
Introduction to Neural Networks
U. Minn. Psy 5038

Probability, Energy, & the Boltzmann machine

Initialize

‡ Spell check off

Off@General::spell1D;

‡ Read in Statistical Add-in packages:

Off@General::spell1D;
<< Statistics`DescriptiveStatistics`
<< Statistics`DataManipulation`

Statistical physics, computation, and statistical inference
At the beginning of this course, we noted that John von Neumann, one of the principal minds behind the architecture of the
modern digital computer, wrote that brain theory and theories of computation would eventually come to more resemble
statistical mechanics or thermodynamics than formal logic. We have already seen in the Hopfield net, the development of
the analogy between statistical physics systems and neural networks. In the past 15 years, the relationship between
computation and statistical physics has received considerable study (cf. Hertz et al., 1991). We are going to look at a
neural network model that exploits the relationship between thermodynamics and computation both to find global minima
and to modify weights. Further, we will see how relating energy to probability leads naturally to statistical inference theory.
Much of the current research in neural network theory is done in the context of statistical inference (Bishop, 1995; Ripley,
1996).

Probability Preliminaries

Random variables, discrete probabilities, probability densities, cumulative distributions

‡ Discrete: random variable X can take on a finite set of discrete values

X = {x(1),...,x(N)]

‚
i=1

N

pi = ‚
i=1

N

pHX = xHiLL = 1

‡ Densities: X takes on continuous values, x, in some range.

Density : pHxL

Analogous to material mass,
we can think of the probability over some small domain of the random variable as "probability mass" :

probHx < X < dx + xL = ‡
X

dX+X

pHxL „ x

probHx < X < dx + xL > pHxL dx

Crudely speaking, however, an object Hevent spaceL always weighs 1 :

‡
-¶

¶

pHxL „ x = 1

Cumulative distribution:

prob HX < xL = ‡
-¶

x

pHXL „ X

‡ Densities of discrete random variables

The Dirac Delta function, d[•], allows us to use the mathematics of continuous distributions for discrete ones, by defining
the density as:

p[x]=⁄i=1
N pi d[x - x[i]], where d[x - x[i]] =9

¶
0

for x = x@iD
for x ∫ x@iD

Think of the delta function, d[•], as e wide and 1/e tall, and then let e -> 0, so that:

‡
-¶

¶

dHyL „ y = 1

2 Lect_18_Boltzmann.nb

The density, p[x], is a series of spikes. It is infinitely high only at those points for which x = x[i], and zero elsewhere. But
"infinity" is scaled so that the local mass or area around each point x[i], is pi .

Check out Mathematica's functions: DiracDelta, KroneckerDelta. What is the relationship of
KroneckerDelta to IdentityMatrix?

‡ Joint probabilities

Prob HX AND Y L = pHX, Y L
Joint density : pHx, yL

Probability and energy

‡ Conditional probabilities

Two events, a and b, are said to be independent if the probability of their occurring together (i.e. their "joint probability") is
equal to the product of their probabilities:

p(a&b) = p(a)p(b)

By definition, the conditional probability of a given b (or "the conditional probability of a on b") is:

p(a|b) =
p(a&b)

p(b)

If a and b are independent, what is the conditional probability of a given b? The intuition is that knowledge of b provides no
help with making statistical decisions about a.

‡ Probabilities of hypotheses contingent on data, Bayes' rule

Conditional probabilities are central to modeling statistical decisions about hypotheses that depend on data. For example,
the posterior probability of H, given data d is:

p(H|d)

It is called "posterior", because it is the probability after one knows the data. It is more constrained than the prior
probability, p(H). If one has a formula for the posterior probability, then it is possible to devise optimal strategies to achieve
well-defined goals of inference. For example, imagine the data are fixed. A device that picks the hypothesis, H, that makes
the posterior probability biggest is optimal in the sense that it makes the fewest errors on average. The well-defined goal is
to achieve the least average error rate. This kind of decision maker is called a maximum a posteriori (or MAP) estimator.

Often it is easier to find a formula for p(d|H), then the other way around. If the prior is known, one can still do MAP
estimation because of Bayes' rule:

Lect_18_Boltzmann.nb 3

p(H|d) =
p(d|H)p(H)

p(d)

There are two assumptions that can simplify MAP estimation. First, p(d) is often assumed fixed (we have the data and it
isn't changing while we try to decide on the best hypothesis to explain the data). Further, we often don't have reason to
prefer one hypothesis H=H', over any other, say H=H". So p(H) is constant. If these two conditions hold, then MAP
estimation is equivalent to finding the H that makes p(d|H) biggest. This latter strategy is called maximum likelihood
estimation.

‡ Putting probability and energy together: The Gibbs distribution

Let E(V1,..,Vn) be an energy function for a network, as in a Hopfield model. Then we can write a probability function,

called the Gibb's distribution, for the network as:

T is a parameter that controls the "peakedness" of the probability distribution (e.g. if the energy is a quadratic function of
the V's, the Gibbs distribution becomes a Gaussian, and if each unit has the same variance, and they are independent, we

have T = 2σ2). From the physicist's point of view, T is temperature--e.g. the hotter the matter, the more variance there is in

the particle velocities. For a magnetic material, an increase in thermal fluctuations makes it more likely for little atomic
magnets to flip out of their otherwise regular arrangement. κ is a normalization constant determined by the constraint that

the total probability over all possible states must equal one.

Question: So if the Hopfield net seeks states that minimize energy, what kind of statistical estimator is the Hopfield net?

Now imagine that some of the values of our units are given. In other words a subset of the units are declared to be the input,

and are "clamped" at specific levels. Call these Vi
s. These values are fixed, and the others vary. The conditional probability

is written as:

So from a statistician's point of view, a network that is evolving to minimize an energy function, is doing a particular form
of Bayesian estimation.

‡ Sidenote on terminology

We've already noted that energy is equivalent to the Lyapunov function of dynamical systems. Other analogous terms you
may run into are: Hamiltonian (in statistical mechanics), and cost or objective functions in optimization theory.

4 Lect_18_Boltzmann.nb

Boltzmann machine: Constraint satisfaction

Introduction

We've seen how local minima in an energy function can be useful stable points for storing memories. However, for
constraint satisfaction problems such as the stereo example, local minima can be a real annoyance--one would like to find
the global minimum, because this corresponds to the state-vector that should best satisfy the constraints inherent in the
weights and the data input.

One of the early contributions to improving the odds of finding the global minimum was an algorithm called the Boltzmann
machine by Ackley et al. (1985). Like the Hopfield network, the Boltzmann machine is a recurrent network with units
connected to each other with symmetric weights. The units are binary threshold logic units. Unlike the 1982 Hopfield net,
the Boltzmann machine uses a stochastic update rule that allows occasional increases in energy.

But more importantly, the Boltzmann machine had a feature that made it a more potentially powerful learning machine.
Although fully connected, yet unlike Hopfield, some units could be "hidden" and others "visible". Similar to the back-prop
nets, the hidden units could learn capture statistical dependencies of higher order than two.

First we take a look at the update rule, and then the learning rule. The learning rule will lead us to a different view of
supervised learning, in which the goal is to model the state of the environment--the joint probability of the various possible
combinations of inputs.

Finding the global minimum: Theory

‡ TLUs and energy again

The starting point is the discrete Hopfield net (1982), with a view towards solving constraint satisfaction, rather than
memory problems. Energy is then a measure of the extent to which a possible combination of hypotheses violates the
constraints of the problem. We've seen this with the stereo problem. Let V1 and V2 be the outputs of neural elements 1 and

2. These two outputs can be thought to represent local "hypotheses". A positive connection weight (e.g. T12) means that

local hypotheses, V1 and V2 support one another. A negative weight would mean that the two hypotheses should not both
be accepted.

Some of the inputs can be clamped, and the rest allowed to evolve. In this way the network finds the conditional local
minimum (or equivalently, the maximum of the corresponding conditional probability).

(1)Vi = 9

Vi
c if i is a clamped unit

1 if S Tij Vj > Ui

0 if S Tij Vj < Ui

Lect_18_Boltzmann.nb 5

(Notation: the sum for i<j, is the same as the 1/2 the sum for i not equal to j, because the weight matrix is assumed to be
symmetric, and the diagonals are not included. So this may look different than the Hopfield energy, but it isn't.).

As we have done several times before, we can remove the explicit dependence on the threshold Ui, by including weights

-Ui, and a clamped input of 1 that effectively biases the unit. Then, as we saw for the Hopfield net:

If Vi goes from 1 to 0, the energy gap between two states corresponding to Vi being off (hypothesis i rejected) or on

(hypothesis i accepted) is:

‡ Boltzmann update rule

Recall that under certain conditions, Hopfiled showed that energy can't increase.

To allow escapes from local minima, the idea is to allow occasional increases in energy, an idea that goes back to 1953
(Metropolis et al., 1953). Let's see how it works.

T is a free parameter that plays the role of temperature in thermodynamics. When we implement the algorithm below, we

draw a number between 0 and 1 out of a hat, and if that number is less than pi, we set Vi to 1. Otherwise, it is set to zero.

Specifically, the update rule is:

If the temperature is very low (T about zero), the update rule is the same as that for a deterministic TLU. This is because if
the weighted sum of inputs is bigger than zero, p is virtually at 1. The probability of setting V to 1 is then guaranteed. If the
weighted sum is less than zero, p is zero, and the probability of setting V to 1 is nil.

6 Lect_18_Boltzmann.nb

boltz[x_,T_] := 1/(1 + Exp[-x/T]);

Here is a plot of pi, with a high and low temperatures:

Plot[{boltz[x,.5], boltz[x,.05]}, {x,-2,2},
PlotStyle->{RGBColor[1,0,0],RGBColor[0,0,1]}];

-2 -1 1 2

0.2

0.4

0.6

0.8

1

‡ Simulated annealing

Now if we just let the Boltzmann rule update at a high temperature, the network will never settle to a stable point in state

space. Conversely, if we set the temperature low, the network is likely to get stuck in a local minimum. The key idea behind

introducing the notion of temperature is to start off with a high temperature, and then gradually cool the network. This

simulates the physical process of annealing. If one heats metal, and then cools it rapidly, there is less crystalline structure or
alignment of the atoms. This is a high energy state, and is desirable for making strong metal. The steel has been tempered.

Slower cooling allows the substance to achieve a lower energy state with more alignment, with correspondingly more

potential fractures. Although bad for metal strength, slow annealing is good for constraint satisfaction problems.

It has been shown that a suitably slow annealing schedule will guarantee convergence (Geman and Geman, 1984):

T(n) >
c

log(1 + n)
This annealing schedule, however, can be VERY slow, in fact too slow to be usually practical, except for small scale

problems.

The "Gibbs Sampler" is the more general form of updating for n-valued nodes making up a Markov Random Field (Geman

and Geman, 1984).

Lect_18_Boltzmann.nb 7

Local minimum demonstration

Let's look at an example where the standard discrete Hopfield net gets stuck in a local minimum, but the Boltzmann
machine with annealing gets out of it.

‡ Initialization

We will use a toroidal geometry to keep the programming simple.

Mod2[x_,n_] := Mod[x-1,n] + 1;
threshold[x_] := N[If[x>=0,1,-1]];

weight = 1;
size = 16;
numiterations = 10;

Below, we will deliberately construct a weight matrix so that the energy function has a local minimum at the following state
vector:

V = Table[-1,{i,size},{j,size}];

V[[2,3]] = 1; V[[2,4]]= 1; V[[2,5]] = 1;
V[[3,3]] = 1; V[[3,4]] = 1; V[[3,5]] = 1;
V[[4,3]] = 1; V[[4,4]] = 1; V[[4,5]] = 1;

Here is a picture of the state vector with the local minimum:

ListDensityPlot[V,ColorFunction->Hue,
PlotRange->{-5,5}];

0 2.5 5 7.51012.515
0

2.5

5

7.5

10

12.5

15

8 Lect_18_Boltzmann.nb

‡ Asynchronous updating without annealing: Getting stuck

Each unit is connected to its four nearest neighbors with weights given by weight (=1). The rest of the weights are zero. So
the update rule is:

update[Vv_,ii_,jj_] :=
threshold[weight (Vv[[Mod2[ii + 1,size],
 jj]] +
Vv[[Mod2[ii - 1,size], jj]] +
Vv[[ii, Mod2[jj - 1,size]]] +
Vv[[ii, Mod2[jj + 1,size]]])];

numiterations = 3;

For[iter=1,iter<=numiterations,iter++,
For[i=1,i<=size*size,i++,

iindex = Random[Integer,size-1]+1;
jindex = Random[Integer,size-1]+1;
V[[iindex,jindex]] = update[V,iindex,jindex];

];
ListDensityPlot[V,ColorFunction->Hue,

PlotRange->{-5,5}];
];

0 2.5 5 7.5 1012.515
0

2.5

5

7.5

10

12.5

15

Lect_18_Boltzmann.nb 9

0 2.5 5 7.5 1012.515
0

2.5

5

7.5

10

12.5

15

0 2.5 5 7.5 1012.515
0

2.5

5

7.5

10

12.5

15

‡ Asynchronous updating with annealing: Getting unstuck

boltz[x_,T_] := 1/(1 + Exp[-x/T]);

10 Lect_18_Boltzmann.nb

temp0=1;
numiterations = 10;
ListDensityPlot[V,ColorFunction->Hue,

PlotRange->{-5,5}];
For[iter=1,iter<=numiterations,iter++,

temp = temp0/Log[1 + iter];
For[i=1,i<=size*size,i++,

iindex = Random[Integer,size-1]+1;
jindex = Random[Integer,size-1]+1;

pdeltaE =
N[boltz[weight (V[[Mod2[iindex +
 1,size],jindex]] +
V[[Mod2[iindex - 1,size],jindex]] +
V[[iindex,Mod2[jindex - 1,size]]] +
V[[iindex,Mod2[jindex + 1,size]]]),
 temp]];

V[[iindex,jindex]] =
If[pdeltaE >= Random[],1,-1];

];
ListDensityPlot[V,ColorFunction->Hue,

PlotRange->{-5,5}];
];

Here are the results of a simulation:

0 2.557.51012.515
0

2.5

5

7.5

10

12.5

15

0 2.557.51012.515
0

2.5

5

7.5

10

12.5

15

Lect_18_Boltzmann.nb 11

0 2.557.51012.515
0

2.5

5

7.5

10

12.5

15

0 2.557.51012.515
0

2.5

5

7.5

10

12.5

15

0 2.557.51012.515
0

2.5

5

7.5

10

12.5

15

0 2.557.51012.515
0

2.5

5

7.5

10

12.5

15

0 2.557.51012.515
0

2.5

5

7.5

10

12.5

15

12 Lect_18_Boltzmann.nb

Optional exercise 1: Energy function

Write a function to calculate the energy function for the above network.

What is the energy of the ground state?

What is the energy of the local minimum we constructed above?

Optional Exercise 2 : Thermal equilbrium

Make a two versions of the above simulation in which 1) the temperature is fixed; 2) the temperature is gradually lowered.
Start with a random initial setting of the network.

Pattern synthesis using Markov Random Field models & Gibbs sampling
What if units can take on continuous values? Consider the quantized case. Suppose rather than just binary values, our units
can take on a range of values. Let's see how the ideas in the Boltzmann machine can be applied to problems of pattern
synthesis.

‡ Sampling from textures using local updates

Lect_18_Boltzmann.nb 13

The Gibbs Sampler

‡ Set up image arrays and useful functions

size = 32; T0 = 1.; ngray = 16.;
brown = N@Table@Random@Integer, 81, ngray<D, 8i, 1, size <, 8i, 1, size <DD;
next@x_D := Mod@x, sizeD + 1;
previous@x_D := Mod@x - 2, sizeD + 1;
Apply@Plus, Flatten@brownDD ê Length@Flatten@brownDD;

‡ Ising potential

Clear@fD; H* Clear@fD; f@x_,n_D:=x^2;*L
f@x_, s_, n_D := If@Abs@xD < .5, 0, 1D;
H*f@x_,s_,n_D:=N@HxêsL^2D;*L
s0 = 1.; n0 = 5;
Plot@f@x, s0, n0D, 8x, -2, 2<, PlotRange Ø 80, 1<D;

-2 -1 1 2

0.2
0.4
0.6
0.8
1

14 Lect_18_Boltzmann.nb

‡ Geman & Geman potential

Clear@fD; H* Clear@fD; f@x_,n_D:=x^2;*L
f@x_, s_, n_D := N@Sqrt@Abs@x ê sD^n ê H1 + Abs@x ê sD^nLDD;

H*f@x_,s_,n_D:=N@HxêsL^2D;*L
s0 = .25; n0 = 2;
Plot@f@x, s0, n0D, 8x, -2, 2<, PlotRange Ø 80, 1<D;

-2 -1 1 2

0.2

0.4

0.6

0.8

1

‡ Define the potential function using nearest-neighbor pair-wise cliques

Clear@gibbspotential, gibbsdraw, trD;
gibbspotential@x_, avg_, T_D :=
N@Exp@-Hf@x - avg@@1DD, s0, n0D + f@x - avg@@2DD, s0, n0D +

f@x - avg@@3DD, s0, n0D + f@x - avg@@4DD, s0, n0DL ê TDD;

‡ Define a function to draw a single pixel gray-level sample from a conditional distribution determined
by pixels in neighborhood

gibbsdraw@avg_, T_D := Module@8<,
temp = Table@gibbspotential@x + 1, avg, TD, 8x, 0, ngray - 1<D;
temp2 = FoldList@Plus, temp@@1DD, tempD;
temp10 = Table@8temp2@@iDD, i - 1<, 8i, 1, Dimensions@temp2D@@1DD<D;
tr = Interpolation@temp10, InterpolationOrder Ø 0D;
maxtemp = Max@temp2D;
mintemp = Min@temp2D;
ri = Random@Real, 8mintemp, maxtemp<D;
H*x=Round@Max@0,tr@riDDD;*L
x = Floor@tr@riDD;
Return@8x, temp2<D;

D;

Lect_18_Boltzmann.nb 15

‡ "Drawing" a pattern sample

For@iter = 1, iter § 10, iter++,
T = .25;
For@j1 = 1, j1 <= size * size, j1++,
8i, j< = 8Random@Integer, 81, size<D, Random@Integer, 81, size<D<;
avg = 8brown@@next@iD, jDD, brown@@i, next@jDDD ,
brown@@i, previous@jDDD , brown@@previous@iD, jDD<;

brown@@i, jDD = gibbsdraw@avg, TD@@1DD;
D;
ListDensityPlot@brown, Mesh Ø False, PlotRange Ø 81, ngray<D;

D;

0 510152025300
5
10
15
20
25
30

0 510152025300
5
10
15
20
25
30

0 510152025300
5
10
15
20
25
30

0 510152025300
5
10
15
20
25
30

0 510152025300
5
10
15
20
25
30

16 Lect_18_Boltzmann.nb

0 510152025300
5
10
15
20
25
30

0 510152025300
5
10
15
20
25
30

0 510152025300
5
10
15
20
25
30

0 510152025300
5
10
15
20
25
30

0 510152025300
5
10
15
20
25
30

Was it a true sample? Drawing true samples means that we have to allow sufficient iterations so that we end up with images
whose frequency corresponds to the model. How long is long enough?

Lect_18_Boltzmann.nb 17

Finding modes

‡ Define annealing schedule

anneal@iter_, T0_, a_D := T0 * H1 ê aL ê H1 ê a + Log@iterDL;
Plot@anneal@iter, T0, 1D, 8iter, 1, 20<, PlotRange Ø 80, 2<D;

5 10 15 20

0.25

0.5

0.75

1

1.25

1.5

1.75
2

‡ "Drawing" a texture sample with annealing

For@iter = 1, iter § 10, iter++,
T = anneal@iter, T0, 1D;
For@j1 = 1, j1 <= size * size, j1++,
8i, j< = 8Random@Integer, 81, size<D, Random@Integer, 81, size<D<;
avg = 8brown@@next@iD, jDD, brown@@i, next@jDDD ,
brown@@i, previous@jDDD , brown@@previous@iD, jDD<;

brown@@i, jDD = gibbsdraw@avg, TD@@1DD;
D;
ListDensityPlot@brown, Mesh Ø False, PlotRange Ø 81, ngray<D;

D;

Boltzmann Machine: Learning
We've seen how a stochastic update rule improves the chances of a network evolving to a global minimum. Now let's see
how learning weights can be formulated as a statistical problem.

18 Lect_18_Boltzmann.nb

‡ The Gibbs distribution again

Suppose T is fixed at some value, say T=1. Then we could update the network and let the it settle to thermal equilibrium, a

state characterized by some statistical stability, but with occasional jiggles. Let Vα represent the vector of neural activities.

The probability of a particular state α is given by:

p(Vα) = κe_ Eα / T

κ =
1
e− Ek / T

all states k
∑

Recall that the second equation is the normalization constant the ensures that the total probability (i.e. over all states) is 1.

We divide up the units into two classes: hidden and visible units. Values of the visible units are determined by the
environment. If the visible units are divided up into "stimulus" and "response" units, then the network should learn
associations.

Our goal is to have the hidden units discover the structure of the environment. Once learned, if the network were left to run
freely, the visible units would take on values that reflect the structure of the environment they learned.

Consider two probabilities over the visible units:

P - probability of visible units taking on certain values determined by the environment.

P' - probability that the visible units take on certain values while the network is running at thermal equilibrium.

If the hidden units have actually "discovered" the structure of the environment, then the probability P should match P'. How

can one achieve this goal? Recall that for the Widrow-Hoff and error backpropagation rules, we started from the constraint

that the network should minimize the error between the network's prediction of the output, and the actual target values
supplied during training. We need some measure of the discrepancy between the desired and target states for the Boltzmann

machine. The idea is to construct a measure of how far away P is from P'. One such function is the Kullback-Leibler

measure or relative entropy (also known as the "Gibbs G measure").

G T12 ,T13...,Tij ,...() = P(Vα) log
P(Vα)
P©(Vα)

all states
over visible units

∑

Then we need a rule to adjust the weights so as to bring P' -> P. Ackley et al. derived the following rule for updating the
weights so as to bring the probabilities closer together:

∆Tij = ε pij − pij
©()

Lect_18_Boltzmann.nb 19

where pij is the probability of Vi and Vj both being 1 when environment is clamping the states at thermal equilibrium

averaged over many samples. p'ij is the probability of Vi and Vj being 1 when the network is running freely without the

environment at equilibrium.

Descendants of Boltzmann machines
As noted above, convergence through simulated annealing can be impractically slow. Mean field approximation is one
technique used to improve convergence (cf. Ripley, 1996). Boltzmann machines can be considered a special case of belief
networks (Ripley, 1996).

The Boltzmann machine learns to approximate the joint probability distribution on a set of binary random variables. Some
of the variables are designated inputs, and others outputs. Learning large scale joint distributions is known to be a hard
problem in statistics, and the success of the Boltzmann machine has been limited to small scale problems. One successor to
the Boltzmann machine is the Helmholtz machine and its derivatives (Dayan et al., 1995; Hinton, 1997). A recent advance
in learning pattern distributions is the Minimax theory (Zhu and Mumford, 1997).

20 Lect_18_Boltzmann.nb

References
Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for Boltzmann machines. Cognitive Science,
9, 147-169.

Besag, J. (1972). Spatial interaction and the statistical analysis of lattice systems. {\it Journal of the Royal Statistical
Society B}, {\bf 34}, 75-83.

Clark, James J. \& Yuille, Alan L. (1990) Data fusion for sensory information processing systems. Kluwer Academic Press,
Norwell, Massachusetts.

Cross, G. C., & Jain, A. K. (1983). Markov Random Field Texture Models. IEEE Trans. Pattern Anal. Mach. Intel., 5, 25-39.

Geiger, D., & Girosi. (1991). Parallel and Deterministic Algorithms from MRF's: Surface Reconstruction. I.E.E.E PAMI,
13(5).

D. Geiger, H-K. Pao, and N. Rubin (1998). Organization of Multiple Illusory Surfaces. Proc. of the IEEE Comp. Vision
and Pattern Recognition, Santa Barbara.

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images.
I.E.E.E. Transactions Pattern Analysis and Machine Intelligence, PAMI-6, 721-741.

Dayan, P., Hinton, G. E., Neal, R. M., & Zemel, R. S. (1995). The Helmholtz Machine. Neural Computation, 7(5), 889-904.

Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the theory of neural computation (Santa Fe Institute Studies in
the Sciences of Complexity ed.). Reading, MA: Addison-Wesley Publishing Company.

Hinton, G. E., & Ghahramani, Z. (1997). Generative models for discovering sparse distributed representations. The
Philosophical Transactions of the Royal Society, 352(1358), 1177-1190.

Kersten, D. (1990). Statistical limits to image understanding. In C. Blakemore (Ed.), Vision: Coding and Efficiency, (pp.
32-44). Cambridge, UK: Cambridge University Press.

Kersten, D. (1991) Transparency and the cooperative computation of scene attributes. In {Computation Models of Visual
Processing}, Landy M., & Movshon, A. (Eds.), M.I.T. Press,

Cambridge, Massachusetts.

Kersten, D., & Madarasmi, S. (1995). The Visual Perception of Surfaces, their Properties, and Relationships. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, 19, 373-389.

Knill, D. C., & Kersten, D. K. (1991). Ideal Perceptual Observers for Computation, Psychophysics, and Neural Networks.
In R. J. Watt (Ed.), Pattern Recognition by Man and Machine, (Vol. 14,): MacMillan Press.

Knill, D. C., Kersten, D., & Yuille, A. (1996). A Bayesian Formulation of Visual Perception. In K. D.C. & R. W. (Eds.),
Perception as Bayesian Inference, (pp. Chap. 1): Cambridge University Press.

Lee, T. S., Mumford, D., & Yuille, A. Texture Segmentation by Minimizing Vector-Valued Energy Functionals: The
Coupled-Membrane Model.: Harvard Robotics Laboratory, Division of Applied Sciences, Harvard University.

Madarasmi, S., Kersten, D., & Pong, T.-C. (1993). The computation of stereo disparity for transparent and for opaque
surfaces. In C. L. Giles & S. J. Hanson & J. D. Cowan (Eds.), Advances in Neural Information Processing Systems 5. San
Mateo, CA: Morgan Kaufmann Publishers.

Marroquin, J. L. (1985). Probabilistic solution of inverse problems. M. I. T. A.I. Technical Report 860.

Metropolis N Rosenbluth A Rosenbluth M Teller A & Teller E (1953) Equation of State Calculations by Fast

Lect_18_Boltzmann.nb 21

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., & Teller, E. (1953). Equation of State Calculations by Fast
Computing Machines. J. Phys. Chem, 21, 1087.

Mumford, D., & Shah, J. (1985). Boundary detection by minimizing functionals. Proc. IEEE Conf. on Comp. Vis. and Patt.
Recog., 22-26.

Poggio, T., Gamble, E. B., \& Little, J. J. (1988). Parallel integration of vision modules. {\it Science}, {\bf 242}, 436-440.

Ripley, B. D. (1996). Pattern Recognition and Neural Networks . Cambridge, UK: Cambridge University Press.

Zhu, S. C., Wu, Y., & Mumford, D. (1997). Minimax Entropy Principle and Its Applications to Texture Modeling. Neural
Computation, 9(8), 1627-1660.

Zhu, S. C., & Mumford, D. (1997). Prior Learning and Gibbs Reaction-Diffusion. IEEE Trans. on PAMI, 19(11).

© 1998, 2001 Daniel Kersten, Computational Vision Lab, Department of Psychology, University of Minnesota.

22 Lect_18_Boltzmann.nb

