
BarChart[matchedfilterout,BarLabels->{"T","I","P","X"}];

T I P X

5

10

15

20

Side-note: Optimality of matched filter

The field of signal detection theory has shown that if one is given a vector input x, and required to detect whether it is due to
a signal in noise (s+n), or just noise (n), then under certain conditions, one cannot do any better than to base one's decision
on the dot product x.s. The conditions are simple: the elements of the noise vector are assumed to be identical and indepen-
dently distributed gaussian random variables, and s is assumed to be known exactly (i.e. is represented by a vector whose
elements have fixed values).

8 Lect_9_SummedVector.nb

Learning information about the relative frequencies

We've seen how a very simple form of the generalized Hebbian learning rule can capture useful information about the
relative frequencies of stimulus occurrence. This is a crude form of self-organization. We know from statistics that there are
standard devices for estimating frequency of occurrence--namely, histograms. The vector sum has accumulated a kind of
histogram, in the sense that it counts the number of times a particular synapse has been activated. But it is sub-optimal for
our function, because what we'd like to have ideally is a device that told us how often Ts, Is, Ps occur, in a way that doesn't
muddle up their representational elements.

Later we will look at the statistical framework for self-organization and the problem of measuring histograms and using
these data to model probablity densities, or "density estimation" as it is called.

Overview of Statistical learning theory

Statistical learning theory

We've noted common distinction in neural networks is between supervised and unsupervised learning. The heteroassociative
network was supervised, in the sense that a "teacher" supplies the proper output to associate with the input. Learning in
autoassociative networks is unsupervised in the sense that they just take in inputs, and try to organize an internal representa-
tion based on the inputs.

Over the past decade, there has been considerable progress in establishing the theoretical foundations of neural networks in
the larger domain of statistical learning theory. In particular, neural networks can be seen to be solving several standard
problems in statistics: regression, classification, and probability density estimation. Here is a summary:

‡ Supervised learning:

Supervised learning: Training set {fi,gi}

Regression: Find a function f: f->g, i.e. where g takes on continuous values. Fitting a straight line to data is
a simple case.

Classification: Find a function f:f->{0,1,2,...,n}, i.e. where gi takes on discrete values or labels. Face
recognition is an example.

Many problems require discrete decisions. A problem with linear regression networks that we've studied so far is that they
don't. Below there is a simple exercise to illustrate the how the linear associator deals with inputs that it hasn't seen before.

Next time we will take a look at the binary classification problem

f: f -> {0,1}

Lect_9_SummedVector.nb 9

and see how the Perceptron solves it:

‡ Unsupervised learning:

Unsupervised learning: Training set {fi}

 Estimate probability density: p(f), e.g. so that the statistics of p(f) match those of {fi}, but generalizes
beyond the data.

In general, f is a vector with many elements that may depend on each other, so density estimation is a hard
problem, and involves much more than compiling histograms.

Synthesis of random textures or mountain landscapes is an example from computer graphics.

Generative modeling and Statistical sampling

‡ Generative modeling

Whether and how well a particular learning method works depends on how the data is generated. We spend most of our
time thinking about how to model learning and inference, i.e. estimation and classification. But it is also important to
understand how to model incoming data. A powerful way to do this is to develop "generative models" that when imple-
mented produce artificial data that resembles what the real data looks like. This corresponds to the statistics problem of
"filling a hat with the appropriate slips of paper" and then "drawing samples from the hat".

We will begin doing "Monte Carlo" simulations of neural network behavior. This means that rather than using real data, we
will use the computer to generate random samples for our inputs. Monte Carlo simulations help to see how the structure of
the data determines network performance. It is useful to know how to generate random variables (or vectors) with the
desired characteristics. For example, suppose you had a one unit network whose job was to take two scalar inputs, and from
that decide whether the input belonged to group "a" or group "b". The complexity of the problem, and thus of the network
computation depends on the data structure. The next three plots illustrate how the data determine the complexity of the
decision boundary that separates the a's from the b's.

10 Lect_9_SummedVector.nb

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

a
b

b
b

a

a

b
b

a

b

a

b

b

b

b

a

a

a

b

a

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

a

b

b b

a

b
b

a

b

a
a

a

a

a

b

b

b

a

b
a

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

b
a

a

aa

b

a

a

b
a

b

b b

b
b

bb

b

b
a

Later we'll see how the simplest Perceptron can always solve problems of the first category, but that we'll need more
complex models to classify patterns whose separating boundaries are not straight.

Lect_9_SummedVector.nb 11

‡ Inner product of random vectors

In another application of Monte Carlo techniques, in the problem set you will see how the inner product of random vectors
is distributed as a function of the dimensionality of the vectors.

The assumption of orthogonality for the input patterns for the linear associator would seem to make it
useless as a memory advice for arbitrary patterns. However, if the dimensionality of the input space is
large, the odds are pretty good that the cosine of the angle between any two random vectors is close to
zero. In the exercise, you will calculate the histograms for the distributions of the cosines of random
vectors for dimensions 10, 50 , and 250 to show that they get progressively narrower (see Anderson, p.
187).

‡ Probability densities and discrete distributions

As we noted earlier, most standard programming languages come with standard subroutines for doing pseudo-random
number generation. Unlike the Poisson or Gaussian distribution, these numbers are uniformly distributed--that is, the
probability of the random variable taking on a certain value is the same over the sampling range. Mathematica comes with
a standard function, Random[] that enables us to generate (pseudo) random numbers that are uniform, Poisson, Normal, and
others. (Why are they "pseudo" random numbers?)

Later in the course, we'll see that there is a close connection between Gaussian random numbers and linear estimators.

There are two packages DiscreteDistributions.m, and ContinuousDistributions.m which contain the
definitions of distributions, cumulative distributions, and provide the means to draw samples.

The alternative package function to the built-in function Random[], is UniformDistribution[] that generates uniformly
distributed random numbers.

In[56]:= <<Statistics`DiscreteDistributions`
<<Statistics`ContinuousDistributions`

In[58]:= udist = UniformDistribution[0,1];

We can define a function, sample[], to generate ntimes samples, and then make a list of a 1000 values like this:

In[59]:= sample[ntimes_] :=
Table[Random[Real],{ntimes}];

Or like this:

In[60]:= sample[ntimes_] :=
Table[Random[udist],{ntimes}];

The second way is more general, because we can use other distributions in our simulations later.

Now let us do a sampling experiment to get the list.

12 Lect_9_SummedVector.nb

In[61]:= z = sample[1000];

Count up how many times the result was 20 or less. To do this, we will use two built-in functions: Count[], and Thread[].
You can obtain their definitions using the ?? query.

In[62]:= Count[Thread[z<=.5],True]

Out[62]= 513

So far, we have good agreement with what we expect--about half (500/1000) of the samples should be less than 0.5. We can
make a better comparison by comparing the plots of the histogram from the sampling experiment with the theoretical
prediction. Let's make a table that summarizes the frequency. We do this by testing each sample to see if it lies within the
bin range between x and x + 0.1. We count up how many times this is true to make a histogram.

In[64]:= bin = 0.1;
Freq = Table[Count[Thread[x<z<=x+bin],True],{x,0,1-bin,bin}];

Now we will plot up the results. Note that we normalize the Freq values by the number values in z using Length[].

In[66]:= i=1;
theoreticalz = Table[{x,PDF[udist,x]}, {x,bin,.99,bin}];
simulatedz = Table[{x,(1/bin) N[Freq/Length[z]][[i++]]},

{x,bin,1,bin}];
theoreticalg = ListPlot[theoreticalz,

PlotJoined->True, PlotStyle->{RGBColor[0,0,1]},
DisplayFunction->Identity, PlotRange->{{0,1.2},{0,1.5}}];

simulatedg = ListPlot[simulatedz,
PlotJoined->True, PlotStyle->{RGBColor[1,0,0]},
DisplayFunction->Identity, PlotRange->{{0,1.2},{0,1.5}}];

In[71]:= Show[theoreticalg,simulatedg,
DisplayFunction->$DisplayFunction];

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

1.4

As you can see, the computer simulation matches fairly closely what theory predicts.

Lect_9_SummedVector.nb 13

‡ Central Limit theorem Demonstration

Now we'd like to see what happens when we make new random numbers by adding up several uniformly distributed
numbers. It turns out that our basic observation below doesn't matter what we do to the initial random numbers-we'll get a
distribution of the new random number that looks like a bell-shaped curve if we add up enough of the independently and
identically sampled ones (short hand is i.i.d. for independently and identically distributed).

Let's define a function, rv, that generates random nrv-dimensional vectors whose elements are uniformly distributed
between 0.5 and -0.5. Try nrv =1. Then try nrv=3.

In[471]:= nrv=1;
udist = UniformDistribution[-.5,.5];
rv := Table[Random[udist],{i,1,nrv}];
ipsample = Table[Apply[Plus,rv],{10000}];

ipsample is a list of 5000 elements.

In[475]:= bin = 0.1;
Freq = Table[Count[Thread[x<ipsample<=x+bin],True],{x,-1,1-bin,bin}];

In[477]:= i=1;
simulatedz = Table[{x,(1/bin) N[Freq/Length[ipsample]][[i++]]},

{x,-1+bin,1-bin,bin}];
simulatedg = ListPlot[simulatedz,

PlotJoined->True, PlotStyle->{RGBColor[1,0,0]},
DisplayFunction->Identity, PlotRange->{{-1.5,1.5},{0,1.5}}];

Now what is the theoretical distribution? The Central Limit Theorem states that the sum of n independent random
variables approaches the Gaussian distribution as n gets large. The n independent random variables can come from any
"reasonable" distribution-- the uniform distribution is reasonable, so is the distribution of the random variable z = x.y, where
x and y are uniform random variables.

We don't know (although we can do some theory to find out, see below) what the standard deviation of the theoretical
distribution is, but it should be normal by the Central Limit Theorem. And we know the mean has to be zero, by symmetry.
So we can try out various theoretical standard deviations to see what fits the simulation best:

In[480]:= standdev=0.5;
ndist = NormalDistribution[0,standdev];
theoreticalz = Table[{x,PDF[ndist,x]}, {x,-1+bin,1,bin}];
theoreticalg = ListPlot[theoreticalz,

PlotJoined->True, PlotStyle->{RGBColor[0,0,1]},
DisplayFunction->Identity, PlotRange->{{-1.5,1.5},{0,1.5}}];

14 Lect_9_SummedVector.nb

In[484]:= Show[theoreticalg,simulatedg,
DisplayFunction->$DisplayFunction];

-1.5 -1 -0.5 0.5 1 1.5

0.2

0.4

0.6

0.8

1

1.2

1.4

Now try nrv = 3 above.

Exercises

Exercise

Calculate what the theoretical mean and standard deviation should be using the following rule:

1. The mean of a sum of independent random variables equals the sum of their means

2. The variance of a sum of independent random variables equals the sum of the variances

(And remember that the standard deviation equals the square root of the variance).

Plot up the simulated and theoretical distributions above using your answer for the theoretical distribution.

Answer for the standard deviation is in the closed cell below.

Exercise

Try using LaplaceDistribution@ mu, beta D instead of the UniformDistribution as the source of the i.i.d. random
variables.

Lect_9_SummedVector.nb 15

Linear interpolation interpretation of linear heterassociative learning and recall

<< Graphics`Graphics3D`

In[423]:= f1 = 80, 1, 0<;
f2 = 81, 0, 0<;
g1 = 80, 1, 3<;
g2 = 81, 0, 5<;

In[427]:= W = Outer@Times, g1, f1D;
W maps f1 to g1:

In[428]:= W.f1

Out[428]= 80, 1, 3<
W maps f2 to g2:

In[429]:= W = Outer@Times, g2, f2D;
W.f2

Out[430]= 81, 0, 5<
Because of the orthogonality of f1 and f2, the sum Wt still maps f1 to g1:

In[431]:= Wt = Outer@Times, g1, f1D + Outer@Times, g2, f2D;
Wt.f1

Out[432]= 80, 1, 3<
Define an interpolated point fi somewhere between f1 and f2, the position being determined by parameter a:

In[464]:= a = 0.4;
fi = a * f1 + H1 - aL * f2;

16 Lect_9_SummedVector.nb

In[466]:= ScatterPlot3D@8f1, f2, fi<, PlotStyle -> PointSize@.1D, Axes Ø FalseD;

Now define an interpolated point gt between g1 and g2

gt = a * g1 + H1 - aL * g2;

Show that Wt maps fi to gt:

Wt.fi
gt

Introduction to non-linear models

‡ Perceptron (Rosenblatt, 1958)

The original perceptron was fairly sophisticated--input layer ("retina" of sensory units), associator units, and response units.
There was feedback between associator and response units.

The neuron models were threshold logic units (TLU)--i.e. the generic connectionist unit with a step threshold function.

These networks were difficult to analyse theoretically, but a simplified single-layer perceptron can be analyzed. Next lecture
we will look at classification, linear separability , the perceptron learning rule, and the work of Minsky and Papert (1969).

Lect_9_SummedVector.nb 17

References
Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford: Oxford Univeristy Press.

Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. New York.: John Wiley & Sons.

Vapnik, V. N. (1995). The nature of statistical learning. New York: Springer-Verlag.
© 1998, 2001, 2003 Daniel Kersten, Computational Vision Lab, Department of Psychology, University of Minnesota.

18 Lect_9_SummedVector.nb

