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tro

d
u

ctio
n

L
ast tim

e

M
odeled aspects of spatial lateral inhibition in the visual system

:

Sim
ple linear netw

ork: intensity->
spatial filter->

response

intensity and response w
ere represented as vectors

the spatial filter w
as represented as a m

atrix

If the spatial filter is a neural netw
ork, then the elem

ents of the m
atrix can be interperted as strengths of synaptic connec-

tions. T
he idea is to represent the synaptic w

eights for the i th output neuron by the values in the i th row
 of the m

atrix. T
he 

m
atrix of w

eights is som
etim

es called a connection m
atrix just because non-zero w

eights are betw
een connected neurons, 

and neurons that aren't connected get fixed zero w
eights.

T
his m

odel is w
hat w

e called a linear feedforw
ard netw

ork, and used the generic neuron m
odel. 

W
e generalized the linear discrete m

odel to a linear continous one w
ith feedback. A

lthough m
ore com

plex, its steady-state 
solution is identical to the linear feedforw

ard m
odel. 

W
e studied the continous system

 by approxim
ating it as a discrete tim

e system
 w

ith e =
 D

t as a free param
eter.

T
o

d
ay

T
here is a large body of m

athem
atical results on linear algebra and m

atrices, and it is w
orth our w

hile to spend som
e tim

e 
going over som

e of the basics of m
atrix m

anipulation. 

W
e w

ill first review
  m

atrix arithm
etic (addition and m

ultiplication). W
e w

ill review
 the analog of division, nam

ely finding 
the inverse of a m

atrix--som
ething that w

as used in L
ecture 5 to show

 how
 the steady-state solution of the feedback m

odel 
of lateral inhibition w

as equivalent to a feedforw
ard m

odel w
ith the appropriate w

eights.

Y
ou m

ay w
onder at tim

es how
 all this is used in neural m

odeling. B
ut as this course goes on, w

e w
ill see how

 otherw
ise 

obscure notions of things like an "outer product" betw
een tw

o vectors, or the "eigenvectors" of a m
atrix are m

eaningful for 
neural netw

orks. For exam
ple, the "outer product" betw

een tw
o vectors can be used in m

odeling learning, and the eigenvec-
tors corresponding to a "m

atrix of m
em

ories" can represent stored prototypes, and in dim
ensionality reduction.

B
asic m

atrix arith
m

etic

D
efin

itio
n

 o
f a m

atrix: a list o
f scalar lists

‡
D

efining arrays or lists of function outputs using indices

A
s w

e've already seen, T
able[] can be used to generate a m

atrix, or list of lists. E
.g.

In
[1]:=

H
=
T
a
b
l
e@

i
^
2
+
j
^
2
,
8
i
,
1
,
3<

,
8
j
,
1
,
3<D

O
u

t[1]=

ik jjjjjjjj

2
5

10

5
8

13

10
13

18

y{ zzzzzzzz

A
nd w

e can view
 it in the traditional M

atrixForm
 either by: T

able[i^2+j^2,{i,1,3},{j,1,3}]//M
atrixF

orm
, or 

In
[2]:=

M
a
t
r
i
x
F
o
r
m
@
HD

O
u

t[2]//M
atrixF

o
rm

=

ik jjjjjjjj

2
5

10

5
8

13

10
13

18

y{ zzzzzzzz

B
efore going on, use the C

ell m
enu to set: C

ell->D
efault O

utput F
orm

atT
ype->T

raditionalF
orm

. T
his w

ill cause vectors 
and m

atrices to be printed out in traditional m
athem

atics form
at. T

hen w
e don't have to explicitly type M

atrixForm
 every 

tim
e to see the output in traditional m

atrix form
. B

ut if you w
ant to see the output in standard M

athem
atica form

, use 
//StandardF

orm
  or StandardF

orm
[ ].

‡
D

efining arrays or lists of sym
bols

A
lthough m

ost of the tim
e, w

e'll be w
orking w

ith num
erical m

atrices, M
athem

atica also allow
s one to specify arrays or lists 

of variables.

A
n m

xn m
atrix has m

 row
s, and n colum

ns. H
ere is a 3x4 m

atrix of sym
bolic elem

ents w
[i,j]:

2
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In
[3]:=

A
r
r
a
y@

w
,
8
3
,
4<D

O
u

t[3]=
ik jjjjjjj

wH1,1L
wH1,2L

wH1,3L
w
H1,4L

wH2,1L
wH2,2L

wH2,3L
w
H2,4L

wH3,1L
wH3,2L

wH3,3L
w
H3,4L y{ zzzzzzz

Y
ou can produce the sam

e array w
ith: T

able[w
[i,j],{i,1,3},{j,1,4}]]. Y

ou can also have M
athem

atica display a subscripted 
listIn

[4]:=
L
=
T
a
b
l
e@

w
i
,
j ,

8
i
,
1
,
3<

,
8
j
,
1
,
4<D

O
u

t[4]=

ik jjjjjjjj

w
1,1

w
1,2

w
1,3

w
1,4

w
2,1

w
2,2

w
2,3

w
2,4

w
3,1

w
3,2

w
3,3

w
3,4 y{ zzzzzzzz

M
athem

atica lists can have elem
ents of alm

ost any type:

In
[5]:=

w
2
,
3
=
3
.
0
;

w
3
,
4
=
P
i
;

w
2
,
4
=
"
h
i
"
;

w
1
,
1
=
3
;

In
[9]:=

L

O
u

t[9]=

ik jjjjjjjj

3
w

1,2
w

1,3
w

1,4

w
2,1

w
2,2

3.
hi

w
3,1

w
3,2

w
3,3

p

y{ zzzzzzzz

A
d

d
in

g
, su

b
tractin

g
 an

d
 m

u
ltip

lyin
g

 b
y a scalar

A
s w

ith vectors, m
atrices are added, subtracted, and m

ultiplied by a scalar com
ponent by com

ponent:

In
[10]:=

A
 
=
 
{
{
a
,
b
}
,
{
c
,
d
}
}
;

B
 
=
 
{
{
x
,
y
}
,
 
{
u
,
v
}
}
;

A
dd A

 to B
:
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In
[12]:=

A
+
B

O
u

t[12]=
J

a
+

x
b

+
y

c
+

u
d

+
v
N

Subtract B
 from

 A
:

In
[13]:=

A
-
B

O
u

t[13]=
J

a
-

x
b

-
y

c
-

u
d

-
v
N

M
ultiply A

 by 3:

In
[14]:=

3
 
A

O
u

t[14]=
J 3

a
3

b
3

c
3

d
N

M
u

ltip
lyin

g
 tw

o
 m

atrices

W
e have already seen how

 to m
ultiply a vector by a m

atrix: w
e replace the i th row

 of the output vector by the inner product 

of the i th row
 of the m

atrix w
ith the vector.

In order to m
ultiply a m

atrix A
, by another m

atrix B
 to get C

 =
 A

B
, w

e calculate the ij th com
ponent of the output m

atrix by 

taking the inner product of the i th row
 of A

 w
ith the j th colum

n of B
:

In
[15]:=

A
.
B

O
u

t[15]=
J b

u
+

a
x

b
v

+
a

y
d

u
+

c
x

d
v

+
c

y
N

N
ote that A

B
 is not necessarily equal to B

A
:

4
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In
[16]:=

B
.
A

O
u

t[16]=
J

a
x

+
c

y
b

x
+

d
y

a
u

+
c

v
b

u
+

d
v N

L
aw

s o
f co

m
m

u
tatio

n
, asso

ciatio
n

 an
d

 d
istrib

u
tio

n

In particular, look at the elem
ent in the upper left of the m

atrix B
A

 above--there is no reason, in general, for ax+bu to equal 
ax +

 cy. T
hat is, m

atrix m
ultiplication does not com

m
ute. 

A
part from

 com
m

utation for m
atrix m

ultiplication, the usual law
s of com

m
utation, association, and distribution that hold for 

scalars hold for m
atrices. M

atrix addition and subtraction do com
m

ute. M
atrix m

ultiplication is associative, so (A
B

)C
 =

 
A

(B
C

). T
he distributive law

 w
orks too: 

A
(B

+C
) = A

B
 +

 A
C

N
o

n
-sq

u
are m

atrices

It is not necessary for A
 and B

 to be square m
atrices (i.e. have the sam

e num
ber of row

s as colum
ns) to m

ultiply them
. B

ut 
if A

 is an m
xn m

atrix, then B
 has to be an nxp m

atrix in order for A
B

 to m
ake sense. For exam

ple, here F
 is a 3x2 m

atrix, 
and G

 is a 2x4 m
atrix.

In
[17]:=

F
 
=
 
{
{
a
,
b
}
,
{
c
,
d
}
,
{
e
,
f
}
}

G
 
=
 
{
{
p
,
q
,
r
,
s
}
,
{
t
,
u
,
v
,
w
}
}

O
u

t[17]=
ik jjjjjjj

a
b

c
d

e
f y{ zzzzzzz

O
u

t[18]=
J

p
q

r
s

t
u

v
w
N

C
heck the dim

ensions w
ith
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In
[19]:=

D
i
m
e
n
s
i
o
n
s
[
F
]

D
i
m
e
n
s
i
o
n
s
[
G
]

O
u

t[19]=
83,2<

O
u

t[20]=
82,4<

B
ecause F

 has 2 colum
ns, and G

 has 2 row
s, it m

akes sense to m
ultiply G

 by F
:

In
[21]:=

P
r
i
n
t@

F
,
G
,
"

=
"
,

F
.
GD

ik jjjjjjj

a
b

c
d

e
f y{ zzzzzzz J

p
q

r
s

t
u

v
w
N

= ik jjjjjjj

a
p

+
b

t
a

q
+

b
u

a
r

+
b

v
a

s
+

b
w

c
p

+
d

t
c

q
+

d
u

c
r

+
d

v
c

s
+

d
w

e
p

+
f

t
e

q
+

f
u

e
r

+
f

v
e

s
+

f
w

y{ zzzzzzz

H
ow

ever, because the num
ber of colum

ns of G
 (4)  do not m

atch the num
ber of row

s of F
 (3), G

.F
 is not w

ell-defined:

T
ry this:

In
[22]:=

P
r
i
n
t@

F
,
G
,
"

=
"
,

G
.
FD

D
ot::dotsh :

 T
ensorsJ

p
q

r
s

t
u

v
w
N

and
ik jjjjjjj

a
b

c
d

e
f y{ zzzzzzz

have
incom

patible
shapes.

ik jjjjjjj

a
b

c
d

e
f y{ zzzzzzz J

p
q

r
s

t
u

v
w
N

=J
p

q
r

s
t

u
v

w
N. ik jjjjjjj

a
b

c
d

e
f y{ zzzzzzz

In
verse

 o
f a M

atrix

D
ivid

in
g

 a m
atrix b

y a m
atrix: th

e id
en

tity
 m

atrix &
 m

atrix in
verses

T
he m

atrix corresponding to 1 or unity is the identity m
atrix. L

ike 1, the identity m
atrix is fundam

ental enough, that 
M

athem
atica  provides a special function to generate n-dim

ensional identity m
atrices. H

ere is a 2x2:

6
Lect_6_M

atrices.nb



In
[23]:=

I
d
e
n
t
i
t
y
M
a
t
r
i
x
[
2
]

O
u

t[23]=
J 1

0
0

1
N

It is easy to show
 that the identity m

atrix plays the role for m
atrix arithm

etic that the scalar 1 plays for scalar arithm
etic.

H
ow

 can one divide one m
atrix, say B

, by another, say A
? W

e can divide num
bers, x by y, by m

ultiplying x tim
es the 

inverse of y, i.e. 1/y. So to do the equivalent of dividing B
 by A

, w
e need to find a m

atrix Q
 such that w

hen A
 is m

ultiplied 
by Q

, w
e get the m

atrix equivalent of unity, i.e. the identity m
atrix. T

hen "B
/A

" can be achieved by calculating the m
atrix 

product: B
.Q

.

In
[24]:=

A
 
=
 
{
{
a
,
b
}
,
{
c
,
d
}
}
;

M
athem

atica  provides a built-in function to com
pute m

atrix inverses:

In
[25]:=

Q
 
=
 
I
n
v
e
r
s
e
[
A
]

O
u

t[25]=
ik jjjjjj

d
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a

d-
b

c
-

b
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a

d-
b

c

-
c

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a

d-
b

c

a
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a

d-
b

c

y{ zzzzzz

W
e can test to see w

hether the product of a A
 and Q

 is the identity m
atrix, but M

athem
atica  w

on't go through the w
ork of 

sim
plifying the algebra in this case, unless w

e specifically ask it to.

In
[26]:=

Q
.
A

O
u

t[26]=
ik jjjjjjj

a
d

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a

d-
b

c
-

b
c

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a

d-
b

c
0

0
a

d
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a

d-
b

c
-

b
c

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a

d-
b

c

y{ zzzzzzz

In
[27]:=

S
i
m
p
l
i
f
y
[
Q
.
A
]

O
u

t[27]=
J 1

0
0

1
N
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H
ere is a sim

ple num
erical exam

ple. V
erify that R

 is the inverse of B
 by seeing w

hether the product is the 

Identity m
atrix.

In
[28]:=

B
 
=
 
{
{
1
,
-
1
}
,
{
3
,
2
}
}
;

R
 
=
 
I
n
v
e
r
s
e
[
B
]

O
u

t[29]=
ik jjjjjjj

2ÅÅÅÅ5
1ÅÅÅÅ5

-
3ÅÅÅÅ5

1ÅÅÅÅ5

y{ zzzzzzz

S
in

g
u

lar an
d

 b
ad

ly co
n

d
itio

n
ed

 m
atrices

W
hat if one row

 is a scaled version of another row
? 

In
[30]:=

B
1
 
=
 
{
{
1
.
5
,
1
}
,
{
3
,
2
.
0
}
}

O
u

t[30]=
ik jj

1.5
1

3
2. y{ zz

T
hen the row

s of the m
atrix are not linearly independent. In this case, the inverse is not defined.

A
sk for the inverse of B

1

In
[31]:=

I
n
v
e
r
s
e
[
B
1
]

Inverse::sing :
 M

atrix
ik jj

1.5
1.

3.
2. y{ zz

is
singular.

O
u

t[31]=
ik jj

1.5
1

3
2. y{ zz

-
1

Som
etim

es the row
s are alm

ost, but not quite, linearly dependent (because the elem
ents are represented as approxim

ate 
floating point approxim

ations to the actual values). M
athem

atica m
ay w

arn you that the m
atrix is badly conditioned. 

M
athem

atica  m
ay try to find a solution to the inverse , but you should be suspicious of the solution. In general, one has to 

be careful of badly conditioned m
atrices.

L
et's try finding the inverse of the follow

ing m
atrix:

8
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In
[32]:=

B
2
 
=
 
{
{
-
2
,
-
1
}
,
{
4
.
0
0
0
0
0
0
0
0
0
0
0
0
0
1
,
2
.
0
}
}
;

I
n
v
e
r
s
e
[
B
2
]

Inverse::luc :
 

R
esultfor

Inverse
of

badly
conditioned

m
atrix

J
-

2.
-

1.
4.

2. N
m

ay
contain

significantnum
ericalerrors.

O
u

t[33]=
ik jjj

2.04709
µ

10
14

1.02355
µ

10
14

-
4.09418

µ
10

14
-

2.04709
µ

10
14 y{ zzz

W
ere w

e lucky or not?

In
[34]:=

B
2
.
I
n
v
e
r
s
e@

B
2D

Inverse::luc :
 

R
esultfor

Inverse
of

badly
conditioned

m
atrix

J
-

2.
-

1.
4.

2. N
m

ay
contain

significantnum
ericalerrors.

O
u

t[34]=
J

1.
0.

0.
1. N

D
eterm

in
an

t o
f a m

atrix

T
here is a scalar function of a m

atrix called the determ
inant. If a m

atrix has an inverse, then its determ
inant is non-zero. 

D
oes B

2 have an inverse?

In
[35]:=

D
e
t
[
B
2
]

O
u

t[35]=
9.76996

µ
10

-
15

W
hy do w

e get a zero determ
inant for B

1, but not for B
2?

In
[36]:=

D
e
t
[
B
1
]

O
u

t[36]=
0.
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M
atrix tran

sp
o

se

W
e w

ill use the transpose operation quite a bit in this course.  It interchanges the row
s and colum

ns of a m
atrix:

In
[37]:=

Y
=
T
a
b
l
e@

y
i
,
j
,
8
i
,
1
,
3<
,
8
j
,
1
,
4<D

O
u

t[37]=

ik jjjjjjjj

y
1,1

y
1,2

y
1,3

y
1,4

y
2,1

y
2,2

y
2,3

y
2,4

y
3,1

y
3,2

y
3,3

y
3,4 y{ zzzzzzzz

Y
ou m

ay have noticed that in the C
ell m

enu, you can convert to various cell types.

In StandardForm
 on the input line, the transpose is w

ritten:

In
[38]:=

T
r
a
n
s
p
o
s
e@

YD

O
u

t[38]=

ik jjjjjjjjjjjjjj

y
1,1

y
2,1

y
3,1

y
1,2

y
2,2

y
3,2

y
1,3

y
2,3

y
3,3

y
1,4

y
2,4

y
3,4

y{ zzzzzzzzzzzzzz

T
he output default is T

radtionalForm
. O

n the input line, in T
raditionalForm

, the transpose is w
ritten:

In
[39]:=

Y
T
êê

StandardF
orm

O
u

t[39]//S
tan

d
ard

F
o

rm
=

8
8
y
1
,
1
,
y
2
,
1 ,

y
3
,
1
<
,
8
y
1
,
2
,
y
2
,
2
,
y
3
,
2
<
,
8
y
1
,
3 ,

y
2
,
3
,
y
3
,
3
<
,
8
y
1
,
4
,
y
2
,
4
,
y
3
,
4
<
<

W
hat do the ouputs, X

 and X
T

 look like in StandardF
orm

? (M
ake sure your input form

 is appropriate)

G
ettin

g
 p

arts o
f a m

atrix

W
e can pull out the i th row

 of a m
atrix in M

athem
atica by sim

ply w
riting W

[[i]]. For exam
ple, the 2nd row

 of Y
 is:

10
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In
[40]:=

Y
[
[
2
]
]

O
u

t[40]=
8y

2,1 ,
y

2,2 ,
y

2,3 ,
y

2,4 <

W
hat about i th colum

n of a m
atrix? T

here is no equally sim
ple w

ay of getting the colum
n of a m

atrix in M
athem

atica, but 

w
e can use the transpose operation to do it. T

ranspose[W
] [[i]] produces the ith colum

n of m
atrix W

. For exam
ple, the 3nd 

colum
n of X

 is:

In
[41]:=

T
r
a
n
s
p
o
s
e
[
Y
]
[
[
3
]
]

O
u

t[41]=
8y

1,3 ,
y

2,3 ,
y

3,3 <

T
ry putting //C

olum
nF

orm
 after the above expression.

P
ull out the elem

ent x
2,3 from

 Y

In
[42]:=

Y@@
2
,
3DD

O
u

t[42]=
y

2,3

S
ym

m
etric

 m
atrices

For a square m
atrix, the diagonal elem

ents rem
ain the sam

e under transpose.

If the transpose of a m
atrix equals itself, H

T
 =

 H
, H

 is said to be a sym
m

etric m
atrix. Sym

m
etric m

atrices occur quite 

often in physical system
s (e.g. the force on particle i by particle j is equal to the force of j on i). T

his m
eans that the ele-

m
ents of a sym

m
etric m

atrix H
 actually look like they are reflected about the diagonal. W

e constructed a sym
m

etric m
atrix 

in L
ecture 5:

In
[43]:=

H
 
=
 
T
a
b
l
e
[
N
[
E
x
p
[
-
A
b
s
[
i
-
j
]
]
,
1
]
,
{
i
,
5
}
,
{
j
,
5
}
]

O
u

t[43]=

ik jjjjjjjjjjjjjjjjjjj

1.
0.367879

0.135335
0.0497871

0.0183156

0.367879
1.

0.367879
0.135335

0.0497871

0.135335
0.367879

1.
0.367879

0.135335

0.0497871
0.135335

0.367879
1.

0.367879

0.0183156
0.0497871

0.135335
0.367879

1.

y{ zzzzzzzzzzzzzzzzzzz
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T
he notion of a H

erm
itian m

atrix is a generalization of sym
m

etric, w
here H

* =
 H

, and H
* is the transpose of the com

plex 
conjugate of H

. 

N
eu

ral n
etw

o
rks

 an
d

 sym
m

etric
 co

n
n

ectio
n

s

D
o neural system

s have sym
m

etric connections? R
eal neural netw

orks probably do not in general. A
lthough, w

hen the 
nature of the processing w

ould not be expected to favor a particular asym
m

etry, w
e m

ight expect that there should be 
sym

m
etric connections on average. W

e m
ade this assum

ption w
hen setting up our lateral inhibition w

eight m
atrix, as seen 

above for H
. Sym

m
etric m

atrices have so m
any nice properties, that neural m

odelers (especially those from
 physics back-

grounds) find the sym
m

etry assum
ption alm

ost irresistable. W
e'll see this later w

hen w
e study the H

opfield netw
orks. L

ack 
of sym

m
etry can have profound effects on the dynam

ics of non-linear netw
orks and can produce chaotic trajectories of the 

state vector.

O
u

ter p
ro

d
u

ct o
f tw

o
 vecto

rs

W
e've already seen that the inner product of tw

o vectors produces a scalar. In the next lecture, w
e w

ill begin our discussion 
of H

ebbian learning in neural netw
orks. In this context, the outer product of an input and output vector w

ill be used to 
m

odel synaptic m
odification. C

onsider tw
o vectors: 

In
[44]:=

f
v
=
T
a
b
l
e@

f
i
,
8
i
,
1
,
3<D

;
g
v
=
T
a
b
l
e@

g
i
,
8
i
,
1
,
3<D

;

T
he outer product is just all of the pairw

ise products of the elem
ents of f and g arranged in a nice (and special) order:

In
[46]:=

h
 
=
 
O
u
t
e
r
[
T
i
m
e
s
,
f
v
,
g
v
]

O
u

t[46]=
ik jjjjjjj

f1
g

1
f1

g
2

f1
g

3

f2
g

1
f2

g
2

f2
g

3

f3
g

1
f3

g
2

f3
g

3

y{ zzzzzzz

T
he outer product is also w

ritten in traditional row
 and colum

n form
at as: f g T

(
1
)

f
g
T

=
ik jjjjjjj

f
1

f
2

f
3

y{ zzzzzzz
 Hg

1
 g

2  g
3 L
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E
ig

en
vecto

rs
 an

d
 eig

en
valu

es

B
asic id

ea

E
igenvalues and eigenvectors crop up in m

any w
ays. For exam

ple, the solution to a set of linear first-order (i.e. no deriva-
tive orders bigger than 1) differential equations  can be found in term

s of eigenvalues and eigenvectors. For a sim
plified 

version of the lim
ulus equations

(
2
)

d
f

ÅÅÅÅÅÅÅ
d
t

=
A
.
f

the solution is determ
ined by the eigenvalues and eigenvectors of A

 and the initial conditions. 

E
igenvectors also crop up in statistics. Principal com

ponents analysis is used in dim
ensionality reduction--also im

portant in 
neural netw

orks and "natural com
putation".

So w
hat are eigenvalues, eigenvectors?A

n eigenvector, x,  of a m
atrix, A

,  is vector that w
hen you m

ultiply it by A
, you get 

an output vector that points in the sam
e (or opposite, depending on the sign of l) direction as x:

A
x =

 λx

w
here λ is an eigenvalue--a scalar that adjusts the length change of x. T

he eigenvalues are found by solving: 

D
et[A

-lId]==0, for lw
here Id is the identity m

atrix.

L
et's find the eigenvalues of:

In
[47]:=

A
 
=
 
{
{
1
,
2
}
,
{
3
,
4
}
}
;

In
[48]:=

I
d
=
I
d
e
n
t
i
t
y
M
a
t
r
i
x
@
2D

O
u

t[48]=
J 1

0
0

1
N

In
[49]:=

S
o
l
v
e@

D
e
t@

A
-
l
*
I
dD

ã
0
,
lD

O
u

t[49]=
99l

Ø
1ÅÅÅÅÅ2
I5

-
è
!!!!!!
33

M=,9l
Ø

1ÅÅÅÅÅ2
I5

+
è
!!!!!!
33

M==

N
ow

 pick one of the solutions for l, find the vector x=
{x

1 ,x
2 } that satisfies the basic definition, A

.x=lx

Lect_6_M
atrices.nb
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In
[50]:=

S
o
l
v
eA9

A
.8

x
1 ,

x
2 <

=
=

1ÅÅÅÅ2
I
5
-
è
!!!!!!
3
3
M
*
88
1
,
0<

,
8
0
,
1<<

.8
x
1 ,

x
2 <=

,
8
x
1 ,

x
2 <E

Solve::svars :
 E

quations
m

ay
notgive

solutions
for

all"solve"
variables.

O
u

t[50]=
99x

1
Ø

-
1ÅÅÅÅÅ6
I3

+
è
!!!!!!
33

Mx
2 ==

So any m
ultiple of 

In
[51]:=

x
=
9
1
,

-
1ÅÅÅÅ6

I è
!!!!!!
3
3

+
3M=

O
u

t[51]=
91,

1ÅÅÅÅÅ6
I-

3
-
è
!!!!!!
33

M=

is a valid eigenvector. 

B
ecause the D

et[]=
=

0 is a polynom
ial of order n, there can't be any m

ore than n distinct eigenvectors for an nxn m
atrix--and 

there m
ay be less.

W
e can sim

ilarly find the second eigenvector for l
Ø

1ÅÅÅÅ2
I5

+
è
!!!!!!
33

M, but M
athem

atica provides a sim
pler w

ay of doing 

things. 

B
u

ilt-in
 fu

n
ctio

n
s

 fo
r fin

d
in

g
 eig

en
valu

es
 an

d
 eig

en
vecto

rs

‡
E

igenvalues[ ]

T
he eigenvalues are given by:

In
[52]:=

E
i
g
e
n
v
a
l
u
e
s
[
A
]

O
u

t[52]=
9

1ÅÅÅÅÅ2
I5

-
è
!!!!!!
33

M,
1ÅÅÅÅÅ2
I5

+
è
!!!!!!
33

M=

E
igenvalues and eigenvector elem

ents do not have to be real num
bers. T

hey can be com
plex, that is an elem

ent can be the 
sum

 of a real and im
aginary num

ber. Im
aginary num

bers are represented by m
ultiples (or fractions) of I, the square root of 

-1:

14
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In
[53]:=

S
q
r
t
[
-
1
]

S
q
r
t
[
-
1
]
/
/
O
u
t
p
u
t
F
o
r
m

O
u

t[53]=
Â

O
u

t[54]//O
u

tp
u

tF
o

rm
=

I

In
[55]:=

B
 
=
 
{
{
1
,
2
}
,
{
-
3
,
4
}
}
;

E
i
g
e
n
v
a
l
u
e
s
[
B
]

O
u

t[56]=
9

1ÅÅÅÅÅ2
I5

-
Â è

!!!!!!
15

M,
1ÅÅÅÅÅ2
I5

+
Â è

!!!!!!
15

M=

‡
E

igenvectors[ ]

T
he built-in M

athem
atica function E

igenvectors[A
] returns the eigenvectors of m

atrix A
 as the row

s of a m
atrix, lets call 

eig:

In
[57]:=

e
i
g
 
=
 
E
i
g
e
n
v
e
c
t
o
r
s
[
A
]

O
u

t[57]=
ik jjjjjjj

1ÅÅÅÅ6
I-

3
-
è
!!!!!!
33

M
1

1ÅÅÅÅ6
I-

3
+
è
!!!!!!
33

M
1

y{ zzzzzzz

V
erify that eig[[1]] and A

.eig[[1]] lie along the line (i.e. in the sam
e or opposite directions) by taking the 

dot product of the unit vectors pointing in the directions of each. U
se this function:

In
[58]:=

n
o
r
m
a
l
i
z
e
[
x
_
]
 
:
=
 
x
/
S
q
r
t
[
x
.
x
]
;
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P
review

 o
f eig

en
vecto

rs
 an

d
 d

im
en

sio
n

ality
 red

u
ctio

n

A
 m

easure of the structure of an ensem
ble of signals (e.g. of vectors) is the degree of correlation betw

een their elem
ents. 

Signals, such as sounds and visual im
ages, have correlational structure that is taken advantage of in sound and im

age 
com

pression algorithm
s. O

ne sim
ple kind of statistical structure is characterized by the degree to w

hich one can predict one 
elem

ent of a vector from
 a nearby elem

ent. For im
ages, the color of a pixel at location i is a pretty good predictor of the 

color at location j =
 i+

1. A
s j gets far from

 i, how
ever, the prediction gets w

orse. It is possible to characterize the degree of 

predictability by a m
atrix w

hose ij th elem
ent is big if the i th pixel of an im

age is a good predictor of the j th. O
ne m

easure of 

predictability is the autocorrelation m
atrix. A

n autocorrelation m
atrix has real elem

ents and is sym
m

etric. T
he eigenvectors 

of of the m
atrix capture the subspace w

ith m
ost of the variance, i.e. w

here the "action" is. T
he eigenvalues correspond to the 

am
ount of "action"--i.e. the variance in the eigenvector directions.

V
erify that the eigenvectors of the sym

m
etric m

atrix above (H
) are orthogonal.

N
ext tim

e

L
in

ear system
s

 an
alysis

 &
 in

tro
d

u
ctio

n
 to

 learn
in

g
/m

em
o

ry

In the next lecture, w
e'll apply w

hat w
e've learned about m

atrices and vectors to tw
o problem

s. W
e'll first take an in-depth 

look at the properties of the linear neural netw
ork to see how

 it relates to general linear system
s. W

e'll also show
 the advan-

tages of using the eigenvectors of the linear transform
ation m

atrix as a useful coordinate system
 to represent input and 

output pattern vectors.

W
e w

ill introduce the topic of learning and m
em

ory, and see how
 the outer product rule can be used to m

odel associative 
learning.

16
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P
review

 o
f lin

ear system
s an

alysis

L
inear system

s are an im
portant, and tractable class of input/output m

odels. M
atrix operations on vectors provide the 

prototype linear system
.

C
onsider the generic 2-layer netw

ork. It consists of a w
eighted average of the inputs (stage 1), follow

ed by a point-nonlinear-
ity (the squash function of stage 2), and added noise (stage 3). A

lthough later w
e w

ill see how
 the non-linearity enables 

com
putations that are not possible w

ithout it, useful functions can be realized w
ith just the linear or stage 1 part of the 

netw
ork. W

e've seen one application already w
ith the m

odel of the lim
ulus eye. In the next lecture, w

e w
ill see how

 linear 
netw

orks can be used to m
odel associative m

em
ory. B

ut first, let us take w
hat w

e've learned so far about m
odeling linear 

netw
orks and look at in the general context of linear system

s theory. O
ur 2-layer net is a m

atrix of w
eights that operates on 

a vector of input activities ty com
puting a w

eighted sum
. O

ne property of such a system
 is that it satisfies the fundam

ental 
definition of a "linear system

", w
hich w

e w
ill define shortly.

T
he w

orld of input/output system
s can be divided up into linear and non-linear system

s. L
inear system

s are nice because the 
m

athem
atics that describes them

 is not only w
ell-know

n, but also has a m
ature elegance. O

n the other hand, it is a fair 
statem

ent to say that m
ost real-w

orld system
s are not linear, and thus hard to analyze...but fascinating if for that reason 

alone. Scientists w
ere lucky w

ith the lim
ulus eye. T

hat nature is usually non-linear doesn't m
ean one shouldn't fam

iliarize 
oneself w

ith the basics of linear system
 theory. M

any tim
es non-linear system

s can be approxim
ated by a linear one over 

som
e restricted range of param

eter values. 

So w
hat is a "linear system

"?

T
he notion of a "linear system

" is a generalization of the input/output properties of a straight line passing through zero. T
he 

m
atrix equation W

.x =
=

 y is a linear system
. T

his m
eans that if W

 is  a m
atrix, x1 and x2 are vectors, and a and b are scalars:

                     W
.(a x1 +

 b x2) =
 a W

.x1 +
 b W

.x2

T
his is a consequence of the law

s of m
atrix algebra.T

he idea of a linear system
 has been generalized beyond m

atrix algebra.  
Im

agine w
e have a box that takes inputs such as f, and outputs g =

 T
[f].

T
he abstract definition of a linear system

 is that it satsifies:

                     T
[a f +

 b g] =
 a T

[f] +
 b T

[g]

w
here T

 is the transform
ation that takes the sum

 of scaled inputs f, g (w
hich can be functions or vectors) to the sum

 of the 
scaled transform

ation of f and g. T
he property, that the output of a sum

 is the sum
 of the outputs, is som

etim
es know

n as the 
superposition principle for linear system

s. T
he fact that linear system

s show
 superposition is good for doing theory, but as 

w
e w

ill see later, it lim
its the kind of com

putations that can be done w
ith linear system

s, and thus w
ith linear neural netw

ork 
m

odels.

Lect_6_M
atrices.nb

17

R
eferen

ces
Linear A

lgebra
 and

 Its A
pplications

 by G
ilbert S

trang, 3rd
 E

dition
 , H

ardcover, 505
 pages, P

ublished
 by H

bj C
ollege

 &
 S

chool D
iv. P

ublication
 date: F

ebruary
 

1988

©
 1998, 2001

  D
aniel K

ersten, C
om

putational V
ision

 Lab, D
epartm

ent of P
sychology,  U

niversity
 of M

innesota.

18
Lect_6_M

atrices.nb


