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Lecture 2

More on getting started with Mathematica

Front-end and Notebooks: Organize, outline, document, program 
Kernel: Separate program does the calculation

Numerical Calculations

Last time you saw how you can do arithmetic. Let's try some other simple operations.



Evaluate 4*3

Compare with 4 3 (i.e. 4 followed by a space, and then 3). Note that 4 3, where a space separates the digits is 
also interpreted as multiplication. 

Compare (2^.000000000001)^1000000000000 with (2^(1/1000000000000))^1000000000000

Front-end stuff

You can go back and select an expression by clicking on the brackets on the far right. These brackets are features of the user 
interface and serve to organize text and calculations into a Notebook with outlining features. You can group or ungroup 
cells for text, graphs, and expressions in various ways to present your calculations. Explore these options under Cell in the 
menu.  You can see the possible cell types under the Style menu.

‡ By ending an expression with ; you can suppress the output--this is VERY useful later when the output 

might be a list of a 10,000 neural activity levels!

(3/4)/6;
(3 4)/6;

...so don't evaluate the next cell without first adding a semi-colon!

In[104]:= a = Table@"hi", 81000<D
The most recent result of a calculation is given by %, the one before by %%, and so forth.  Try it on the 
previous two outputs

Built-in functions

Mathematica has a very large library of built-in functions. They all begin with an uppercase letter and the arguments are 
enclosed by square brackets. Knowing that, you can often guess the form of a function
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Try taking the logarithm of 8.0

Did it return log to the base 10 or e? Check the definition by typing ?Log or by typing Log[E]

You can get information more about a function, by clicking on the resulting link more.

Try Log[8,2]

Defining functions

Soon, you will use Mathematica  to model the generic connectionist neuron. Part of the model will require defining a 
function that suppresses small inputs and "squashes" or clamps large inputs to a maximum level. Here is an example:

In[50]:= squash[x_] := N[1/(1 + Exp[-x+4])];

The underscore, x_ is important because it tells Mathematica that x represents a slot, not an expression. 

Also note that our squashing function was defined with N[]. Mathematica trys to keep everything exact as long as possible 
and thus will try to do symbol manipulation if we don't explicitly tell it that we want numerical representations and 
calculations.

Define a new function squashedExp[ ] that applies squash to an exponentiated value (i.e. takes Exp[x] as 
the argument of squash[ ])

Graphics & more function defintions

Let's plot a graph of the squash function using the syntax we discovered above for -5<x<10
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In[54]:= Plot[squash[x], {x,-5, 10}];
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This squashing function is often used to model the small-signal compression and large signal saturation characteristics of 
neural output.

Plot squashedExp[ ] for x going from -5 to 5

In[55]:= Plot[{Exp[x], squashedExp[x]}, {x,-5, 5}];
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Even though Exp grows exponentially fast with x (by definition!), squash keeps a lid on it.

Ask Mathematica for the definition of squashedExp[ ]

It can be important to check your definitions like this. One reason is that, as we will see later, Mathematica definitions can 
be built up with multiple constraints. And sometimes you might add to a function unwittingly and it appears to misbehave. 
You can check your defintion by asking Mathematica for it.
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:= vs  =

Note that when defining a function, we used a colon followed by equals ( := ) instead of just an equals sign (=). When you 
use an equals sign, the value is calculated and assigned immediately. When there is a colon in front of the equals, the value 
is calculated only when called on later. So we use := for function definition because we need to define the function for later 
use and evaluation.

Let's define r1 using :=, and r2 using =

In[60]:= r1 := Random@D;
r2 = Random@D;

Now evaluate r1 and r2 three times each. What is the difference between the two definitions?

In[68]:= r1
r2

Plot squash[x]+r2 for -5<x<5

In[73]:= Plot@squash@xD + r1, 8x, -5, 5<D;
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Now plot squash[x]+r1 for -5<x<5

The Neuron - overview of structure

6 Lect_2_TheNeuron.nb



From Anderson (1995)

Basic Structure

Information flow: dendrites -> (soma -> axon hillock) -> axon -> terminal buds

‡ Dendrites

The information receiving end of a neuron is a tree-like structure consisting of "dendrites" with special processes  or 
connection sites called synapses.  Much computational power is thought to reside in the strength of connections, and in the 
dendritic tree itself. In this course, we will primarily examine the computational properties of groups of simple neurons, 
rather than aggregates of dendrites in a single neuron.

Dendrites play the role of wires that convey information through changes in voltage. But they behave rather differently than 
copper wires.  These neural processes are tubes of ionized cytoplasm sitting in a bath of ionized fluid whose ionic composi-
tion is not that much different from "seawater".  The inside of these tubes during resting state sits at about minus 70 milli-
volts relative to the outside of the cell.  The tubes are on the order of microns in diameter, (but other processes, such as the 
axons discussed below, can reach half a millimeter or so). And for further comparison, the membranes making up the tubes 
are on the order of 50 Angstroms (50 x 10-10 meters) thick.

Signal transmission is limited by high resistance of the axoplasm, and  high capacitance of the neural membrane. Informa-
tion transmission consequences of these properties are:

 • the voltage potential changes have a short range of influence, with the amplitude decreasing rapidly as one moves 
away from the synaptic source.  

• the signals travel relatively slowly.

We'll take a quantitative look at these facts shortly.

‡ Soma (or cell body)

• Integrates dendritic signals

• The storage of electrical charge across the membrane, and the chemical nature of synaptic transmission leads to 
temporal integration of signals. This observation together with spatial integration  of signals from the dendritic tree arriving 
at the axon hillock will lead to our basic model of the neuron.
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‡ Axon hillock and axon

How can the range and speed be increased? 

Certain neurons are equipped with a specialized process called an axon that serves to "digitize" the data into all-or-none 
responses (voltage changes) called action potentials or spikes.  This digitization occurs at the axon hillock  near the cell 
body. There is passive or electrotonic conduction  along the dendrites up to the axon hillock at which point, if there is a 
sufficient potential change to reach threshold,  an active process of depolarization kicks in leading to a spike in membrane 
voltage. (Depolarization means the voltage potential difference across the membrane decreases; hyperpolarization can also 
occur, where the voltage difference increases).
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The action potential signals are carried by rapid (1 msec) voltage depolarizations going from -70 to +40 mV via Na+ influx, 
and K+ outflow through the membrane.  From the axon hillock on, a myelin sheath serves to lower the capacitance and 
speed up conduction. However it interferes with the regenerative processes that preserve the all-or-none response. At 
periodic points (Nodes of Ranvier) the myelin sheath is interrupted where high extracellular concentrations of Na+ ions 
exist with sodium gates. When a small depolarization arrives, this decreases membrane conductance allowing an increased 
depolarizing influx of Na+, regenerating the spike.

‡ Terminal arborization and terminal buds

Neurons with axons end in a terminal arborization . The terminal buds make synaptic contacts with the dendrites of subse-
quent neurons, and we have the beginnings of a neural network.  Synaptic contacts can either be electrical or chemical, but 
more about these later.
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Basic electrophysiology

Passive properties

Above we noted that the potential maintained by ionic imbalance (excess Na+ outside, and K+ inside). Balance between  
ionic concentration and electric field forces - determined by the Nernst  equation (see Anderson text for a derivation).

We noted two problems: passing a signal over a long distance and with sufficient speed--BIG problem for an organism that 
has to transmit signals fast over a few feet. Let's take a more quantitative look at these problems that arise from the passive 
electrical properties of neuronal "electronics".

Model the passive electrical properties as a function of time :

• Across a small portion of the membrane modeled by an "RC circuit" where R stands for resistance, and C for 
capacitance.

We'll see shortly that there is a temporal delay in voltage response characterized by time constant t or rise time.

RC-circuits are "low pass temporal filters", i.e. favor signals with low temporal frequencies. 

and space:

• If we imagine cascading a series of RC-circuits, each connected by additional resistances, we have a discrete 
model of a section of neural membrane. This kind of model is good for computer simulation. But a continuous model can 
be solved exactly.

A continous model over time and short lengths is by the "Cable equation"  (see pages 25-32 of Anderson)

We'll see shortly how that the cable equation predicts an exponential drop-off of voltage with distance for 
constant current. Length constant  l ( distance to the 1/e drop-off point or 63% drop) is on the order of millime-
ters.

By solving the cable equation governing the voltage change over distance and time, we can get a quantitative idea of how 
voltage drops with distance, and how voltage changes with time--change is not instantaneous.
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From Segev (1992). A. illustrates an RC-circuit at a single point of passive membrane. B is the temporal response to a step 
current input. C  illustrates additional variable conductance components that model the electrical processes of spike genera-
tion (panel D)--the active properties. To model the active properties, one needs a more complicated set of differential 
equations: the Hodgkin-Huxley equations. (See Claude Meunier and Idan Segev, 2002 for an overview and recent critique).

‡ Solutions of the cable equation

The cable equation is a (partial) differential equation and is given by:

where V = V(x,t) is a function of distance x along the membrane and time t. 

Let's look separately at the space and time properties.

Space. 

In a later Notebook, we'll see how to use Mathematica  to find solutions to equations, including differential equations. For 
now, let's take the steady-state solution for a fixed voltage, V0,  at a specific place, say x = 0, and see how the voltage drops 
away from zero. Steady-state means that the voltage is no longer changing with time, or in another words that _

∑t
∑V =0.
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Space. 

In a later Notebook, we'll see how to use Mathematica  to find solutions to equations, including differential equations. For 
now, let's take the steady-state solution for a fixed voltage, V0,  at a specific place, say x = 0, and see how the voltage drops 
away from zero. Steady-state means that the voltage is no longer changing with time, or in another words that _

∑t
∑V =0.

 The solution of this equation (which you can verify be differentiating twice, see exercise below) is a standard result. The 
voltage drops exponentially. Lambda is the "space constant", which for an axon would be about 3 to 5 mm. 

In[75]:= V0 = 1; lambda = 2; (*Space constant*)
V[x_] := V0 Exp[-Abs[x]/lambda];

In[77]:= Plot[V[x], {x,-4,4}, PlotRange->{0,1}];
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Use  Mathematica's derivative function D[ ] on V[x] re-defined below to verify the solution.  Differentiate 
V(x) twice with respect to x, where V(x) is re-defined over positive x values (it is simpler to treat positive 
and negative x separately):

In[86]:= Clear@VD;
V@x_D := V0 Exp@-x ê lD;

Now let's see how membrane voltage changes with time at a single location by plotting the dynamical solution to the cable 
equation. We'll assume no space variation. Standard integration techniques can be used to solve this simplified cable 
equation. Let's assume some initial conditions.

Suppose a 1 volt step is applied (through some resistance to generate a step current change) across the neuron membrane at 
time t=0. How does voltage change with time at a fixed point x? It doesn't immediately change to 1 volt, but grows gradu-
ally. A typical time constant t is on the order of 1 or 2 msec.
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Now let's see how membrane voltage changes with time at a single location by plotting the dynamical solution to the cable 
equation. We'll assume no space variation. Standard integration techniques can be used to solve this simplified cable 
equation. Let's assume some initial conditions.

Suppose a 1 volt step is applied (through some resistance to generate a step current change) across the neuron membrane at 
time t=0. How does voltage change with time at a fixed point x? It doesn't immediately change to 1 volt, but grows gradu-
ally. A typical time constant t is on the order of 1 or 2 msec.

In[89]:= t = 1; (*Time constant*)
V[t_] := 1 - Exp[-t/t];

Plot[{V[t], UnitStep[t]}, {t,-1,6},
PlotRange->{0,1.5}, AxesOrigin->{-1,0},
PlotStyle->{RGBColor[1,0,0], RGBColor[0,0,1]}];
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(UnitStep is a built-in Mathematica function. You could define your own as: myUnitStepstep[x_] := If[x<0,0,1]; )
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Active (non-linear) properties 

Action potentials, spike trains are nature's solution to the problem of fast long distance signalling.

"toilet flush model" - small push of the handle and a little leak, but reach a threshold, and the whole thing  goes.

To quantitatively model these  voltage changes, one needs to add extra terms to the RC circuit (panels C and D 
above). The general equations due to Hodgkin & Huxley equations are more complicated than the cable equation. See 
Meunier and Segev (2002).

Time properties

Refractory period: absolute, and relative

Absolute refractory period is a brief time (~1 msec) right after the depolarization where no strength of input current would 
be sufficient for another spike. The ion pumps need time to restore some of the ionic imbalance.

Relative refractory period- threshold gradually lowers with  time. One can elicit a spike, but it requires a stronger input 
signal. This is one of the factors that leads to the idea of frequency coding. A constant step input leads to a series of spikes 
of a particular frequency (e.g. if the absolute refractory period is 1 msec, we'd expect a maximum spike frequency of 1000 
spikes/second), but usually much lower (e.g. 20 spikes/second). To get a faster rate, the input voltage would have to be 
increased. This leads to the idea of the neuron as a "voltage-to-frequency" converter. But it gets a little more complicated 
because neurons often show "adaptation" and the firing rate declines for a fixed step input. More on that later.

Space properties

What is the neuron's solution to the rapid decline in voltage signal over distance due to passive properties?

Action potential at one location provides the depolarization stimulus at a nearby spatial location,  travels like a lit fuse down 
the membrane.

And how about the speed problem?

myelin sheath (insulation reduces leakage)

Nodes of Ranvier, action potentials jump from node to node, up to 30x.

14 Lect_2_TheNeuron.nb



Action potentials, spike trains are nature's solution to the problem of fast long distance signalling.

"toilet flush model" - small push of the handle and a little leak, but reach a threshold, and the whole thing  goes.

To quantitatively model these  voltage changes, one needs to add extra terms to the RC circuit (panels C and D 
above). The general equations due to Hodgkin & Huxley equations are more complicated than the cable equation. See 
Meunier and Segev (2002).

Time properties

Refractory period: absolute, and relative

Absolute refractory period is a brief time (~1 msec) right after the depolarization where no strength of input current would 
be sufficient for another spike. The ion pumps need time to restore some of the ionic imbalance.

Relative refractory period- threshold gradually lowers with  time. One can elicit a spike, but it requires a stronger input 
signal. This is one of the factors that leads to the idea of frequency coding. A constant step input leads to a series of spikes 
of a particular frequency (e.g. if the absolute refractory period is 1 msec, we'd expect a maximum spike frequency of 1000 
spikes/second), but usually much lower (e.g. 20 spikes/second). To get a faster rate, the input voltage would have to be 
increased. This leads to the idea of the neuron as a "voltage-to-frequency" converter. But it gets a little more complicated 
because neurons often show "adaptation" and the firing rate declines for a fixed step input. More on that later.

Space properties

What is the neuron's solution to the rapid decline in voltage signal over distance due to passive properties?

Action potential at one location provides the depolarization stimulus at a nearby spatial location,  travels like a lit fuse down 
the membrane.

And how about the speed problem?

myelin sheath (insulation reduces leakage)

Nodes of Ranvier, action potentials jump from node to node, up to 30x.

Synaptic Integration

Some definitions:

pre-synaptic potential --across the membrane of the terminal of the "transmitting" neuron

post-synaptic potential -- across the membrane of the dendrite of the "receiving" neuron 

Two types: excitatory (make the cell more likely to fire) and inhibitory (less likely to fire) post-synaptic potentials

long duration - fast EPSP is 1 to 2 msec rise time and 3 to 5 msecs  decay (action potential 1-2 msecs)

synaptic delay - about 500 micro-seconds.

Interaction of synaptic potentials

Imagine 1000's of synaptic inputs to a single neuron. How do they interact?

axon hillock

algebraic? sometimes but not always (see Koch and Segev, 2000)

Our generic connectionist model introduced later will assume linear algebraic summation.
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Anderson (1995). Interaction of inhibitory postsynaptic potentials (IPSP) and excitatory postsynaptic potentials (EPSP) can 
be linear (left column, A) or non-linear (right column, B). From Rall (1967). Dotted line shows linear prediction.

Qualitative summary of slow potential neuron model
Let's summarize the essential qualitative features of signal integration and transmission of a neuron with what is called the 
"slow potential model".
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Slow potential at axon hillock waxes and wanes (because of low-pass temporal characteristics and the spatial  distribution of 
the inputs) depending on the number of active inputs, whether they are excitatory or inhibitory, and their arrival times.

The slow integrated voltage potential now and then exceeds threshold producing an axon potential.

Further, if the slow potential goes above threshold, frequency of firing is related to size of slow potential.

Caveat: Not all signal transmission in neural computation is done through action potentials. For example, of the 6 types of 
cells in the retina of your eye, essentially 1 type, the ganglion cells,uses action potentials, the others communicate via slow 
potentials.

But spike generation isn't a strictly deterministic process. There is "noise" or random fluctuation that can

ion channels open and close probabilistically, quantized

neurotransmitter release in discrete packages - Poisson

sensory receptors can produce spontaneous signals

Over long distances spike train frequency is roughly like a Poisson process (better--an interval Gamma distribution) 
whose mean is modulated by the already noisy slow potential.
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