
Introduction to Neural Networks
U. Minn. Psy 5038
Daniel Kersten
Expectation-Maximization (EM)

Initialize

‡ Read in Statistical and Graphics Add-in packages:

In[1]:= Off@General::spell1D;

In[2]:= << Statistics`NormalDistribution`

<< Statistics`ContinuousDistributions`

<< Statistics`MultinormalDistribution`

<< Statistics`DiscreteDistributions`

In[6]:= << Graphics`MultipleListPlot`

<< Graphics`Graphics`

Introduction

The Expectation Maximization algorithm can be viewed as an example of unsupervised learning  and crops up in a wide 

range of applications, including probability density estimation, clustering, and discovering prototypes from data. In princi-

ple, it is very general and is guaranteed to converge to a local likelihood maximum. The EM algorithm is a common proce-

dure for integrating out "hidden variables"--i.e. for marginalizing.

Integrating out secondary variables

Suppose we have 5 (hidden) processes each of which can contribute to our data.
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For mixture distributions, we may not be directly interested in the mixing probabilities--but are interested in the parameters 

of the distributions, e.g. the 5 means. These means, in an N-dimensional space for example, could represent prototypes in 

memory.

‡ Simple case & intuition

(Example from draft chapter by: Yuille, Coughlan, Kerten & Schrater)

Suppose there is some agent that randomly chooses whether to flash a bright ( a=1 ) or the dim ( a=2 ) light, and for each 

flash we make a measurement  x . Further suppose that the light measurements x are Gaussian distributed, and the standard 

deviations are known (we will drop these assumptions later).

Rather than making decisions about whether a given flash was caused by the high-level (bright) or low-level (dim) switch , 

we want to estimate the two means from a series of measurements (e.g. photon counts),   {x_i: i =1,...,N } , without knowing 

which measurement came from which light setting. Of course, if we knew which measurement came from which switch 

setting, our job would be  easy. Let  V_{ia}=1  if data  x_i  is generated by model  P(x| mu _a,  sigma ^2)  and  V_{ia}=0  

otherwise, for  a=1,2 . Then the usual formula for the estimate of the mean is:

The problem is that the values of  V_{ia}  are unknown secondary (hidden) variables which influence the observations. 

However, if we could  somehow estimate the probability of which switch generated each measurement  x_i , then the means 

could be approximated as:

where  V
êêê

{ia}  is the average value of  V{ia}  and is given by V
êêê

{ia} = p(V{ia}=1 | x_i) = p(a |x_i) . This brings us a step 

closer to a solution, but raises another problem--to calculate  V
êêê

{ia}  we will need to know the means--the very parameters 

we were trying to estimate in the first place! This is because p(a |x_i) depends on the means for switch setting a=1 or a=1. In 

other words, we need the formula for p(a |x_i, ma ) (=p(a |x_i) ).

Let's see how to justify our intuitive estimate of the means, and in the process solve the dilemma of how to determine the 

probability of which switch generated each measurement. Our goal will be to find the maximum likelihood estimates of the 

means (and eventually other state variables) conditional on the observations. We will derive the EM rules for a mixture of 

multi-variate gaussians.Then we will derive a more general rule for arbitrary discrete distributions.
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multi-variate gaussians.Then we will derive a more general rule for arbitrary discrete distributions.

Mixtures of multivariate gaussians

It is almost as easy to see the derivation for a random vector (i.e. multivariate) as a random scalar, so we'll derive the results 

for the general vector case. 

Let  x  represent a d-dimensional vector generated from  a mixture of  M  Gaussian densities, with  s= {mu_a,C_a }  and  h= 

{a} , where   mu_a ,  C_a , and  p(a)  are the vector means, covariance matrices, and mixture probs, respectively. 

The notation s, and h is used later for an unknown parameter s (or a set s)-- a "primary variable", that we want to estimate, 

and another parameter h (or set h) that is hidden--a "secondary" variable. (But we'll also see how to estimate p(a)). So the 

mixture probability distribution of x is:

where  a = 1,...,M , and   ⁄a p(a) = 1 . The  p(x |a )  are the class-conditional probability densities:

We are given a sequence of vector measurements   {x_i: i =1,...,N }  and wish to estimate the means, the covariances and 

mixing parameters. Let the probability that  x_i  came from mixture component  a  be  p(x_i|a) .

The log-likelihood of the data is given by:
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For the moment, suppose the mixing parameters and covariance matrices are known, and we want to estimate the means. 

The values of ma which maximize  E  can be found analytically by solving:

where we've used:

Solving for the m j ' s H = ma ' sL , we have

This corresponds to the intuition we had above for the bright/dim example. And recall, the rub, of course, is that  p(a|x_i)  

depends on  ma ..., so we guess.

E&M iteration steps

‡ Estimate conditional mixing probabilities: E-step

 Let  ma,t   be an initial guess. Then in the E-step (E for "expectation") we let:

We can think of this as estimating the probabilty of which process the data belongs to (e.g. the bright vs. dim switch setting) 

based on our current guess of the mean.
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‡ And then find the mean that maximizes the likelihood of the data: M-step

Now that we have an estimate of the current conditional mixing probability, we can proceed to update our estimates of the 

mean. 

This is the M-step ("maximization" step).

‡ How about the covariance?

Suppose we don't know the covariance matrix or the mixing probabilities?  We can use the updated values of  p_t(a|x_i) ,

to progressively estimate the state parameters  C_a  and  p(a) , as well as   mu_a .  The M-step for the covariance is:

‡ M-step for covariance & p(a)

(where  ab^T  is the outer product between vectors  a  and  b). The mixing probabilities are estimated by:
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Demo: Two gaussians, unknown m's s's , and mixing probabilities 

(revised)

Generating samples from a Gaussian Mixture Distribution

‡ Generative model

In[8]:= m1=1.3;s1=1;
m2=6.5;s2=.8;
a1=.16; a2 = 1-a1;
p1dist=NormalDistribution[m1,s1];
p2dist=NormalDistribution[m2,s2];
p1[x_]:=PDF[p1dist,x];
p2[x_]:=PDF[p2dist,x];

(*mix[x_]:=a1*p1[x]+a2*p2[x];*)

samplemix:=If[Random[]<a1,Random[p1dist],Random[p2dist]];

In[17]:= data = Table@samplemix, 8i, 1, 500<D;

Histogram@data, HistogramCategories Ø Range@-20, 20, .3D,

Epilog Ø 8Text@ToString@m1D <> ", " <> ToString@s1D <> ", " <> ToString@a1D, 8m1, 40<D,

Text@ToString@m2D <> ", " <> ToString@s2D <> ", " <> ToString@a2D, 8m2 - 2, 60<D<D;
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EM algorithm--Now learn the parameters--means,  standard deviations, and mixing 

probabilities

In[26]:= pxdm@x_, mu_, s_D := PDF@NormalDistribution@mu, sD, xD;

E-step: The prob of mixing labels conditional on the data x is:

In Mathematica code,

In[27]:= pmcx@a_, x_D := pxdm@x, m@@aDD, s@@aDDD*

pa@@aDDê Hpxdm@x, m@@1DD, s@@1DDD*pa@@1DD + pxdm@x, m@@2DD, s@@2DDD*pa@@2DDL;

M-step: The maximum liklihood estimates of the means is:

or in Mathematica:

m[[1]]=pmcx[1,data].data/Plus@@(pmcx[1,#]&/@data)

m[[2]]=pmcx[2,data].data/Plus@@(pmcx[2,#]&/@data)

Similarly, the variances and mixing probabilities are also weighted averages:

s[[1]]=Sqrt[pmcx[1,data].(data-m[[1]])^2/Plus@@(pmcx[1,#]&/@data)]

s[[2]]=Sqrt[pmcx[2,data].(data-m[[2]])^2/Plus@@(pmcx[2,#]&/@data)]

pa[[1]]=Plus@@(pmcx[1,#]&/@data)/Length[data]

pa[[2]]=Plus@@(pmcx[2,#]&/@data)/Length[data]

To estimate the unknown parameters from the data, we first initialize to random values:

In[28]:= m = 8Random@Real, 8-10, 10<D, Random@Real, 8-10, 10<D<;

s = 8Random@Real, 80, 10<D, Random@Real, 80, 10<D<; pa = 8temp = Random@D, 1 - temp<;
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The interate for i=1 to iter. Note that the E-step occurs on the right-hand side, where pmcx[] is a function of the most recent 

value of the mean, std, and mixing parameters.

In[29]:= iter = 6;

mparameterList = Table@0, 8a, 1, 2<, 8k, 1, iter<D;

sparameterList = mparameterList; paparameterList = mparameterList;

For@k = 1, k § iter, k++,

For@a = 1, a § 2, a++,

m@@aDD = pmcx@a, dataD.data ê Plus üü Hpmcx@a, #D & êü dataL;

s@@aDD = Sqrt@pmcx@a, dataD.Hdata - m@@aDDL^2 ê Plus üü Hpmcx@a, #D & êü dataLD;

pa@@aDD = Plus üü Hpmcx@a, #D & êü dataL ê Length@dataD;

mparameterList@@a, kDD = m@@aDD;

sparameterList@@a, kDD = s@@aDD;

paparameterList@@a, kDD = pa@@aDD;

D;

D;

‡ Plot the evolution of the mixing parameters

Blue line shows true values from the generative model.

In[33]:= Show@8Plot@8pa@@1DD, pa@@2DD<,

8x, 0, iter<, PlotStyle Ø Hue@.5D, DisplayFunction Ø IdentityD,

MultipleListPlot@paparameterList@@1DD, paparameterList@@2DD, PlotJoined Ø True,

DisplayFunction Ø IdentityD<, DisplayFunction Ø $DisplayFunctionD;
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‡ Plot the evolution of the means

In[34]:= Show@8Plot@8m@@1DD, m@@2DD<, 8x, 0, iter<,

PlotStyle Ø Hue@.5D, DisplayFunction Ø IdentityD,

MultipleListPlot@mparameterList@@1DD, mparameterList@@2DD, PlotJoined Ø True,

DisplayFunction Ø IdentityD<, DisplayFunction Ø $DisplayFunctionD;
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‡ Plot the evolution of the standard deviations

In[35]:= Show@8Plot@8s@@1DD, s@@2DD<, 8x, 0, iter<,

PlotStyle Ø Hue@.5D, DisplayFunction Ø IdentityD,

MultipleListPlot@sparameterList@@1DD, sparameterList@@2DD, PlotJoined Ø True,

DisplayFunction Ø IdentityD<, DisplayFunction Ø $DisplayFunctionD;
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EM: Theory for arbitrary probability distributions

We'd like to generalize the theory, and also make clearer the function of EM in integrating out hidden or secondary vari-

ables. The notation s, and h is used  for an unknown parameter s (or a set s), that we want to estimate (e.g. the means and 

covariances), and another parameter h (or set {hi}) that is hidden (e.g. an indicator variable representing the probability of 

mixing, p(a)).)

We'd like to find the value of s that maximizes the likelihood of the data {xi}, given other intervening variables hi.

The log-likelihood of the observations is given by:

To find the maximum of the likelihood, we calculate the derivative of the log-likelihood with respect to  s , and then set the 

derivative equal to zero:

Where we have used the relation (that you can prove from basic calculus):

Bringing the summation over hi  towards the front, we have:

Again using the above derivative of a log relation, we have
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Using Bayes rule and setting the expression to zero, we want to find s that satisfy:

‡ Summary of EM strategy

So following the above reasoning for the Gaussian case, the EM strategy for solving equation for  s  involves two steps:

1) Given a guess,  s=st at step t , calculate 

2) Us this to solve 

to find the next  s=st+1  . Then iterate back to the E-step until convergence. Although the EM algorithm does converge, it 

doesn't necessarily converge to the maximum likelihood estimate.
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Expectation Maximization -- Segmentation simulation

We've studied the problem of interpolation given missing data. We motivated the problem by the visual phenomenon of 

surface completion. Another aspect of surface perception is our ability to take noisy data (e.g. depth cues), and not only 

interpolate the data, but also decide which of several surfaces the data belong using stereo data (Madarasmi et al., 1993; 

Kersten & Madarasmi, 1995) or optic flow. A number of ways have been proposed to deal with this problem, but the 

technique of general application is expectation-maximization (EM). EM (described above) is a general statistical technique 

developed in the 1970's that appears in various forms in many algorithms, including belief propagation. The algorithm has 

been applied to the surface estimation problem, e.g. from optic flow (Jepson, 1993; Weiss, 1997). We go to Weiss again for 

a nice simple tutorial and demo.

Consider Generative Model 1.

Generative models

Two lines with slopes and intercepts (a1,b1) and (a2,b2).

In[36]:= ndist = NormalDistribution@0, 1D;

‡ Generative model 1

In[64]:= y1@x_D := -2 * x + 40 + Random@ndistD;

y2@x_D := 3 * x + 1 + Random@ndistD;

data = Table@8x, If@Abs@x - 3D < 1.5, y1@xD, y2@xDD<, 8x, 0, 6, .1<D;

8x, y< = Transpose@dataD;

‡ Generative model 2 (you will need to make the cell property "evaluatable" to work)

In[42]:= y1@x_D := -2 * x + 15;

y2@x_D := 3 * x + 1;

data = Table@8x, If@Random@D < .5, y1@xD, y2@xDD<, 8x, 0, 6, .1<D;

8x, y< = Transpose@dataD;
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In[68]:= gdata = ListPlot@dataD;
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EM algorithm

The basic logic of the EM algorithm is as follows: 

Start with random parameter values (slopes and intercepts, or a's and b's) for the two models.

Iterate the E and M steps until convergence:

1. E-step: assign points to the line that are the best fit

2. M-step: update the line parameters using only the points assigned to it

‡ Initialize parameters to random values

In[69]:= s = .1;

8a1, b1, a2, b2< = Table@10* Random@D, 84<D;

‡ E-step

Compute residuals  r1, r2, the error in the predicted and actual y values under each of the two models.

In[79]:= r1 = a1* x + b1 - y;

r2 = a2* x + b2 - y;

Now we could just assign points based on which line parameters give the smallest residual. But we'd like to take into 

account our model of the conditional mixing probabilities, which also depend on the noisiness in the data. So we'll compute 

weights that correspond to the conditional mixing probabilities.
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Using the residuals, compute weights. We'll assign these weights to data in the M-step later.

In[81]:= w1 = Exp@-r1^2 ê sD ê HExp@-r1^2 ê sD + Exp@-r2^2 ê sDL;

w2 = Exp@-r2^2 ê sD ê HExp@-r1^2 ê sD + Exp@-r2^2 ê sDL;

‡ M-step

Standard linear regression doesn't assume that the data may have come from different sources. The least-squares solution 

(derivable from i.i.d. gaussian model for the data) is equivalent to solving:

But if the data come from different sources, with above weights we can compute weighted linear regression to estimate the 

slope and intercept parameters:

(For simplicity, we've dropped the subscript on the weights that indicates whether it is line 1 or line 2, and just keep the 

subscript indicating the weight for point i). 

In[83]:= 8a1, b1< = Inverse@88w1.Hx xL, w1.x<, 8w1.x, Apply@Plus, w1D<<D.8w1.Hx yL, w1.y<;

8a2, b2< = Inverse@88w2.Hx xL, w2.x<, 8w2.x, Apply@Plus, w2D<<D.8w2.Hx yL, w2.y<;

In[85]:= gfit = Plot@8a1* x + b1, a2*x + b2<, 8x, 0, 6<, DisplayFunction Ø IdentityD;

Show@

8gfit, Graphics@8PointSize@0.03D, Transpose@8Hue@#1D & êü Hw1ê2L, Point êü data<D<D<,

PlotRange Ø All, DisplayFunction Ø $DisplayFunctionD;
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Exercises

Run EM with Generative Model 2. Increase the additive noise. How does attribution accuracy change? 

("attribution" means assigning a point to its correct line)

N=5 Multivariate gaussians, only data known: Implement EM to estimate means, variance, and mixing 

probabilities

‡ Generating samples from a Gaussian Mixture Distribution

Clear@ndistD;

ndist@m_, S_D := MultinormalDistribution@m, SD;

r = .05;

s = .3;

m = Table@3* N@8Cos@2 Pi iD, Sin@2 Pi iD<D, 8i, 0, 2 Pi, Piê4<D;

S = Table@88s, r<, 8r, s<<, 8i, 0, 2 Pi, Piê 4<D;

Det@88s, r<, 8r, s<<D

0.0875

The generator: randomindex := Random[Integer,{1,5}]; would give uniformly distributed mix labels.

The following gives mixing mix probabilities of 1/7, 1/7, 3/7, 1/7 and 1/7 for subdistributions 1,2,3,4,5 respectively.

randomindex := 81, 2, 3, 3, 3, 4, 5<@@Random@Integer, 81, 7<DDD

Thus our stochastic generative process can be written:

Random@ndist@m@@t = randomindexDD, S@@tDDDD

80.432208, -3.03454<

Lect_26_EM.nb 15

scatterdata = Table@Random@ndist@m@@t = randomindex DD, S@@tDDDD, 8i, 1, 500<D;

ListPlot@scatterdata, AspectRatio Ø AutomaticD;
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‡ Implement EM to estimate means, variance, and mixing probabilities
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