
ио!̣эnродии!

$\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{\underline{\circ}}$	
$\stackrel{\text { N }}{\text { O }}$	
흐웅	

шо.уу рие рие ןрои ио.л
Last time

morreg - 80.IH
Limulus (horseshoe crab)--Hartline, who won the 1967 Nobel prize for this work that began in the 30's.

What Mach noticed was that the left knee of the ramp looked too dark, and the right knee looked too bright. Objective light

 This equation is an example of a simple dynamical system. As you might imagine, the state of dynamical system typically

changes with time (i.e. iteration k). Are there solutions for which the state does not change with time? It there are these where $\mathbf{W}=\left(\begin{array}{ll}w_{11} & w_{12} \\ w_{21} & w_{22}\end{array}\right)$ $\mathbf{f}[\mathrm{k}+1]=\mathbf{e}[\mathrm{k}]+\mathbf{w} \cdot \mathbf{f}[\mathrm{k}]$ $$
f_{i}[k+1]=e_{i}[k]+\sum_{j} w_{i j} \cdot f_{j}[k]
$$

or in concise vector-matrix (and Mathematica) notation:

 $f_{1}[k+1]=e_{1}[k]+w_{12} f_{2}[k]+w_{11} f_{1}[k]$
$f_{2}[k+1]=e_{2}[k]+w_{21} f_{1}[k]+w_{22} f_{2}[k]$ fixed $n x n$ weight matrix. Then for a two neuron network we have
Let \mathbf{e} be the input activity vector to the neurons, \mathbf{f} is the n-dimensional state vector representing output activity and \mathbf{W} is a

We will fix or "clamp" the input \mathbf{e}, start with arbitrary position of the state vector \mathbf{f}, and model how the state vector evolves
through time. We'll ask whether it seeks a stable state for which $\mathbf{f}(\mathrm{t})$ is no longer changing with time, $\mathbf{f}(\mathbf{t}+\Delta t) \cong \mathbf{f}(\mathrm{t})$,
$[(l) \mathbf{J}-(l) \mathbf{J} \mathbf{M}+(l) \mathrm{J}] 3+(l) \mathbf{J} \equiv(l \mathrm{~V}+\ell) \mathrm{J}$
 $\frac{\mathrm{d} \mathbf{f}}{\mathrm{dt}}=\mathbf{e}[\mathbf{t}]+\mathbf{W} \cdot \mathbf{f}[\mathbf{t}]-\mathbf{f}[\mathbf{t}]$
(You can see this by noting that as before, "steady state" just means that the values of $\mathbf{f} \mathbf{(t)}$) are not changing with time, i.e.

 (W) $\frac{\mathrm{df}}{\mathrm{dt}}=\mathbf{e}[\mathrm{t}]+\mathrm{W}^{\prime \prime} . \mathbf{f}[\mathrm{t}]$
nicely parallels the theory for continuous differential equations where time varies continuously: $[\boldsymbol{Y}] \boldsymbol{I} \cdot \mathbf{M}+[\boldsymbol{y}] \boldsymbol{\theta}=[\boldsymbol{I}+\boldsymbol{y}] \boldsymbol{I}$
What if time is not modeled in discrete clocked chunks? The theory for coupled discrete equations
■ Dynamical system -- coupled differential equations ("limulus" equations)
We will review more later on how to manipulate matrices, find the inverse of a matrix, etc.

$\mathrm{I}^{-(\mathbf{M}-\mathrm{I})=. \boldsymbol{M}, ~}$
әәцм
where we drop the index k. Note that by expressing \mathbf{f} in terms of \mathbf{e}, this is equivalent to another linear matrix equation, the
feedforward solution:
or in vector and Mathematica notation:

$\mathbf{f}=\mathbf{W}^{\prime} \cdot \mathbf{e}$,

$f M+a=j$

■ The input stimulus
 First we will initialize parameters for the number of neurons (size), the space constant of the lateral inhibitory field

Simulation of recurrent lateral inhibition
section. But neural systems take time to process their information and for the discrete time approximation, the system may
not necessarily evolve to the steady state solution. i.e. when $d \mathbf{f} / \mathrm{dt}=0$. In the limit as $\Delta \mathrm{t}($ or $\varepsilon)$ approaches zero, the solution is given by the steady state solution of the previous

8 Lect_5_LatInhibition.nb
Simulation
.
(
(
-

- Simulating the response

Now we'll initialize the starting values of the output \mathbf{f} to be random real numbers between 0 and 1 , drawn from a uniform
distribution.
$■$ Initializing the state vector and specifying the weights
limulus[ϵ_{-}, maxstrength_,iterations_]: We can use the Module[] function to define a routine with local variables and a set of other functions to define ■ Define a function with inputs: ϵ, maxstrength and iterations, and outputs: a plot of response

The effect of ϵ, strength of inhibition, and number of iterations Exercises: Explore the parameter space

suoṭキexə7t 9t fォ・0| 1 |
| :--- |
| i |
| i | \qquad ○ $\begin{array}{ll}\circ & 0 \\ \text { is } & \text { a }\end{array}$ 0 $\stackrel{\rightharpoonup}{\bullet}$

 limulus equation can be set up to act as such a "winner-take-all" network. We will remove self-inhibition by setting all the

 Chaotic trajectories in state-space
"Strange" attractors Stable orbits
are non-linear systems which show more interesting behavior in which one sees:
Stable orbits
How many stable points or "attractors" are there?
There are non-linear systems which show more interestin

 әโ!

What if the iteration step-size, ϵ, is large (e.g. 2)

What does the steady state response look like if the inhibition is large?

For maxstrength $=0.05, \epsilon=.3$, run limulus[$.3, .05$, iteration] for iteration values $=1,3,9,27$

 If we think of the number of iterations to steady-state as "reaction time", does this neural network for making decisions?

Use ListPlot3D[W] to see the modified structure of the weight matrix

Does the left uniform gray appear to be the same lightness as the right patch? Can you explain what you see in terms of
lateral inhibition?
Exercise: Make a gray-level image of the horizontal luminance pattern shown below.
x!puəddv
Ratliff, F., Knight, B. W., Jr., Dodge, F. A., J., \& Hartline, H. K. (1974). Fourier analysis of dynamics of excitation and
inhibition in the eye of Limulus: amplitude, phase and distance. Vision Res, 14(11), 1155-68.
Luenberger, D.G. (1979). Introduction to dynamic systems : theory, models, and applications. (pp. xiv, 446). New York:
Wiley. 230.http://gandalf.psych.umn.edu/~kersten/kersten-lab/demos/lightness.html Knill, D. C., \& Kersten, D. (1991). Apparent surface curvature affects lightness perception. Nature, 351, 228 -

Hartline, H. K., \& Knight, B. W., Jr. (1974). The processing of visual information in a simple retina. Ann N Y Acad Sci
231(1), 12-8.
Anderson, J. A. (1995). An Introduction to Neural Networks . Cambridge, MA: MIT Press. (Chapter 4.)

