
Introduction to Neural Networks
U. Minn. Psy 5038

Daniel Kersten

Lecture 3

Introduction

Last time

‡ 1. Overview of structure of the neuron

‡ 2. Basic electrophysiology

Today

• Summarize the qualitative features of the neuron as a signal processing device

• Levels of abstraction in neural modeling

• The McCulloch-Pitts model

• Develop the "integrate and fire" model to justify the assumption of frequency codes

--prepares the stage for a slightly simpler model: the generic (connectionist) model that 
will be used for a large fraction of the course.

Our pedagogical strategy will be to converge on the "right" model for large-scale simulations--we'll first be too simple 
(McCulloch-Pitts), then too complex (Integrate-and-fire), and finally just right (generic neural model).

After reviewing the basic slow potential model, we'll discuss approaches to quantifying neuron models. Then we'll introduce 
our first quantitative model--the McCulloch-Pitts neuron, and see how to implement it in Mathematica. Although it is 
interesting from a historical and theoretical perspective,  we'll argue that it is biologically too unrealistic. The "leaky inte-
grate and fire" neuron model better captures the fundamental properties of the slow potential model, and provides a justifica-
tion for the generic connectionist model ("structure-less, continuous signal").



Qualitative summary of slow potential neuron model
Let's summarize the essential qualitative features of signal integration and transmission of a neuron with what is called the 
"slow potential model".

Slow potential at axon hillock waxes and wanes (because of low-pass temporal characteristics and the spatial  distribution of 
the inputs) depending on the number of active inputs, whether they are excitatory or inhibitory, and their arrival times.

The slow integrated voltage potential now and then exceeds threshold producing an axon potential.

Further, if the slow potential goes above threshold, frequency of firing is related to size of slow potential.

Caveat: Not all signal transmission in neural computation is done through action potentials. For example, of the 6 types of 
cells in the retina of your eye, essentially 1 type, 

the ganglion cell, uses action potentials as the predominant conveyor of information, the others communicate via slow 
potentials.

But spike generation isn't a strictly deterministic process. There is "noise" or random fluctuation that can be due to several 
factors"

ion channels open and close probabilistically, quantized

neurotransmitter release in discrete packages - Poisson

sensory receptors can produce spontaneous signals

Over long distances spike train frequency is roughly like a Poisson process (better--an interval Gamma distribution) 
whose mean is modulated by the already noisy slow potential.

In order to compute with models, we need more precision--we need to make our models quantitative.

2 Lect_3_NeuralModeling.nb



Slow potential at axon hillock waxes and wanes (because of low-pass temporal characteristics and the spatial  distribution of 
the inputs) depending on the number of active inputs, whether they are excitatory or inhibitory, and their arrival times.

The slow integrated voltage potential now and then exceeds threshold producing an axon potential.

Further, if the slow potential goes above threshold, frequency of firing is related to size of slow potential.

Caveat: Not all signal transmission in neural computation is done through action potentials. For example, of the 6 types of 
cells in the retina of your eye, essentially 1 type, 

the ganglion cell, uses action potentials as the predominant conveyor of information, the others communicate via slow 
potentials.

But spike generation isn't a strictly deterministic process. There is "noise" or random fluctuation that can be due to several 
factors"

ion channels open and close probabilistically, quantized

neurotransmitter release in discrete packages - Poisson

sensory receptors can produce spontaneous signals

Over long distances spike train frequency is roughly like a Poisson process (better--an interval Gamma distribution) 
whose mean is modulated by the already noisy slow potential.

In order to compute with models, we need more precision--we need to make our models quantitative.

Models and neural computation

Neural Models

What is a model? A simplification of something complicated to help our understanding. The schematic of the slow potential 
model above does that. It reduces complexity but still preserves essential features of the phenomenon. A good model, 
however, should go beyond description, and allow us to make predictions. Further, to make fine-grain predictions, we need 
quantitative models. Quantitative models enable us to simulate neural computation.

How can we make the slow-potential model precise so that we can compute outputs from inputs? There are several levels of 
abstraction in neural models that are useful in computational neuroscience. One simplication is to ignore the spatial struc-
ture of a neuron, and to assume that the essential computational nature of a neuron is captured by how its inputs are inte-
grated at a given time. This simplification will lead us to three classes of "structure-less" or "point" models (Segev, 1992).

But what if we want to go beyond the above slow potential model to understand how the geometry of a neuron, its dendritic 
tree,  affects its signalling? Then we'd want a neuron model that takes into account the morphology of the neuron-
-"structured" models.

The upside of structured models is that they include sufficient detail to make testable detailed electrophysiological predic-
tions. The downside is that the model of an individual neuron can be so complex, it becomes difficult to characterize how 
tens of thousands might behave with respect to a specific behavioral function, and that's where the simplifying assumptions 
of the "structure-less" models is useful. Structure-less models make simulation simpler, and they make the theory easier.

Let's look at the various types of neurons, starting from the simplest to the more complex.

Structure-less ("point") models

Let's look at three classes obtained by making various assumptions about the slow-potential model.

Lect_3_NeuralModeling.nb 3



‡ Discrete (binary) signals--discrete time

The action potential is the key characteristic in these models. Signals are discrete (on or off), and time is discrete.

At each time unit, the neuron sums its (excitatory and inhibitory) inputs, and turns on the output if the sum exceeds a 
threshold.

e.g. McCulloch-Pitts,  elements of the Perceptron, Hopfield discrete nets. 

A gross simplification...but the collective computational power of a large network of these simple model neurons can be 
great. 

And when the model neuron is made more realistic (inputs are graded, last on the order of milliseconds or more, output is 
delayed), the computational properties of these networks can be preserved (Hopfield, 1984).

Below, we'll briefly discuss the computational properties of networks of McCulloch-Pitts neurons.

‡ Continuous signals -- discrete time

Action potential responses are interpreted in terms of a single scalar continuous value--the spike frequency--at the ith time 
interval. Here we ignore the fine-scale temporal structure of a neuron's voltage changes.

The discrete time model gives us the standard the basic building block for the majority of networks considered in this 
course. It is also the model used in so-called "connectionist" approaches.

Both of the above two classes are useful for large scale models (thousands of neurons). 

Below, we'll see how the continuous signal model is an approximation of the "leaky integrate and fire" model. The leaky 
integrate and fire model is an example of a structure-less continuous-time model. 

‡ Structure-less continuous-time

Quantifies above "Slow potential model". Analog. More realistic than discrete models.  Emphasizes nonlinear dynamics, 
dynamic threshold, refractory period, membrane voltage  oscillations. Behavior represented by differential equations.

• "integrate and fire" model -- takes into account membrane capacitance. Threshold is a free parameter. 

• Hodgkin-Huxley model--Realistic. Parameters defining the model have a physical interpretation (e.g. various 
sodium and potassium ion currents), that can be used to account for threshold. Model the form and timing of action 
potentials.

Structured models

Important for understanding computational properties that are functions of the shape of the neuron, e.g. including 2D and 
3D.

4 Lect_3_NeuralModeling.nb



‡ Passive - cable, compartments

From Segev (1992).

Cable theory - passive trees. Assume membrane is passive. Take into account dendritic morphology or structure. (Rall, 
1964). Uses cable equations on segments of dendrites.

From Segev (1992).

Compartments: Represent electrical properties of segments of neurons with RC circuits

Segev (1992).

Lect_3_NeuralModeling.nb 5



Dendritic structure shows what a single neuron can compute--Rall's motion selectivity example

Dendritic structure is important because it can show what a single neuron can compute. 

A model of motion selectivity provides an example of the kind of useful computation that requires a consideration of the 
effects of dendritic structure on integration.

A "motion selective" neuron

Consider the sequential stimulation of the dendrite from left to right (ABCD) vs. right to left (DCBA). (Recall that informa-
tion flow in the neuron as a whole is from the dendritic arbor towards the axon. ) (Anderson, 1995).

The main message is that important functions, such as motion selectivity or sensitivity to timing, may depend on location of 
the inputs on a dendrite.

Importance of relating neural computations to perceptual/behavior function: Basis for visual motion selectivity? It is 
worthwhile pointing out that although this model of motion selectivity has been around for several decades, it has yet to be 
established that this is right model for motion selectivity of visual neurons. A major problem has been that dendritic transmis-
sion is actually too fast to account for the slow velocities that can be detected by animals (Barlow, 1996).

For the purposes of this course, dendritic morphology and its potential for increased computational power will unfortunately 
largely be ignored. We should remember that simple phenomena such as our sensitivity to motion direction differences may 
be computed on a single neuron rather than requiring a collection.

6 Lect_3_NeuralModeling.nb



The main message is that important functions, such as motion selectivity or sensitivity to timing, may depend on location of 
the inputs on a dendrite.

Importance of relating neural computations to perceptual/behavior function: Basis for visual motion selectivity? It is 
worthwhile pointing out that although this model of motion selectivity has been around for several decades, it has yet to be 
established that this is right model for motion selectivity of visual neurons. A major problem has been that dendritic transmis-
sion is actually too fast to account for the slow velocities that can be detected by animals (Barlow, 1996).

For the purposes of this course, dendritic morphology and its potential for increased computational power will unfortunately 
largely be ignored. We should remember that simple phenomena such as our sensitivity to motion direction differences may 
be computed on a single neuron rather than requiring a collection.

‡ Dynamic - compartmental models

A more complete, description of neuron processing takes into account the non-linear active properties of spike generation 
together with the morphological properties of neurons. Add Na+ and K+ conductance components to the compartmental 
RC-circuits (using Hodgkin and Huxley equations), and one can create non-linear trees to model non-linear dynamical 
properties of neurons.  Computer simulations necessary. But modern computers can handle networks on the order of tens of 
thousands of neurons, each with a half-dozen or so compartments. Computational theories of information processing 
difficult. 

From: Hines, M.L. and Carnevale, N.T. (1997) The NEURON simulation environment. Neural Computation 9:1179-1209.

Lect_3_NeuralModeling.nb 7



From: Hines, M.L. and Carnevale, N.T. (1997) The NEURON simulation environment. Neural Computation 9:1179-1209.

Rectangular block in figure contains the non-capacitive contributions to current change, ionic currents and membrane 
resistance (as in the Hodgkin-Huxley equation).

McCulloch-Pitts:  Discrete-time, discrete state (binary)

Introduction

Published in 1943, the McCulloch-Pitts model is famous and important because it showed that with a few simple assump-
tions, networks of of neurons may be capable of computing the full repertoire of logical operations.  Although some of the 
basic facts about the physiology were wrong, the notion of neurons as computational devices remains with us.

The model ignores some of the very properties we just looked at that might be important for certain kinds of neural process-
ing (e.g. motion direction selectivity through dendritic cable transmission properties, frequency coding, noise). But the 
model abstracts properties that at the time seemed the most essential. 

Apart from the understanding of the biochemical basis of neural transmission,  by the 1940's  the basic signalling properties 
of neurons were well-known.  In a seminal paper, McCulloch and Pitts formalized what was known, and developed a theory 
of neural networks that related the functioning of the brain to the then infant field of digital computers. They made the 
following assumptions:

• neuron signals are all-or-none

• a certain fixed number of synapses must be excited within a latent period of addition to excite the neuron

• the number of synapses is independent of previous activity and position on the neuron

• the only significant delay is synaptic delay

• there are excitatory and inhibitory synapses

• structure of the net does not change with time

With the right choice of parameters, the McCulloch-Pitts neuron can do various logical operations.

8 Lect_3_NeuralModeling.nb



Review of Basic Logical Operations

Before looking at the McCulloch-Pitts model, let's review simple two-input logical functions where the inputs are a and b, 
and the output is c. Inputs and outputs can take on only two states {False, True}={0,1}.

‡ Inclusive OR: Or[ ]

The output of a two-input inclusive OR is false if and only if both inputs are false. You can use "C" programming style 
notation for OR:

In[238]:= x = True; y = False;
x || y

...or try the built-in function notation: Or[x,y]

In[240]:= Or@x, yD
‡ AND: And[ ]

And[] outputs true if and only if both inputs are true. 

In[259]:= And@x, yD
Try AND with C style notation: x&&y

Composite functions, e.g. define Mylogicalfunction

In[247]:= Mylogicalfunction[a_,b_] := Or[And[Not[a],b],b]

Lect_3_NeuralModeling.nb 9



What input combinations produce a "True" output for the logical function"Exclusive OR": Xor[ ]?

McCulloch-Pitts: Inclusive OR, AND

Let's construct a McCulloch-Pitts neuron to compute OR and AND. For simplicity, let's set alpha to zero (no inhibition).The 
McCulloch-Pitts neuron sums its (binary) inputs, tests to see if the sum is bigger or less than the threshold. If bigger or 
equal, the output is set to 1, otherwise it is set to 0.

We can model the McCulloch-Pitts neuron's response like this:

In[253]:= McCullochPitts@a_, b_, t_D := If@a + b >= t, 1, 0D;
By convention True <=> 1, and False <=> 0.

The McCulloch-Pitts neuron is said to be computing threshold logic.

‡ Inclusive OR

Set the threshold to 1, and find out what kind of function the neuron is computing:

c = 9 1 if a + b r 1
0 otherwise

In[258]:= McCullochPitts@1, 1, 1D
Out[258]= 1

Try it out for various values of a and b. 

‡ Truth tables

There are only 2 inputs with 2 possible values each, so let's list all the neuron's possible responses, defining a truth table. 
We use two Mathematica functions, Table[], and Flatten[] to define a list that we'll call truthtable. Table[] is used to 
make lists, and because we have two indices (a, b), and a list as the first argument to Table[], it makes a list of lists of lists. 

In[261]:= Table@8a, b, McCullochPitts@a, b, 1D<, 8a, 0, 1<, 8b, 0, 1<D
Sidenote: Enumerating all possible combinations crops up so often in mathematics that Mathematica has a special function 
Outer[] function that can be used to compute functions on all possible combinations (see Appendix).  E.g. Try Outer[List,{-
False,True},{False,True},{False,True}]. This is just one use of Outer[ ]. Later when we study Hebbian learning, we'll use 
Outer to produce all possible products of inputs and outputs in a neural network. Learning weights are proportional to these 
"outer products".  Outer[ ] is also useful for calculating the covariance between variables.

10 Lect_3_NeuralModeling.nb



The above list has dimensions 2x2x3 (because of the extra curly brackets). We use Flatten[,1] to flatten truthtable to level 
1 to convert it to a 4x3 matrix. Then we can display it in "truth table" format, and view the result in "TableForm", "Matrix-
Form" or "TraditionalForm" (which is the default in Mathematica).

In[263]:= truthtable =
Flatten@Table@8a, b, McCullochPitts@a, b, 1D<, 8a, 0, 1<, 8b, 0, 1<D, 1D êê TableForm

Sidenote: Mathematica provides a wide range of list operations which you can read about in "Lists and Matrices: List 
Operations" in the Built-in Functions under Help. Mathematica also allows type-mixing in lists, so for example we can 
insert labels into our truthtable like this

In[264]:= Insert@truthtable, 8"a", "b", "c"<, 81, 1<D êê TableForm

Out[264]//TableForm=

a b c
0 0 0
0 1 1
1 0 1
1 1 1

Compare with Mathematica's predefined Or[] function:

In[265]:= truthtable =
Flatten@Table@8a, b, Or@a == 1, b == 1D<, 8a, 0, 1<, 8b, 0, 1<D, 1D êê TableForm

Out[265]//TableForm=

0 0 False
0 1 True
1 0 True
1 1 True

TableForm can also be specified as a function TableForm[ ]. 

Exercise: AND

Find a threshold value that will enable a McCulloch-Pitts neuron to realize the And[] function whose truth table is shown 
below. 

In[269]:= truthtable = Flatten@Table@8a, b, And@a == 1, b == 1D<, 8a, 0, 1<, 8b, 0, 1<D, 1D;
TableForm@truthtable, TableHeadings -> 88<, 8"a", "b", "c"<<D

Lect_3_NeuralModeling.nb 11



Out[270]//TableForm=

a b c
0 0 False
0 1 False
1 0 False
1 1 True

12 Lect_3_NeuralModeling.nb



Main conclusions

It is straightforward to show that Not can be implemented with the inhibitory input. And, Or, and Not are a complete set 
in the sense that any logical operation can be built out of them. 

Main result of 1943 paper: 

Any finite logical expression can be realized by McCulloch-Pitts neurons. 

This gave rise to the idea that the brain was very much like a digital computer. John von Neumann made explicit reference 
to the McCulloch-Pitts model in his famous 1945 technical report on the EDVAC.

How good is the McCulloch-Pitts model? The deterministic computer view of the brain did not hold under close examina-
tion.

Over the next few decades, progress in theory and experimental findings led to a significant change in the way neural 
systems were seen to operate. Today many people perfer to think of neural networks as doing statistical pattern process-
ing, rather than deterministic logical computation.

The developments that led to this change of view included:

• information theory and statistical decision theory

emphasized the statistical nature of information transmission and processing in the presence of  uncertainty and 
noise  that was more characteristic of  "real world" information processing.

 • Psychophysics and signal detection theory showed the importance of noise, false alarms, in human perception 
and decision making

• Physiological data on inherent statistical and analog nature of sensory  coding by neurons  became apparent, e.g. 
input  intensities are probably coded in terms of average frequency of  spike trains,  not  in terms of a precise  sequence-
-but this is still  debated. The McCulloch-Pitts model is a structure-less discrete time model--sensory experiments sug-
gested that  "structure-less continuous signal, and continuous-time" models would be better.

• Hodgkin-Huxley model of neural discharge added substantial richness to our understanding of the mechanism of 
spike generation, and neural conduction.

Around 1956, from his deathbed, John von Neumann wrote: 

"The language of the brain is not the language of mathematics" and

"..the message-system used in the nervous system, as described in the above, is of an essentially statistical  charac-
ter. In other words what matters are not the precise positions of definite markers, digits, but the statistical charac-
teristics of their occurrence, i.e. frequencies of the periodic or nearly periodic pulse-trains, etc." Italics are his.

He predicted that brain theory would eventually come to resemble the physics of statistical mechanics and thermodynam-
ics. Later on in this course, we'll see how by the 1980s von Neumann's prediction came true, at least in theoretical model-
ing of brain functioning. (Von Neumann died in February, 1957)

Let us now examine more closely the rationale for  continuous-response, and continuous-time models, and look at some 
simple models of the neuron that incorporate a frequency response. Then we will formally introduce the "generic neuron 
model" that we will use for most of this course.

Lect_3_NeuralModeling.nb 13



Integrate and fire model of the neuron

The integrate-and-fire model" of the neuron

One major limitation of the McCulloch-Pitts model is that it assumed that the fundamental language of neural communica-
tion was binary. From sensory studies, we know that neurons often encode information about stimulus intensity in terms of 
rate of firing. Let's see how this might arise with some simple assumptions about how action potentials are generated.

Let V(t), and s(t)  represent the membrane voltage potential and stimulus input (ionic current) to a neuron, respectively. 
Because of the membrane's capacitance, the rate of change of the membrane potential is proportional to the input current, 
and so over time the potential, V(t) grows as more and more current pumps into the cell. When V(t) reaches some critical 
value, an action potential is generated, after which the neuron returns to it's resting state, and begins integrating again. We 
can model the rate of change in voltage, up to, but not including the action potential event, as:

(1)dV/dt=(1/C) s(t)
This equation comes from basic electronics that tells us that the charge across a capacitor is proportional to the voltage: q = 
CV, where C is a constant called the capacitance. Current, s,  is the rate of change of charge: s  = dq/dt = C dV/dt. For 
simplicity, we'll let the capacitance C=1, and integrate to obtain the voltage change, V(t), between time t1 and t2:

(2)V(t)=Ÿt1
t2sHtL „ t

For small time intervals, and a smooth input, the integral is approximately the area of the rectangle under s (where s is 
plotted against t):

(3)q=Ÿt1
t2sHtL „ t ≈ (t2-t1)s =Ts

After time T, the neuron's potential increases up to some point, say q. Let q be the critical  threshold point at which a spike 
is generated, after which time the voltage gets reset. So the time (or period, T) between spikes is q/s. The frequency of firing 
is the reciprocal of the period

(4)1ÅÅÅÅÅT = sÅÅÅÅq =f
So we've shown that: the frequency of firing, f,  is proportional to the input current level, s.

As we will see below, this model assumes that the membrane integrates current with no leakage--i.e. it is a pure capacitance, 
with no resistance. We can improve the model by including both a resistive and capacitance elements to the equation--this is 
a leaky integrate-and-fire or "forgetful integrate-and-fire" model. The calculus gets a bit more sophisticated, so we'll use 
Mathematica to solve the equations for us.

So in a moment, we will derive the relationship between stimulus input level and the frequency of firing for the "leaky" or 
"forgetful integrate-and-fire" model. First, we go over some more Mathematica  basics, and then develop a few tools. 

14 Lect_3_NeuralModeling.nb



More Mathematica: rules, functions, and derivatives

Rules and defining functions. 

In Mathematica, you can define functions in terms of rules. One use of rules is to define functions over specific ranges. For 
example,

In[14]:= Clear[step] (* If you've been playing with the definition, it is a good idea to 
clear it *)

step[x_] := 1 /;  x >= 0
step[x_] := -1 /; x < 0

Here /; means the function is defined "with the following rule...". The rules can be incompatible and Mathematica will 
evaluate the rules in a specific order, usually the order that you specified. You can find out what order the rules will be 
evaluated by typing ?step. The Clear[] function clears any prior definition of the function step[]. Clear can take multiple 
arguments (e.g. Clear[f,g,h]).

Plot[step[x], {x, -3, 3}, Axes->False];

The rule for replacing a variable with a value in an expression is denoted by the operator /. meaning given that and -> 
meaning goes to:

In[18]:= d + 2 e /. d->3 e

Derivatives and integrals

 The derivative of f[x],  with respect to x is D[f[x], x]. For example, here is the derivative of x^3:

In[272]:= Clear[x]
D[x^3, x]

Lect_3_NeuralModeling.nb 15



We can use Mathematica to calculate the indefinite integral of this function:

In[22]:= Integrate[3 x^2, x]

You can also do a numerical integration, which is particularly useful when a closed form solution isn't available:

In[274]:= NIntegrate[3 x^2, {x, 0, 2}]

Differential equations

‡  Some illustrations of differential equation solution

The dynamics of many natural systems can be described in terms of differential equations. Later on we will see how the 
dynamics of models of large scale neural systems can be described in terms of coupled differential equations. A differential 
equation captures a set of constraints on the rates of change of some dependent variables. Given these rates of change, we 
would often like to find out how the dependent variable itself changes with time. In the above integrate and fire model, we 
used the result from basic electronics that tells us that the charge across a capacitor is proportional to the voltage: q = CV, 
where C is a constant called the capacitance. Current, s,  is the rate of change of charge: s  = dq/dt = C dV/dt.

To illustrate, suppose, we know that s[t] = cos(t), and that at time t=0, V=0, then what is the dependent variable V(t)? 

In[24]:= DSolve[{V'[t] - (1/C) Cos[t] == 0,
V[0] == 0}, V[t], t]

Out[24]= 99V@tD Ø
Sin@tD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅC ==

You have probably noticed that this problem could have been easily solved by integration, (e.g. using Integrate[]). But as 
you will see below for the leaky integrate-and-fire neuron model, you can't always simply solve an integral to find the 
solution. In particular, this happens when the rate of change of V depends on V itself. For example, here is a second order 
(second order because it involes a second derivative) equation for an oscillator. The acceleration of a mass on an ideal 
spring is proportional to the displacement: d2X/dt2 = - k x. Let k = 1, and assume initial conditions X[0] =0, X'[0] = 1, then 
DSolve tells us that the mass on the spring will oscillate sinusoidally:

16 Lect_3_NeuralModeling.nb



In[25]:= DSolve[{X''[t] +  X[t] == 0,
X[0] == 0, X'[0] == 1}, X[t], t]

Out[25]= 88X@tD Ø Sin@tD<<
What is the solution if the initial speed is zero and the start position is zero too?

What if the initial speed is zero, but you pull back the end of the spring to -1?

The "Leaky integrate-and-fire model" of the neuron using DSolve[]

The integrate and fire model of the neuron is a simple extension of the integrate and fire model where we now assume (up 
until depolarization threshold, q) that the neuron membrane is a passive resistor and capacitor with some input current 
source. The current input leads to an increase in the resting potential until sufficient depolarization triggers an action 
potential. 

We will develop the model in two parts. Our goal is to find how firing rate depends on the input current and threshold. First, 
we'll derive the relationship between membrane potential and time. Then we will derive the relationship between frequency 
of firing and input current, similar to how we did it for the simple integrate-and-fire model above.

The input current, s[t] is conserved and is determined by the sum of the current through the resistance and the capacitor.  

 By Kirchoff's current law, the current in  equals the current out: :

s = iR + iC , or

using Ohm's law, and the definitions of capacitance (q = CV) and current (i=dq/dt):

s[t] = V/R + C dV/dt, or rearranging

dV/dt = s/C - V/(RC). 

(What if R->¶?)

We can find the solution using the Mathematica  function DSolve, given the initial conditions that at time t=0, the voltage is 
a. Let RC =1

Lect_3_NeuralModeling.nb 17



In[278]:= Clear[a,s];
DSolve[{V'[t] +  V[t] - s/C == 0,

V[0] == a}, V[t],t]

Out[279]= 99V@tD Ø
‰-t Ha C - s + ‰t sL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅC ==

After t seconds, the voltage reaches threshold, q, and a spike occurs. We can solve the above equation in terms of t: 

In[280]:= Solve[q == (a*C - s + E^t*s)/(C*E^t), t]

Solve::ifun :  
Inverse functions are being used by Solve, so some solutions may

not be found; use Reduce for complete solution information. More…

Out[280]= 99t Ø LogA a C - s
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-s + C q

E==
E is 2.718..., and E^x is the same as Exp[x]. As we saw before, the frequency is 1/t and is thus given by the following 
function:

In[281]:= freq[s_,C1_,a_,q_] :=
1/(Log[(-(a*C1) + s)/(s - C1*q)]);

If we plot it for a capacitance of 1, and threshold of 1, frequency of firing as a function of input strength (current) looks like:

18 Lect_3_NeuralModeling.nb



In[282]:= Plot[freq[s,1,0,1], {s, 0, 5}, 
PlotRange->{{0,5},{0,5}},AspectRatio->1,AxesLabel->{"Input current, 

s","Frequency"}];

Plot::plnr :  freq@s, 1, 0, 1D is not a machine-
size real number at s = 2.0833333333333333`*^-7. More…

Plot::plnr :  freq@s, 1, 0, 1D is not a machine-
size real number at s = 0.20283495786457897`. More…

Plot::plnr :  freq@s, 1, 0, 1D is not a
machine-size real number at s = 0.4240439992968684`. More…

General::stop :  Further output of
Plot::plnr will be suppressed during this calculation. More…

1 2 3 4 5
Input current, s

1

2

3

4

5
Frequency

To review what we've done, the "leaky integrate and fire" neuron shows two properties characteristic of many neurons. 
First, it shows a threshold--it doesn't begin firing until the input current is sufficiently high. Second, once threshold is 
exceeded, the frequency of firing grows in proportion to the input current. One characteristic we haven't modeled is the 
absolute refractory period.  How would the shape of the above plot change if we included the effects of the absolute refrac-
tory period?

Plot passive response to an input of amplitude inputstep and duration stepduration

We take the solution to the leaky integrator for an intial voltage of a1=0 and an input current of s1 =inputstep for the range 
t<stepduration,

then include the condition for an intial voltage of a1=inputstep and an input current of s1 =0 for the range t>stepduration,

Lect_3_NeuralModeling.nb 19



In[231]:= inputstep = 1;
stepduration = 5.0;
a1 = 0; C1 = 1; s1 = inputstep;
a2 = inputstep; C1 = 1; s2 = 0;
r@t_D := HExp@-tD * HExp@tD * s1 + C1* Ha1 - s1ê C1LLL ê C1 ê; t < stepduration
r@t_D :=HExp@-Ht - stepdurationLD * HExp@Ht - stepdurationLD *s2 + C1* Ha2 - s2ê C1LLL ê C1 ê;
t > stepduration

Plot@r@tD, 8t, 0, stepduration* 3<D;

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1

20 Lect_3_NeuralModeling.nb



Next time

Generic neuron model

‡ We develop a "structure-less, continuous signal, and discrete time" generic neuron model and and from 

there build a network.  

This "connectionist" model is one of several abstractions that we saw earlier.

‡ We review basic linear algebra. Motivate linear algebra concepts from neural networks.

References
Barlow, H. (1996). Intraneuronal information processing, directional selectivity and memory for spatio-temporal sequences. 
Network: Computation in Neural Systems, 7, 251-259.

Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience : computational and mathematical modeling of neural systems. 
Cambridge, Mass.: MIT Press.

Hines, M.L. and Carnevale, N.T. (1997) The NEURON simulation environment. Neural Computation 9:1179-1209.  
nsimenv.pdf (for Adobe Acrobat). http://www.neuron.yale.edu/neuron/papers/nc97/nctoc.htm, NEURON software package: 
http://www.neuron.yale.edu/neuron/

Hopfield, J. J. (1984). Neurons with graded response have  collective computational properties like those of two-state  
neurons. Proc. Natl. Acad. Sci. USA, 81, 3088-3092.

Koch, C., & Segev, I. (2000). The role of single neurons in information processing. Nat Neurosci, 3 Suppl, 1171-1177.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathemati-
cal Biophysics, 5, 115-133.

Meunier, C., & Segev, I. (2002). Playing the devil's advocate: is the Hodgkin-Huxley model useful? Trends Neurosci, 
25(11), 558-563.

Rall, W. (1967). Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of 
synaptic input. J Neurophysiol, 30(5), 1138-68.

Segev, I. (1992). Single neurone models: oversimple, complex and reduced. Trends in Neuroscience, 15(11), 414-421.

Lect_3_NeuralModeling.nb 21



Appendix

Mathematica functions for generating and plotting lists

‡ Using Tables to make Lists. 

Often we will have to define a list of input values to a neuron, or a list of synaptic weights. A convenient way of defining 
lists in Mathematica  is to use the Table[] function. For example, you can make a list whose elements are the squares of the 
element location. 

s = Table[x^2,{x, 1, 16}];

You can also use Table to make a list of lists, Here is a 16x16  matrix:

A = Table[x^2*Cos[2 Pi (1/8) y], {x,1,16}, {y,1,16}];

To graph a one-dimensional list, you have to use ListPlot:

ListPlot[s];

To graph a two-dimensional list, you have to use ListPlot3D:

ListPlot3D[A];

Other Mathematica functions for generating truth tables

‡ The Outer[ ] function

Let's list all possible input states a:

a = 8False, True<;
All possible pairs of inputs can be obtained using the Outer[] function with the List function as the first argument:

22 Lect_3_NeuralModeling.nb



Outer@List, a, aD
888False, False<, 8False, True<<, 88True, False<, 8True, True<<<

If we want a function, say logical Or,  of all possible combinations of the inputs, we write:

Outer@Or, a, bD
88False, True<, 8True, True<<

And if we want to summarize the Or function with a  truth table, we can just put it together by hand:

Inclusive OR

a  b c

--------------------

0  0 0

0 1 1

1 0 1

1 1 1

...or to automate the process of truth table generation, we can create the following rather messy function composed of a 
bunch of built-in list manipulation functions:

‡ Truth table function

truthtable@logicfunction_D :=
TableForm@Transpose@Append@Transpose@Flatten@Outer@List, a, aD, 1DD,

Flatten@Outer@logicfunction, a, bDDDD, TableHeadings -> 88<, 8"a", "b", "output"<<D
truthtable@OrD

a b output
False False False
False True True
True False True
True True True

Lect_3_NeuralModeling.nb 23



‡ 3-input truth tables

truthtable3@logicfunction_D := TableForm@Transpose@Append@
Transpose@Flatten@Outer@List, 8False, True<, 8False, True<, 8False, True<D, 2DD,
Flatten@Outer@logicfunction, 8False, True<, 8False, True<, 8False, True<DDDD,

TableHeadings -> 88<, 8"a", "b", "c", "output"<<D
truthtable2@AndD

a b c output
False False False False
False False True False
False True False False
False True True False
True False False False
True False True False
True True False False
True True True True

© 1998, 2001, 2003  Daniel  Kersten,  Computational  Vision Lab, Department  of Psychology,   University  of Minnesota.

24 Lect_3_NeuralModeling.nb


