2 Lect_25_BeliefProp.nb

Introduction to Neural Networks
U. Minn. Psy 5038

Daniel Kersten
Belief Propagation

For simplicity, we'll assume 1-D as in the lecture on sculpting the energy function. In anticipation of formulating the
Initialize problem in terms of a graph that represents conditional probability dependence, we represent observable depth cues by y*,
and the true ("hidden") depth estimates by y.

m Read in Statistical Add-in packages: Y*O O

o (General::spelll]; Yé—O—é—O—Oﬂo

<< Statistics NormalDistribution®

(Figure from Weiss (1999).
<< Statistics ContinuousDistributions™

<< Statistics MultinormalDistribution”

O e e LLLI) First-order smoothness
<< Graphics MultipleListPlot”

Recall that the energy or cost function is given by:

JY) = welyr — v + AW — yirn)?
k i

I Interpolation using smoothness revisited: Gradient descent

where wy = xs[[k]] is the indicator function, and y; = d, are the data values.

Gradient descent gives the following local update rule:

Yr—1 + Uit

5 = yr) +wi (¥ — vr))

i Uk + 1 (A

As before, A controls the degree of smoothness, i.e. smoothness at the expense of fidelity to the data.
Gauss-Seidel: n[k_]:=1/(A+xs[[k]]);
Successive over-relaxation (SOR): 2[k_]:=1.9/(A+xs[[k]]);

Lect _25_BeliefProp.nb 3 4 Lect_25_BeliefProp.nb

Check the update rule code for small size=10:

R . . R Clear[f, d, 1]
A simulation: Straight line with random missing data points (A% Tm.Array[f, size] - Sm. ((Array[d, size]) - Array[f, size])) // MatrixForm

m Make the data ® Run gradient descent

‘We return to the problem of interpolating a set of points with missing data, marked by an indicator function with the

following notation: Clear|[Tf,£f1];
= K s = =f, dt = 1; A=2;
wi = xs[[k]], y* = data, y=f. TE[£1_] := £1 - dt*(1/(A+xs))*(Tm.£fl - A*Sm.(data-£1));

We'll assume the true model is that f=y=j, where j=1 to size. data is a function of the sampling process on f=j
We will initialize the state vector to zero, and then run the network for iter iterations:

size = 32;

xs = Table[0, {i,1,size}]; xs[[1]]=1;xs[[size]]=1; (*xs[[size/2]]=1;%) iter=256;
data = Table[N[j] xs[[j]], £ = Table[0,{i,1,size}];
{3, 1, size}]; result = Nest[Tf,f,iter];

g3 = ListPlot[Table[N[j],{j,1,size}],PlotJoined-True,
DisplayFunction-Identity,PlotStyle-{RGBColor([0,.5,0]}];

g2 = ListPlot[data,PlotJoined->False, Now plot the interpolated function.

PlotStyle->{RGBColor[.75,.0,0]}, Prolog-> AbsolutePointSize[5],

DisplayFunction->Identity];

The green line shows the a straight line connecting the three data points. The red dots on the abscissa mark the points where
data is missing.

Show[g2,g3,DisplayFunction->$DisplayFunction];

30
25
20
15
10

5

5 10 15 20 25 30
Let's set up two matrices, Tm and Sm such that the gradient of the energy is equal to:
Tm.f-Sm.f.

Sm will be our filter to exclude non-data points. Tm will express the "smoothness" constraint.

Sm = DiagonalMatrix[xs];

Tm Table[0,{i,1,size},{j,1,size}];
For[i=1,i<=size,i++,Tm[[i,i]] = 2];
Tm[[1,1]]=1;Tm[[size,size]]=1; (*Adjust for the boundaries*)
For[i=1,i<size,i++, Tm[[i+1,i]] = -1];

For[i=1,i<size,i++, Tm[[i,i+1]] = -1];

Lect_25_BeliefProp.nb

gl = ListPlot[result,PlotJoined->True,

AspectRati ic,PL ge->{{1,size},{1,size}}, DisplayFunction->Identity];
Show[{gl,g2,93,Graphics[{Text["Iteration="<>ToString[iter], {size/2,size/2}]}1},
DisplayFunction->$DisplayFunction,PlotRange->{0,40}];

40
35
30
25
20
15| Iteration/256

10

"5 10 15 20 25 30

Try starting with f = random values between 0 and 40. Try various numbers of iterations.

Lect_25_BeliefProp.nb

Try different sampling functions xs[[i]].

I Belief Propagation

Same interpolation problem, but now using belief propagation

Example is taken from Yair Weiss.(Weiss, 1999)

*O 0O
 5-0-b-0-0-0

Probabilistic generative model

data[[i]] =y"[i] =xs[[i]] y[[i]] +dnoise, dnoise~N[0, op]

(1)

y[[i+1]] =y[[i]] + znoise, znoise~N[0, oOg] (2)

The first term is the "data formation" model, i.e. how the data is directly influenced by the interaction of the underlying
causes, y with the sampling and noise. The second term reflects our prior assumptions about the smoothness of y, i.e. nearby
y's are correlated, and in fact identical except for some added noise. So with no noise the prior reflects the assumption that
lines are horizontal--all y's are the same.

Some theory

‘We'd like to know the distribution of the random variables at each node i, conditioned on all the data: I.e. we want the
posterior
p(y; =u lall the data)

If we could find this, we'd be able to: 1) say what the most probable value of the y value is, and 2) give a measure of
confidence

Let p(y; =u lall the data) be normally distributed: NormalDistribution[ui,ori].
Consider the ith unit. The posterior p(y; =ulall the data) =

p(y; =ulall the data) o« p(y; =uldata before i) p(data at il y; =u) p(y; =uldata after i) 3)

Suppose that p(y; =u | data before i) is also gaussian:
p(y; =uldata before i) = @[u] ~ NormalDistribution[ua,0e]
and so is probability conditioned on the data after i:
p(y; =uldata after i)=S[u] ~ NormalDistribution[u3,03]
And the noise model for the data:
p(data at il y; =u) = L[u]~ NormalDistribution [yp, op]
yp=data[[i]]

So in terms of these functions, the posterior probability of the ith unit taking on the value u can be expressed as proportional
to a product of the three factors:

p(y; =ulall the data) o a/[u]*L[u]*B[u])

Lect _25_BeliefProp.nb 7 8 Lect_25_BeliefProp.nb

audist = NormalDistribution[ua, oa]; Rdist = NormalDistribution[v, ogr];

afu] = PDF [qudist, u]; S[u] = PDF [Rdist, u];

Ddist = NormalDistribution[yp, op]; avdist = NormalDistribution[uap r oap];

L[u] = PDF [Ddist, u]; ap [v] = PDF[avdist, v];

Budist = NormalDistribution[uB, oB]; Lp[v] = PDF[Ddist, v];

B[u] = PDF[Budist, u];

a[u] *L[u] xB[u] Integrate[op [v] *S[u] *Lp[v], {v, -Infinity, Infinity}]

_w—pa? w—pp? u-yp)? 1
2002 2082 202 - -
D
- @@ - 2 /2 73/2 op oy o0y
2V2 2 cacBop
 (u-pop)? of+uod oF +u22(7uéz+yéz rn,%zwufz] -2yp (uap of +uoad)
- . L .. . o 1 1 1 e 2 (of oad+of (og+ood)) V2
This just another gaussian distribution on y; =u. What is its mean and variance? Finding the root enables us to complete the If [Re [PR o] >0, o
. . N . Oy Oj
square to see what the numerator looks like. In particular, what the mode (=mean for gaussian) is. D R 3 J % + % + 12
3 0@ oo
2 2 2
u - ua u- u- . 2
solve[-D[- g "‘2) -4 "i) - BT u] =0, u] (v (w2 (vuap)®
2 oo 2 op 203 e 298 20% 200 gy
Har HB. ’p
I + 2
a2 o2 o3
{fu—)
82 T o2 T oa? . TR P . s
@ o m Some pired Mat pulations

The update rule for the variance is: To find an expression for the mode of the above calculated expression for a[u]

1 1 1
L _ 2 2 2 2 2 52 2 2 2 2
o et oR? + 2 D[- (u-pap)? of +paj of +u? oo +yp (a§+orxp) -2yp (ko of +uoaj)

,u]
2 (0 0a2 + o2 (0% +0a?))

How do we get ua, uf3 , oa, uB? BEp VR W ?
‘We express the probability of the ith unit taking on the value u in terms of the values of the neighbor before, conditioning

2 2 2
on what is known (the observed measurements), and marginalizing over what isn't (the previous "hidden" node value, v). _ 2 (u- o) Op +2U00, - 2¥p 0%

2 (o} oo + 0% (o + oaz))
We have three terms to worry about that depend on nodes in the neighborhood preceding i:

@ (vyp)? w2 (vouap)?
afu) :J ap[v] *S[u] «L(v]dvea | e 29 2% %% gy (5) EoRi=t = Cp Ol
. . P 191) 2 2
ap =0Qji1.S[u] is our smoothing term, or transition probability: S[u] = “%p %D ¥p 9%p

.
{{us G cag o (Broid] | o oahech (cRroad) 1)

p (u|v).L[] is the likelihood of the previous data node, given its hidden node value, v. 5 5
o
P

o

.
Zoag+od (Fwoad) | oF cageod (B road)

Lect_25_BeliefProp.nb 9
2 2
poy, of ¥p 0%
Simplify[Ld + 2 / (cg * oc(;)]
o2 ca2 + of (0% + oa2) o2 ca2 + of (o3 + ca2)
R 00 +0p (O B R 0ag + 05 (OR B
2 2
U, Op + Yp 00
of o 00§ + op 002 (0& + 002)
2 2
op Uap

Simplif + of xoa?
eLicy] 2 ead 62 (G2 2 2 002 + o2 (o2 2 /(> 2]
R 003 + Op (or +aap) OR 0ag + 0p (or +aap)

2 2
Op + 00

of o ood + op 002 (0f + 002)

2 2 2
Hay, of +Yp coj / of +oa?
o3 o2 oaf + o oa2 (02 + oaZ) o3 o2 oad + op ca? (o2 +oa2)

2 2
Moy, Op + Yp OO

2 2
op + oo

So we now have rule that tells us how to update the a(u)=p(yi=uldata before i), in terms of the mean and variance parame-
ters of the previous node:

.
e A

2 2
s ' wip of yp ood wp vp
2 o2
o e U0 Op + Yp 005 ocod 0B oodof ouf 3
2 2 B 2 2 Y 1
of + oa o oa e e
b P —b E 0 " oaf

The update rule for the variance is:

oo? « of +
R 1 1

z "z

g | o

A similar derivation gives us the rules for ua, oo®

Where the subscript index p (for "previous", i.e. unit i-1) is replaced by a (for "after", i.e. unit i+1).
Recall that sometimes we have data and sometimes we don't. So replace:

yp>xs[i-1]data[i-1] =w;1Y¥i, (6)

10 Lect_25_BeliefProp.nb

And similarly for y, .

m Summary of update rules

The ratio, (‘:—”)h plays the role of A above. If 0}, >>0% , there is greater smoothing. If 073, <<o% , there is more fidelity to the
TR
data. (Recall y* — data.w; - xs[[k]])

We'll follow Weiss, and also make a (hopefully not too confusing) notation change to avoid the square superscripts for
0h->0p, T ->0R.

BEY? + o+ i

op Tt

w1 1
0D+af‘+a-iﬁ

i

()
Wl 0

| |
uﬂOEQIOIOIOIO§

Lect_25_BeliefProp.nb 11 12 Lect_25_BeliefProp.nb

m Belief Propagation Routine: Execute this cell "manually" for each iteration

A simulation: Belief propagation for interpolation with missing data

m Initialization

General::spell : Possible spelling error: new symbol name "o'D" is similar to existing symbols {o-, cR}. More...

The code below implements the above iterative equations, taking care near the boundaries. The plot shows the estimates of
yi= W, and the error bars show +0; .

Lect _25_BeliefProp.nb 13 14 Lect_25_BeliefProp.nb

40 gdata = ListPlot[data];
tlerat| = .
20 35 e
30 .., * .
g] -
_20 20 Lot
15 T
-40 10
. * . °
1 2 3 4 5 6
I Expectation Maximization (EM) -- A preview & simulation m Generative model 2
We've studied the problem of interpolation given missing data. We motivated the problem by the visual phenomenon of
surface completion. Another aspect of surface perception is our ability to take noisy data (e.g. depth cues), and not only yl[x_] := -2%x +15;
interpolate the data, but also decide which of several surfaces the data belong using stereo data (Madarasmi et al., 1993; ¥2[x_] :=3xx+1;

data = Table[{x, If[Random[] < .5, y1[x], y2[x]]}, {x, 0, 6, .1}];

Kersten & Madarasmi, 1995) or optic flow. A number of ways have been proposed to deal with this problem, but the {x, y} = Transpose[data];

technique of most general application is expectation-maximization--a general statistical technique developed in the 1970's
that appears in various forms in many algorithms, including belief propagation. The algorithm has been applied to the
surface estimation problem, e.g. from optic flow (Jepson, 1993; Weiss, 1997). We go to Weiss again for a nice simple demo. gdata = ListPlot [data] ;
Consider Generative Model 1.
‘Which data belong together? We'll assume that we know there are two linear models, but we don't know their parameters-
-i.e. we don't know their slopes and intercepts.

Generative models

Two lines with slopes and intercepts (al,bl) and (a2,b2). EM algorithm

ndist = NormalDistribution[0, 5];

m Initialize parameters to random values

m Generative model 1 o=.1;

{al, bl, a2, b2} = Table[10 *xRandom[], {4}];

y1[x_] := -2%x +40 + Random[ndist];

y2[x_] :=3*x+1+Random[ndist];

data = Table[{x, If[Abs[x-3] < 1.5, yl[x], y2[x]]}, {x, 0, 6, .1}];
{x, y} = Transpose[data];

m E-step

Compute residuals rl, r2, the error in the predicted and actual y values under each of the two models.

Lect_25_BeliefProp.nb

rl=alxx + bl- y;
r2=a2xx + b2- y;

Using the residuals, compute weights. We'll assing these weights to data in the M-step later.

wl = Exp[-r1°2 /0] / (Exp[-rl~2 /0] +Exp[-r2°2/0]);

w2 = Exp[-r2°2/0] / (Exp[-rl"2 /0] +Exp[-r2"2/0]);

m M-step

With above, weights compute weighted linear regression:

{al, bl} = Inverse[{{wl. (xx), wl.x}, {wl.x, Apply[Plus, wl]}}].{wl.(xy), wl.y};
{a2, b2} = Inverse[{{w2. (xx), w2.x}, {w2.x, Apply[Plus, w2]}}].{w2.(xy), w2.y};

gfit = Plot[{al*x+bl, a2*x +b2}, {x, 0, 6}, DisplayFunction -» Identity];

Show [
{gfit, Graphics[{PointSize[0.03], Transpose[{Hue[#1] & /@ (wl/2), Point /@data}]}]},
PlotRange - All, DisplayFunction - $DisplayFunction];

Try repeating the E-step followed by the M-step

16 Lect_25_BeliefProp.nb

Exercises

Run the descent algorithm using successive over-relaxation (SOR): n2[k_]:=1.9/(A+xs[[K]]).

How does convergence compare with Gauss-Seidel?

Run Belief Propation using: cR=1.0; 0D=4.0; How does fidelity to the data compare with the original
case
(0R=4.0; 0D=1.0).

BP with missing sine wave data

m Generate sine wave with missing data

size = 64;

xs = Table[Random[Integer,1], {i,1,size}];

data = Table[N[Sin[2 Pi (1/20) j] xs[[j]11],

{3, 1, size}];

g3b = ListPlot[Table[N[Sin[2 Pi (1/20) jl1, {j, 1, size}],

PlotJoined->True,DisplayFunction->Identity,

PlotStyle->{RGBColor[0,.5,0]}];

g2b = ListPlot[data,PlotJoined->False,

PlotStyle->{RGBColor[.75,.0,0]}, Prolog-> AbsolutePointSize[5],

DisplayFunction->Identity];

Show[g2b,g3b,DisplayFunction->$DisplayFunction];

Lect_25_BeliefProp.nb 17 18 Lect_25_BeliefProp.nb

m SINE WAVE DEMO: Belief Propagation Routine: Execute this cell "manually" for each iteration

m Initialize

Lect _25_BeliefProp.nb 19 20 Lect_25_BeliefProp.nb

1.5 Run EM with Generative Model 2. Increase the additive noise. How does attribution accuracy change?

1 ("attribution" means assigning a point to its correct line)
™y
[|
I
-0.5
-1 I References
-1.
3 Applebaum, D. (1996). Probability and Information . Cambridge, UK: Cambridge University Press.
-2

Frey, B. J. (1998). Graphical Models for Machine Learning and Digital Communication. Cambridge, Massachusetts: MIT
Press.

Jepson, A., & Black, M. J. (1993). Mixture models for optical flow computation. Paper presented at the Proc. IEEE Conf.
Comput. Vsion Pattern Recog., New York.

Kersten, D. and P.W. Schrater (2000), Pattern Inference Theory: A Probabilistic Approach to Vision, in Perception and the
Physical World, R. Mausfeld and D. Heyer, Editors. , John Wiley & Sons, Ltd.: Chichester. (pdf)

Kersten, D., & Madarasmi, S. (1995). The Visual Perception of Surfaces, their Properties, and Relationships. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, 19, 373-389.

Madarasmi, S., Kersten, D., & Pong, T.-C. (1993). The computation of stereo disparity for transparent and for opaque
surfaces. In C. L. Giles & S. J. Hanson & J. D. Cowan (Eds.), Advances in Neural Information Processing Systems 5. San
Mateo, CA: Morgan Kaufmann Publishers.

Pearl, Judea. (1997) Probabilistic Reasoning in Intelligent Systems : Networks of Plausible Inference. (amazon.com link)
Ripley, B. D. (1996). Pattern Reco gnition and Neural Networks. Cambridge, UK: Cambridge University Press.
Weiss Y. (1999) Bayesian Belief Propagation for Image Understanding submitted to SCTV 1999. (gzipped postscript 297K)

Weiss, Y. (1997). Smoothness in Layers: Motion segmentation using nonparametric mixture estimation. Paper presented at
the Proceedings of IEEE conference on Computer Vision and Pattern Recognition.

Yuille, A., Coughlan J., Kersten D.(1998) (pdf)

For notes on Graphical Models, see:http://www.cs.berkeley.edu/~murphyk/Bayes/bayes.html

© 2000, 2001, 2003 Daniel Kersten, Computational Vision Lab, Department of Psychology, University of Minnesota.
(http:/Ivision.psych.u Iab.html)

