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Lateral inhibition

Introduction

Last time

‡ Developed a "structure-less, continuous signal, and discrete time" generic neuron model and from 

there built a network.  

‡ Basic linear algebra review. Motivated linear algebra concepts from neural networks.

Today

We are going to look at an explanation of a human perceptual phenomenon called Mach bands, that involves a linear 
approximation based on a real neural network.  This is an example of neural filtering found in early visual coding. We will 
study two types of network that may account for Mach bands: 1) feedforward; 2) feedback. The feedback system will 
provide our first example of a dynamical system. The system we will look at was developed as a model of the neural 
processing in the horseshoe crab (limulus) compound eye. Despite the (apparent) enormous difference between your visual 
system and that of the horseshoe crab, our visual system shares a fundamental image processing function with that of this 
lowly crustacean (and virtually all other animals that process image patterns).



‡ An application of a simple linear model for visual spatial filtering

‡ Add some dynamics for visual spatial filtering

‡ Winner-take-all network: Add a threshold non-linearity

Mach bands & perception
Ernst Mach was an Austrian physicist and philosopher. In addition to being well-known today for a unit of speed, he is also 
known for several visual illusions. One illusion is called "Mach bands". Let's make some.

In[6]:= Clear[y];
low = 0.2; hi = 0.8;
y[x_] := low /; x<40
y[x_] :=

((hi-low)/40) x + (low-(hi-low)) /; x>=40 && x<80
y[x_] := hi /; x>=80

In[11]:= Plot[y[x],{x,0,120},PlotRange->{0,1}];
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In[12]:= size = 120; 
e := Table[y[i],{i,1,size}];

Let's make a 2D gray-level picture displayed with ListDensityPlot to experience the Mach bands for ourselves. PlotRange 
allows us to scale the brightness.
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In[14]:= e1 = e;
picture = Table[e1,{i,1,60}];
ListDensityPlot[picture,Frame->False,Mesh->False, 

PlotRange->{0,1}];

What Mach noticed was that the left knee of the ramp looked too dark, and the right knee looked too bright. Objective light 
intensity did not predict apparent brightness.

‡ Mach's explanation

In general, lateral inhibition increases contrast at edges.

Neural basis?

Early visual neurons (e.g. ommatidia in horseshoe crab, ganglion cells in the mammalian retina and even later cells in the 
lateral geniculate neurons of the thalamus, and some cells in V1 or primary visual cortex of the monkey) have receptive 
fields with Mach's center surround organization. I.e. excitatory centers and inhibitory surrounds. Or the opposite polarity, 
inhibitory centers and excitatory surrounds.

Limulus (horseshoe crab)--Hartline, who won the 1967 Nobel prize for this work that began in the 30's.

(See http://www.mbl.edu/animals/Limulus/vision/Barlow/,  http://www.mbl.edu/animals/Limulus/vision/index.html, and 
http://www.mbl.edu/animals/Limulus/index.html).

Frog -- Barlow, H. B. (1953). Summation and inhibition in the frog's retina. J Physiol, 119, 69-88. 

Cat --S. W. Kuffler (1953). Discharge patterns and functional organization of mammalian retina . Journal of Neurophysiol-
ogy, 16:37--68.

Lect_5_LatInhibition.nb 3



In general, lateral inhibition increases contrast at edges.

Neural basis?

Early visual neurons (e.g. ommatidia in horseshoe crab, ganglion cells in the mammalian retina and even later cells in the 
lateral geniculate neurons of the thalamus, and some cells in V1 or primary visual cortex of the monkey) have receptive 
fields with Mach's center surround organization. I.e. excitatory centers and inhibitory surrounds. Or the opposite polarity, 
inhibitory centers and excitatory surrounds.

Limulus (horseshoe crab)--Hartline, who won the 1967 Nobel prize for this work that began in the 30's.

(See http://www.mbl.edu/animals/Limulus/vision/Barlow/,  http://www.mbl.edu/animals/Limulus/vision/index.html, and 
http://www.mbl.edu/animals/Limulus/index.html).

Frog -- Barlow, H. B. (1953). Summation and inhibition in the frog's retina. J Physiol, 119, 69-88. 

Cat --S. W. Kuffler (1953). Discharge patterns and functional organization of mammalian retina . Journal of Neurophysiol-
ogy, 16:37--68.

Feedforward model
Two types of models: feedforward and feedback (in our context, "recurrent lateral inhibition")

f = w¢ .e

where e is a vector representing the input intensities, w¢  is a suitably chosen set of weights (i.e. excitatory center and 
inhibitory surround as shown in the above figure), and f is the output. 

‡ Mathematica implementation

Because the stimulus is effectively one-dimensional, we'll simulate the response in one dimension.

Let the receptive field for one output unit be represented by 5 weights, with a center value of 6, and surround values of -1:
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In[62]:= wp = Table[0,{i,1,Length[e]}];
wp[[1]]=-1; wp[[2]]=-1; wp[[3]]=6; wp[[4]]=-1; wp[[5]]=-1;
ListPlot[wp,PlotJoined->True, PlotRange->{{0,10},{-2,7}}];
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The plot shows the "center-surround" organization of the filter. 

Now assume that all units have the same weights, and calculate the response at each point by shifting the weight filter wp 
right one by one, and taking the dot product with the input pattern e,  each time:

In[19]:= response = Table[RotateRight[wp,i].e,{i,1,115}];

This way we can mimic the response we want:

In[20]:= ListPlot[response];

20 40 60 80 100

0.4

0.6

0.8

1.2

1.4

1.6

Lect_5_LatInhibition.nb 5



Show that you can think of this operation is as matrix multiplication W.e where each subsequent row of 
the matrix W is the vector wp shifted over by one. 

‡ Convolution

This kind of operation where the same filter gets applied repeatedly at different positions is common in signal processing. 
Mathematica has a function ListConvolve[ ] that does this for you. It has additional arguments that allow for handling of 
the boundaries. What should you do when the filter gets close to the end of the stimulus? A common default is to let the 
filter wrap around. Another common solution is to "pad" the ends of e with fixed values, such as zero. 

What does the retina do?.

In[46]:= ListPlot@ListConvolve@8-1, -1, 6, -1, -1<, eDD;
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Build a simple edge detector. Let kern={-1,2,-1} and use ListConvolve[ ].

There is  neurophysiological evidence for an implementation of lateral inhibition via feedback or recurrent lateral inhibition.

Feedback model: Recurrent lateral inhibition

‡ Dynamical systems: difference equation for one neuron

State of neuron output f at discrete time k.
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One neuron

(1)f@k + 1D = e@kD + w f@kD
Suppose the initial state f[0] is known and e[k] is zero, can you find an expression for f[k]? What happens 
if w is less than one? Greater than one?

‡ Dynamical systems: Coupled difference equations for interconnected neurons

Now let's study a two neuron system. The formalism will extend naturally to higher dimensions. To keep this simpler, the 
weights for the inputs e are fixed at one, but we will specify weights for the newly added feedback connections:

Let e be the input activity vector to the neurons,  f is the n-dimensional state vector representing output activity and W is a 
fixed nxn weight matrix. Then for a two neuron network we have:

(2)f1@k + 1D = e1@kD + w 12  f2@kD + w 11  f1@kD
f2@k + 1D = e2@kD + w 21  f1@kD + w 22  f2@kD
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or in terms of vectors and matrices

(3)Jf1@k + 1D
f2@k + 1DN = Je1@kD

e2@kDN + Jw11 w12
w21 w22

N Jf1@kD
f2@kDN

or in summation notation:

(4)fi@k + 1D = ei@kD + ‚
j

 wij.fj@kD
or in concise vector-matrix (and Mathematica) notation:

(5)f@k + 1D = e@kD + W .f@kD
where W = Jw11 w12

w21 w22
N

This equation is an example of a simple dynamical system. As you might imagine, the state of a dynamical system typically 
changes with time (i.e. iteration k). Are there solutions for which the state does not change with time? If there are, these 
solutions are called steady state solutions.

In contrast to the way we set up the weights for the feedforward matrix (which included the forward excitatory weights), we 
are going to assume later that all of these weights are inhibitory (because we are modeling lateral inhibition). The positive 
contributions, if any, will come from the input e.

‡ Steady state solution for a discrete system

A steady-state solution simply means that the state vector f doesn't change with time:

(6)f@k + 1D = f@kD
or in vector and Mathematica  notation:

                                                           f = e + W.f

where we drop the index k. Note that by expressing f in terms of e, this is equivalent to another linear matrix equation,the 
feedforward solution:

                                                           f = W'.e,

where

                                                           W' = (I - W)-1  

The -1 exponent means the inverse of the matrix in brackets. I is the identity matrix.

We will review more later on how to manipulate matrices, find the inverse of a matrix, etc..

‡ Dynamical system -- coupled differential equations ("limulus" equations)

What if time is not modeled in discrete clocked chunks? The theory for coupled discrete equations

(7)f@k + 1D = e@kD + W .f@kD
parallels the theory for continuous differential equations where time varies continuously:
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(8)df
ÅÅÅÅÅÅÅdt = e@tD + W≥ .f@tD

(W≥ is not the same matrix as W .) If you want to learn more about dynamical systems, see Luenberger (1979).

Continuous time is a more realistic assumption for a neural network of visual processing, so we model a dynamical system 
for lateral inhibition with feedback.

Let e(t) be the input activity to the neurons,  f(t) is the n-dimensional state vector representing output activity now as a 
function of time.   W is a fixed nxn weight matrix. The equation in the previous section is the steady state solution to the 
following differential equation:

(9)df
ÅÅÅÅÅÅÅdt = e@tD + W .f@tD - f@tD

(You can see this by noting that as before, "steady state" just means that the values of f(t) are not changing with time, i.e. 
df/dt = 0). We are going to develop a solution to this set of equations using a discrete-time approximation.

The state vector f at time t+Dt  (e = Dt) can be approximated as:

We will fix or "clamp" the input e, start with arbitrary position of the state vector f, and model how the state vector evolves 
through time. We'll ask whether it seeks a stable state for which f(t) is no longer changing with time, f(t + Dt) @ f(t),

i.e. when df/dt = 0. In the limit as  Dt (or e) approaches zero, the solution is given by the steady state solution of the previous 
section. But neural systems take time to process their information and for the discrete time approximation,  the system may 
not necessarily evolve to the steady state solution. 

Simulation of recurrent lateral inhibition

First we will initialize parameters for the number of neurons (size), the space constant of the lateral inhibitory field 
(spaceconstant), the maximum strength of the inhibitory weights (maxstrength), the number of iterations (iterations), and 
e:

‡ The input stimulus

In[88]:= size = 30;
spaceconstant =5;
maxstrength = 0.05;
iterations = 10;
e = .3;

In[106]:= e = Join[Table[0,{i,N[size/3]}],Table[i/N[size/3],
{i,N[size/3]}], Table[1,{i,N[size/3]}]];

g0 = ListPlot[e, PlotRange -> {{0,30},{-0.5,1.1}},PlotStyle->{RGBColor[1,0,0]},
DisplayFunction -> Identity];

picture = Table[e,{i,1,30}];
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We've stored the graphic g0 of the input for later use. The option

DisplayFunction -> Identity prevents the display. We can turn it on later with: 

DisplayFunction ->  $DisplayFunction.

In[109]:= Show[g0, DisplayFunction -> $DisplayFunction];
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‡ Initializing the state vector and specifying the weights

Now we'll initialize the starting values of the output f to be random real numbers between 0 and 1, drawn from a uniform 
distribution.

In[110]:= f = Table[Random[],{size}];

Now let's set up synaptic weights which are negative, but become weaker the further they get from the neuron. We assume 
that the weights drop off exponentially away from each neuron:

In[111]:= W =
Table[N[-maxstrength Exp[-Abs[i-j]/spaceconstant],1],

{i,size},{j,size}];
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In[112]:= ListPlot3D[W];
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‡ Simulating the response

We are going to use the Mathematica  function Nest[] to iterate through the limulus equations. Nest[f, expr, n] gives an 
expression with f applied n times to expr. For example, if we have defined a function T[], Nest[T,x,4] produces as output 
T[T[T[T[x]]]].

Let's express our discrete approximation for the limulus dynamical system in terms of a function, T, which will get applied 
repeatedly to itself with Nest:

In[113]:= T[f_] := f + e (e + W.f - f);

In[114]:= iterations = 15;
g1 = ListPlot[Nest[T, f, iterations],PlotJoined->True,

PlotRange -> {{0,30},{0,1.0}},PlotStyle->{RGBColor[0,0,1]},
DisplayFunction -> Identity];

Show[g0,g1, Graphics[Text[iterations "iterations",
{size/2,-0.4}]], 
DisplayFunction -> $DisplayFunction];
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How does the simulation match up to data from the Limulus eye?

From Hartline's Nobel lecture http://www.nobel.se/medicine/laureates/1967/hartline-lecture.pdf. Figure from: F. Ratliff 
and H.K. Hartline, J. Gen. Physiol., 42 (1959) 1241.

Exercises: Explore the parameter space

The effect of e, strength of inhibition, and number of iterations

‡ Define a function with inputs: e, maxstrength and iterations, and outputs: a plot of response

We can use the Module[ ] function to define a routine with local variables and a set of other functions to define 
limulus[e_,maxstrength_,iterations_]:

12 Lect_5_LatInhibition.nb



In[117]:= limulus@e_, maxstrength_, iterations_D := Module@8f, W<,
W = Table@N@-maxstrength Exp@-Abs@i - jD êspaceconstantD, 1D, 8i, size<, 8j, size<D;
f = Table@Random@D, 8size<D;
T@f_D := f + e He + W.f - fL;
g1 =
ListPlot@Nest@T, f, iterationsD, PlotJoined Ø True, PlotRange Ø 880, 30<, 80, 1.0<<,
PlotStyle Ø 8RGBColor@0, 0, 1D<, DisplayFunction Ø IdentityD;

Show@g0, g1, Graphics@Text@iterations "iterations", 8size ê 2, -0.4<DD,
DisplayFunction Ø $DisplayFunctionD;D;H*Note that this function isn' t "clean"-- although f and W are local variables,

it relies on earlier global definitions of size,g0,spaceconstant, and e.*L
In[121]:= limulus@.3, .05, 15D;
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For maxstrength = 0.05, e = .3, run limulus[ .3,.05, iteration] for iteration values = 1, 3, 9, 27

What does the steady state response look like if the inhibition is small (i.e. small maxstrength)?

In[123]:= limulus@.3, .005, 15D;
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What does the steady state response look like if the inhibition is large?

What if the iteration step-size, e, is large (e.g. 1.5). Run it limulus[ ] several times.

Neural networks as dynamical systems

We've explored a simple linear neural network that is a good model of limulus processing, and seems to provide a possible 
explanation for human perception of Mach bands. Real neural networks typically have non-linearities. There is no general 
theory of non-linear systems of difference or differential equations. But the exploration of this linear set does lead  us to ask 
questions which are quite general about dynamical systems:

  What does the trajectory in state-space look like?

  Does it go to a stable point?

  How many stable points or "attractors" are there?

 There are non-linear systems which show more interesting behavior in  which one sees:

 Stable orbits

 Chaotic trajectories in state-space

 "Strange" attractors

 We will return to some of these questions later when we study Hopfield networks.

Recurrent lateral inhibition & Winner-take-all (WTA)

Sometimes one would like to have a network that takes in a range of inputs, but as output would like the neuron with 
biggest value to remain high, while all others are suppressed. In other words, we want the network to make a decision. The 
limulus equation can be set up to act as such a "winner-take-all" network. We will remove self-inhibition by setting all the 
diagonal elements of W to zero. We will also add a non-linear thresholding function ("rectification") to set negative values 
to zero, and we will increase the spatial extent of the inhibition.

‡ Make a rectifying threshold function

In[144]:= thresh@x_D := N@If@x < 0.0, 0.0, xDD;
SetAttributes@thresh, ListableD;
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‡ Make a "tepee" stimulus and initialize the neural starting values

In[149]:= size = 32;
e = Join[Table[0,{i,N[size/4]}],

Table[i/N[size/4],{i,N[size/4]}],
Table[(N[size/4]-i)/N[size/4],{i,N[size/4]}],
Table[0,{i,N[size/4]}]];

g0 = ListPlot[e, PlotRange -> {{0,size},{-1,2.0}},PlotStyleØ{RGBColor[1,0,0]},
DisplayFunction -> Identity];

‡ Define winnertakeall[ ] as for limulus[ ], but with no self-inhibition:

In[152]:= winnertakeall@e_, maxstrength_, iterations_, spaceconstant_D := Module@8f, W<,
W = Table@N@-maxstrength Exp@-Abs@i - jD êspaceconstantD, 1D, 8i, size<, 8j, size<D;
For@i = 1, i <= size, i++, W@@i, iDD = 0.0D;
f = Table@Random@D, 8size<D;
T@f_D := thresh@f + e He + W.f - fLD;
g1 = ListPlot@Nest@T, f, iterationsD,

PlotJoined Ø True, PlotRange Ø 880, size<, 8-1, 2.0<<,
PlotStyle Ø 8RGBColor@0, 0, 1D<, DisplayFunction Ø IdentityD;

Show@g0, g1, Graphics@Text@iterations "iterations", 8size ê 2, -0.8<DD,
DisplayFunction Ø $DisplayFunctionD;D;H*Note that this function isn' t "clean"-- although f and W are local variables,

it relies on earlier global definitions of size,g0,and e. *L
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Use ListPlot3D[W] to see the modified structure of the weight matrix

Run simulation: Find a set of parameters that will select the maximum response and suppress the rest
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If we think of the number of iterations to steady-state as "reaction time", how is this neural network for making decisions? 
How sensitive is its function to the choice of parameters?

If you are having a hard time finding a good set of parameters, select the cell below, then go to Cell->Cell Properties->Cell 
Open, and then run it.
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Next time

‡ Review matrices. Representations of neural network weights.
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Appendix

Exercise: Make a gray-level image of the  horizontal luminance pattern shown below.

Does the left uniform gray appear to be the same lightness as the right patch? Can you explain what you see in terms of 
lateral inhibition?
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Clear[y];
low = 0.2; hi = 0.8;
left = 0.5; right = 0.5;
y[x_] := left /; x<40
y[x_] :=

((hi-low)/40) x + (low-(hi-low)) /; x>=40 && x<80
y[x_] := right /; x>=80

Plot[y[x],{x,0,120},PlotRange->{0,1}];
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Exercise: Hermann grid

Below is the Hermann Grid. Notice the phantom dark spots where the white lines cross. Can you explain what you see in 
terms of lateral inhibition?

width = 5; gap = 1; nsquares = 6;

hermann = Flatten@Table@8Rectangle@8x, y<, 8x + width, y + width<D<,8x, 0, Hwidth + gapL * Hnsquares - 1L, width + gap<,8y, 0, Hwidth + gapL * Hnsquares - 1L, width + gap<D, 1D;
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Show@Graphics@hermann, AspectRatio -> 1DD;

© 1998,  2001, 2003 Daniel  Kersten,  Computational  Vision Lab, Department  of Psychology,   University  of Minnesota.
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