tors corresponding to a "matrix of memories" can represent stored prototypes, and in dimensionality reduction.
 obscure notions of things like an "outer product" between two vectors, or the "eigenvectors" of a matrix are meaningful for

 the inverse of a matrix--something that was used in Lecture 5 to show how the steady-state solution of the feedback model We will first review matrix arithmetic (addition and multiplication). We will review the analog of division, namely finding There is a large body of mathematical results on linear algebra and matrices, and it is worth our while to spend some time
going over some of the basics of matrix manipulation.
Керод
We studied the continous system by approximating it as a discrete time system with $\epsilon=\Delta t$ as a free parameter. We generalized the linear discrete model to a linear continous one with feedback. Although more complex, its steady-state
solution is identical to the linear feedforward model. This model is what we called a linear feedforward network, and used the generic neuron model. matrix of weights is sometimes called a connection matrix just because non-zero weights are between connected neurons,
and neurons that aren't connected get fixed zero weights. tions. The idea is to represent the synaptic weights for the $i^{\text {th }}$ output neuron by the values in the $\mathrm{i}^{\text {th }}$ row of the matrix. The
matrix of weights is sometimes called a connection matrix just because non-zero weights are between connected neurons,
 the spatial filter was represented as a matrix intensity and response were represented as vectors Simple linear network: intensity->spatial filter->response Last time
Modeled aspect

uо!!эпролй

An mxn matrix has m rows, and n columns. Here is a 3×4 matrix of symbolic elements $w[i, j]$: Although most of the time, we'll be working with numerical matrices, Mathematica also allows one to specify arrays or lists

 and matrices to be printed out in traditional mathematics format. Then we don't have to explicitly type MatrixForm every

$\ln [2]:=$ MatrixForm [H]
Out[2]/MatrixForm=
And we can view it in the traditional MatrixForm either by: Table $\left[\mathbf{i}^{\wedge} \mathbf{2}+\mathbf{j}^{\wedge} \mathbf{2},\{\mathbf{i}, \mathbf{1}, \mathbf{3}\},\{\mathbf{j}, \mathbf{1}, \mathbf{3}\}\right] / / \mathbf{M a t r i x F o r m}$, or

$\ln [\mathbf{1}]:=\mathbf{H}=\mathbf{T a b l e}\left[\mathbf{i}^{\wedge} \mathbf{2}+\mathbf{j}^{\wedge} \mathbf{2},\{\mathbf{i}, \mathbf{1}, \mathbf{3}\},\{\mathbf{j}, \mathbf{1}, \mathbf{3}\}\right]$ Out[1] $=$ $\left(\begin{array}{rrr}2 & 5 & 10 \\ 5 & 8 & 13 \\ 10 & 13 & 18\end{array}\right)$

- Defining arrays or lists of function outputs using indices

Definition of a matrix: a list of scalar lists

Basic matrix arithmetic

As with vectors, matrices are added, subtracted, and multiplied by a scalar component by component:
Adding, subtracting and multiplying by a scalar

In particular, look at the element in the upper left of the matrix $\mathbf{B A}$ above--there is no reason, in general, for ax+bu to equal
ax + cy. That is, matrix multiplication does not commute.
Apart from commutation for matrix multiplication, the usual laws of commutation, association, and distribution that hold for
scalars hold for matrices. Matrix addition and subtraction do commute. Matrix multiplication is associative, so $(\mathbf{A B}) \mathbf{C}=$
$\mathbf{A}(\mathbf{B C})$. The distributive law works too:
$\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}$
Laws of commutation, association and distribution

$\left(\begin{array}{ll}f & \partial \\ p & \jmath \\ q & p\end{array}\right) \cdot\left(\begin{array}{llll}M & 1 & n & f \\ s & l & b & d\end{array}\right)=\left(\begin{array}{llll}n & 1 & n & L \\ s & l & b & d\end{array}\right)\left(\begin{array}{ll}f & \partial \\ p & \partial \\ q & p\end{array}\right)$

 01 cull

Mathematica provides a built-in function to compute matrix inverses:
$\ln [24]:=A=\{\{a, b\},\{c, d\}\} ;$
by \mathbf{Q}, we get the matrix equivalent of unity, i.e. the identity matrix. Then "B/A" can be achieved by calculating the matrix
product: B.Q. How can one divide one matrix, say \mathbf{B}, by another, say \mathbf{A} ? We can divide numbers, x by y, by multiplying x times the
inverse of y, i.e. $1 / y$. So to do the equivalent of dividing \mathbf{B} by \mathbf{A}, we need to find a matrix \mathbf{Q} such that when \mathbf{A} is multiplied It is easy to show that the identity matrix plays the role for matrix arithmetic that the scalar 1 plays for scalar arithmetic.

$\operatorname{In}[23]:=$ IdentityMatrix[2]

Determinant of a matrix .

Were we lucky or not?
Out[33] $=\left\{\left(\begin{array}{rr}2.04709 \times 10^{14} & 1.02355 \times 10^{14} \\ -4.09418 \times 10^{14} & -2.04709 \times 10^{14}\end{array}\right)\right.$
Result for Inverse of badly conditioned matrix $\left(\begin{array}{rr}-2 . & -1 . \\ 4 . & 2 .\end{array}\right)$ may contain significant numerical errors.
: эпп::əऽ.ฉəлиІ
$\ln [32]:=\left\lvert\, \begin{aligned} & \mathrm{B} 2=\{\{-2,-1\},\{4.00000000000001,2.0\}\} ; \\ & \text { Inverse[B2] }\end{aligned}\right.$

Lect_6_Matrices.nb

х!деш е эо sцед би!иәә

 You may have noticed that in the Cell menu, you can convert to various cell types.
In StandardForm on the input line, the transpose is written:

 =[0t]no $\ln [40]:=\mid \quad \mathbf{Y}[[2]]$
\square
$\left\{y_{2,1}, y_{2,2}, y_{2,3}, y_{2,4}\right\}$

\longrightarrow

$\ln [47]$:	$A=\{\{1,2\},\{3,4\}\} ;$
$\ln [48]:=$	$\mathrm{Id}=$ IdentityMatrix ${ }^{\text {[}}$ [$]$
Out[48]=	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$\ln [49]:=$	Solve [Det $[\mathrm{A}-\lambda * \mathrm{Id}]=0, \lambda]$
Out[49]=	$\left\{\left\{\lambda \rightarrow \frac{1}{2}(5-\sqrt{33})\right\},\left\{\lambda \rightarrow \frac{1}{2}(5+\sqrt{33})\right\}\right\}$

Let's find the eigenvalues of:
where λ is an eigenvalue--a scalar that adjusts the length change of \mathbf{x}. The eigenvalues are found by solving: $A x=\lambda x$ So what are eigenvalues, eigenvectors?An eigenvector, \mathbf{x}, of a matrix, \mathbf{A}, is vector that when you multiply it by \mathbf{A}, you get Eigenvectors also crop up in statistics. Principal components analysis is used in dimensionality reduction--also important in

neural networks and "natural computation". $$
\frac{\mathrm{df}}{\mathrm{dt}}=\mathbf{A} . \mathbf{f}
$$

the solution is determin

Basic idea

 - Eigenvalues[]
Built-in functions for finding eigenvalues and eigenvectors
We can similarly find the second eigenvector for $\lambda \rightarrow \frac{1}{2}(5+\sqrt{33})$, but Mathematica provides a simpler way of doing
things. Because the Det[]= $=0$ is a polynomial of order n , there can't be any more than n distinct eigenvectors for an nxn matrix--and

there may be less. | $\ln [51]:=$ | $\mathbf{x}=\left\{1,-\frac{1}{6}(\sqrt{33}+3)\right\}$ |
| :--- | :--- |
| Out[51] $=$ | $\left\{1, \frac{1}{6}(-3-\sqrt{33})\right\}$ |
| is a valid eigenvector. | | So any multiple of

[]s.oppasuasita ■

Linear systems analysis \& introduction to learning/memory

Next time

Verify that the eigenvectors of the symmetric matrix above (H) are orthogonal.

of of the matrix capture the subspace with most of the variance, i.e. where the "action" is. The eigenvalues correspond to the
amount of "action"--i.e. the variance in the eigenvector directions. predictability is the autocorrelation matrix. An autocorrelation matrix has real elements and is symmetric. The eigenvectors
 color at location $\mathrm{j}=\mathrm{i}+1$. As j gets far from i , however, the prediction gets worse. It is possible to characterize the degree of compression algorithms. One simple kind of statistical structure is characterized by the degree to which one can predict one
element of a vector from a nearby element. For images, the color of a pixel at location is a pretty good predictor of the Signals, such as sounds and visual images, have correlational structure that is taken advantage of in sound and image

Preview of eigenvectors and dimensionality reduction
 superposition principle for linear systems. The fact that linear systems show superposition is good for doing theory, but as where T is the transformation that takes the sum of scaled inputs f, g (which can be functions or vectors) to the sum of the

The abstract definition of a linear system is that it satsifies:
This is a consequence of the laws of matrix algebra.The idea of a linear system has been generalized beyond matrix algebra.
Imagine we have a box that takes inputs such as f, and outputs $g=T[f]$. $\mathbf{W} .(\mathrm{a} \mathbf{x} 1+\mathrm{b} \mathbf{x} \mathbf{2})=\mathrm{a} \mathbf{W} \cdot \mathbf{x} \mathbf{1}+\mathrm{b} \mathbf{W} \cdot \mathbf{x} \mathbf{2}$
The notion of a "linear system" is a generalization of the input/output properties of a straight line passing through zero. The
matrix equation $\mathbf{W} \mathbf{x}=\mathbf{=}$ is a linear system. This means that if \mathbf{W} is a matrix, $\mathbf{x} 1$ and $\mathbf{x} 2$ are vectors, and a and b are scalars: So what is a "linear system"?
oneself with the basics of linear system theory. Many times non-linear systems can be approximated by a linear one over
some restricted range of parameter values. alone. Scientists were lucky with the limulus eye. That nature is usually non-linear doesn't mean one shouldn't familiarize
 The world of input/output systems can be divided up into linear and non-linear systems. Linear systems are nice because the definition of a "linear system", which we will define shortly,
networks and look at in the general context of linear systems theory. Our 2 -layer net is a matrix of weights that operates on networks can be used to model associative memory. But first, let us take what we've learned so far about modeling linear computations that are not possible without it, useful functions can be realized with just the linear or stage 1 part of the
network. We've seen one application already with the model of the limulus eye. In the next lecture, we will see how linear Consider the generic 2-layer network. It consists of a weighted average of the inputs (stage 1), followed by a point-nonlinearprototype linear system.
Linear systems are an important, and tractable class of input/output models. Matrix operations on vectors provide the
Preview of linear systems analysis

