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Lateral inhibition

In
tro

d
u

ctio
n

L
ast tim

e

‡
D

eveloped
 a "structure-less, continuous signal, and discrete tim

e" generic neuron
 m

odel and
 and from

 

there built a netw
ork.  

‡
B

asic linear algebra review
. M

otivated
 linear algebra concepts from

 neural netw
orks.

T
o

d
ay

W
e are going to look at an explanation of a hum

an perceptual phenom
enon called M

ach bands, that involves a linear 
approxim

ation based on a real neural netw
ork. T

he m
odel is a good fit to the data. T

his is an exam
ple of neural filtering 

found in early visual coding. W
e w

ill study tw
o types of netw

ork that m
ay account for M

ach bands: 1) feedforw
ard; 2) 

feedback. T
he feedback system

 w
ill provide our first exam

ple of a dynam
ical system

. T
he system

 w
e w

ill look at w
as 

developed as a m
odel of the neural processing in the horseshoe crab (lim

ulus) com
pound eye. D

espite the (apparent) 
enorm

ous difference betw
een your visual system

 and that of the horseshoe crab, our visual system
 shares a fundam

ental 
im

age processing function w
ith that of this low

ly crustacean (and virtually all other anim
als that have im

age-based im
age 

com
ponents).

‡
A

n application
 of a sim

ple linear m
odel for visual spatial filtering

‡
A

dd som
e dynam

ics for visual spatial filtering

‡
W

inner-take-all netw
ork: A

dd a threshold
 non-linearity

M
ach

 b
an

d
s &

 p
ercep

tio
n

E
rnst M

ach w
as an A

ustrian physicist and philospher. In addition to being w
ell-know

n today for a unit of speed, he is also 
know

n for several visual illusions. O
ne illusion is called "M

ach bands". L
et's m

ake som
e.
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L
et's m

ake a 2D
 gray-level picture displayed w

ith L
istD

ensityP
lot to experience the M

ach bands for ourselves. P
lotR

ange 
allow

s us to scale the brightness.
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W
hat M

ach noticed w
as that the left knee of the ram

p looked too dark, and the right knee looked too bright. O
bjective light 

intensity did not predict apparent brightness.

‡
M

ach's explanation

N
eural basis?

L
im

ulus (horseshoe crab)--H
artline, w

ho w
on the 1967 N

obel prize for this w
ork that began in the 30's.

Frog - B
arlow

C
at --K

uffler
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F
eed

fo
rw

ard
 m

o
d

el

T
w

o types of m
odels: feedforw

ard and feedback (in our context, "recurrent lateral inhibition")

y = w
¢.e

w
here e is a vector representing the input intensities, w

¢ is a suitably chosen set of w
eights (i.e. excitatory center and 

inhibitory surround as show
n in the above figure), and y is the output. 

‡
M
athem

atica im
plem

entation

B
ecause the stim

ulus is effectively one-dim
ensional, w

e'll sim
ulate the response in one dim

ension.

L
et the receptive field for one output unit be represented by 5 w

eights, w
ith a center value of 6, and surround values of -1:
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;
 
w
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]
=
-
1
;

N
ow

 assum
e that all units have the sam

e w
eights, and calculate the response at each point by shifting the w

eight filter w
p

 
right one by one, and taking the dot product w

ith the input pattern e,  each tim
e:
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T
his w

ay w
e can m

im
ic the response w

e w
ant:
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T
here is  neurophysiological evidence for an im

plem
entation of lateral inhibition via feedback or recurrent lateral inhibition.

F
eed

b
ack

 m
o

d
el: R

ecu
rren

t lateral in
h

ib
itio

n

‡
D

ynam
ical system

s: difference equation
 for one neuron

State of neuron output f at discrete tim
e k.

O
ne neuron

(
1
)

f@
k

+
1D

=
e@

kD
+
w
f@

kD

Suppose the initial state f[0] is know
n and

 e[k] is zero, can you find an expression
 for f[k]?

‡
D

ynam
ical system

s: C
oupled

 difference equations for interconnected
 neurons

N
ow

 let's study a tw
o neuron system

. T
he form

alism
 w

ill extend naturally to higher dim
ensions. T

o keep this sim
pler, w

e 
w

on't specify w
eights for the inputs e, but w

e w
ill specify w

eights for the new
ly added feedback connections:
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L
et e be the input activity vector to the neurons,  f is the n-dim

ensional state vector representing output activity and W
 is a 

fixed nxn w
eight m

atrix. T
hen for a tw

o neuron netw
ork w

e have:

(
2
)

f
1 @
k

+
1D

=
e
1 @
kD

+
w

1
2

 f
2 @
kD
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w

1
1
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f
2 @
k
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1D

=
e
2 @
kD

+
w

2
1

 f
1 @
kD

+
w

2
2

 f
2 @
kD

or in term
s of vectors and m

atrices

(
3
)

J
f
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k

+
1D

f
2 @
k

+
1D

N
=
J
e
1 @
kD

e
2 @
kD

N
+
J
w
1
1

w
1
2

w
2
1

w
2
2 N

 J
f
1 @
kD

f
2 @
kD

N

or in sum
m

ation notation:

(
4
)

f
i @
k

+
1D

=
e
i @
kD

+
‚
j

 w
i
j
.
f
j @
kD

or in concise vector-m
atrix (and M

athem
atica) notation:

(
5
)

f@
k

+
1D

=
e@

kD
+
W
.
f@
kD

w
here W

 =
 J w

11
w

12

w
21

w
22 N

T
his equation is an exam

ple of a sim
ple dynam

ical system
. A

s you m
ight im

agine, the state of dynam
ical system

 typically 
changes w

ith tim
e (i.e. iteration k). A

re there solutions for w
hich the state does not change w

ith tim
e? It there are these 

solutions are called steady state solutions.

In contrast to the w
ay w

e set up the w
eights for the feedforw

ard m
atrix (w

hich included the forw
ard excitatory w

eights), w
e 

are going to assum
e later that all of these w

eights are inhibitory (because w
e are m

odeling lateral inhibition). T
he postive 

contributions, if any, w
ill com

e from
 the input e.

6
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‡
Steady state solution

 for a discrete system

A
 steady-state solution sim

ply m
eans that the state vector f doesn't change w

ith tim
e:

(
6
)

f@
k

+
1D

=
f@

kD

or in vector and M
athem

atica  notation:

                                                           f = e +
 W

.f

w
here w

e drop the index k. N
ote that by expressing f in term

s of e, this is equivalent to another linear m
atrix equation,the 

feedforw
ard solution:

                                                           f = W
'.e,

w
here

                                                           W
' = (I - W

) -1  

T
he -1 exponent m

eans the inverse of the m
atrix in brackets. I is the identity m

atrix.

W
e w

ill review
 m

ore later on how
 to m

anipulate m
atrices, find the inverse of a m

atrix, etc..

‡
D

ynam
ical system

 -- coupled differential equations ("lim
ulus"

 equations)

W
hat if tim

e is not m
odeled in discrete clocked chunks? T

he theory for coupled discrete equations

(
7
)

f@
k

+
1D

=
e@

kD
+
W
.
f@
kD

nicely parallels the theory for continuous differential equations w
here tim

e varies continuously:

(
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d
f

ÅÅÅÅÅÅÅ
d
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tD
+
W

≥
.
f@

tD

(W
≥

is
notnecessarily

the
sam

e
m

atrix
as
W

.) If you w
ant to learn m

ore about dynam
ical system

s, see L
uenberger (1979).

C
ontinous tim

e seem
s a m

ore reasonable assum
ption for a neural netw

ork of visual processing, so w
e m

odel a dynam
ical 

system
 for lateral inhibtion w

ith feedback.

L
et e(t) be the input activity to the neurons,  f(t) is the n-dim

ensional state vector representing output activity now
 as a 

function of tim
e.   W

 is a fixed nxn w
eight m

atrix. T
he equation in the previous section is the steady state solution to the 

follow
ing differential equation:

(
9
)

d
f

ÅÅÅÅÅÅÅ
d
t

=
e@

tD
+
W
.
f@
tD

-
f@

tD

(Y
ou can see this by noting that as before, "steady state" just m

eans that the values of f(t) are not changing w
ith tim

e, i.e. 
df/dt = 0). W

e are going to develop a solution to this set of equations using a discrete-tim
e approxim

ation.

T
he state vector f at tim

e t+
∆

t  (ε = ∆
t) can be approxim

ated as:

W
e w

ill fix or "clam
p" the input e, start w

ith arbitrary position of the state vector f, and m
odel how

 the state vector evolves 
through tim

e. W
e'll ask w

hether it seeks a stable state for w
hich f(t) is no longer changing w

ith tim
e, f(t +

 ∆
t) ≅ f(t),
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i.e. w
hen df/dt =

 0. In the lim
it as  ∆

t (or ε) approaches zero, the solution is given by the steady state solution of the previous 
section. B

ut neural system
s take tim

e to process their inform
ation and for the discrete tim

e approxim
ation,  the system

 m
ay 

not necessarily evolve to the steady state solution. 

S
im

u
latio

n
 o

f recu
rren

t lateral in
h

ib
itio

n

First w
e w

ill initialize param
eters for the num

ber of neurons (size), the space constant of the lateral inhibitory field 
(spaceconstant), the m

axim
um

 strength of the inhibitory w
eights (m

axstrength), the num
ber of iterations (iterations), and 

e:‡
T

he input stim
ulus
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W
e've stored the graphic g0 of the input for later use. T

he option

D
isplayF

unction
 -> Identity prevents the display. W

e can turn it on later w
ith: 

D
isplayF

unction
 ->  $D

isplayF
unction

.
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‡
Initializing the state vector and

 specifying the w
eights

N
ow

 w
e'll initialize the starting values of the output f to be random

 real num
bers betw

een 0 and 1, draw
n from

 a uniform
 

distribution.
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N
ow

 let's set up synaptic w
eights w

hich are negative, but becom
e w

eaker the further they get from
 the neuron. W

e assum
e 

that the w
eights drop off exponentially aw

ay from
 each neuron:

In
[48]:=

W
 
=

T
a
b
l
e
[
N
[
-
m
a
x
s
t
r
e
n
g
t
h
 
E
x
p
[
-
A
b
s
[
i
-
j
]
/
s
p
a
c
e
c
o
n
s
t
a
n
t
]
,
1
]
,

{
i
,
s
i
z
e
}
,
{
j
,
s
i
z
e
}
]
;

In
[49]:=

L
i
s
t
P
l
o
t
3
D
[
W
]
;

1
0

2
0

3
0

1
0

2
0

3
0

-
0
.
0
4

-
0
.
0
2 0

1
0

2
0

3
0

‡
Sim

ulating the response

W
e are going to use the M

athem
atica  function N

est[] to iterate through the lim
ulus equations. N

e
s
t
[

f,
 expr,

 n]
 gives an 

expression w
ith f applied n tim

es to expr. For exam
ple, if w

e have defined a function T
[], N

est[T
,x,4] produces as output 

T
[T

[T
[T

[x]]]].

L
et's express our discrete approxim

ation for the lim
ulus dynam

ical system
 in term

s of a function, T
, w

hich w
ill get applied 

repeatedly to itself w
ith N

est:

In
[15]:=

T
[
f
_
]
 
:
=
 
f
 
+
 

e
 
(
e
 
+
 
W
.
f
 
-
 
f
)
;

Lect_5_LatInhibition.nb
9

In
[16]:=

i
t
e
r
a
t
i
o
n
s
 
=
 
1
5
;

g
1
 
=
 
L
i
s
t
P
l
o
t
[
N
e
s
t
[
T
,
 
f
,
 
i
t
e
r
a
t
i
o
n
s
]
,
P
l
o
t
J
o
i
n
e
d
-
>
T
r
u
e
,

P
l
o
t
R
a
n
g
e
 
-
>
 
{
{
0
,
3
0
}
,
{
0
,
1
.
0
}
}
,
P
l
o
t
S
t
y
l
e
-
>
{
R
G
B
C
o
l
o
r
[
0
,
0
,
1
]
}
,

D
i
s
p
l
a
y
F
u
n
c
t
i
o
n
 
-
>
 
I
d
e
n
t
i
t
y
]
;

S
h
o
w
[
g
0
,
g
1
,
 
G
r
a
p
h
i
c
s
[
T
e
x
t
[
i
t
e
r
a
t
i
o
n
s
 
"
i
t
e
r
a
t
i
o
n
s
"
,

{
s
i
z
e
/
2
,
-
0
.
4
}
]
]
,
 

D
i
s
p
l
a
y
F
u
n
c
t
i
o
n
 
-
>
 
$
D
i
s
p
l
a
y
F
u
n
c
t
i
o
n
]
;

5
1
0

1
5

2
0

2
5

3
0

-
0
.
4

-
0
.
2

0
.
2

0
.
4

0
.
6

0
.
8 1

1
5
i
t
e
r
a
t
i
o
n
s

E
xercises: E

xp
lo

re
 th

e p
aram

eter sp
ace

T
h

e effect o
f e, stren

g
th

 o
f in

h
ib

itio
n

, an
d

 n
u

m
b

er o
f iteratio

n
s

‡
D

efine a function w
ith inputs: e, m

axstrength
 and iterations, and outputs: a plot of response

W
e can use the M

odule[ ] function to define a routine w
ith local variables and a set of other functions to define 

lim
ulus[e_,m

axstrength_,iterations_]:
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F
or m

axstrength
 = 0.05, e = .3, run lim

ulus[ .3,.05, iteration] for iteration
 values = 1, 3, 9, 27

W
hat does the steady state response look

 like if the inhibition
 is sm

all (i.e. sm
all m

axstrength)?

W
hat does the steady state response look

 like if the inhibition
 is large?

W
hat if the iteration

 step-size, e, is large (e.g. 2)

N
eu

ral n
etw

o
rks

 as d
yn

am
ical system

s

W
e've explored a sim

ple linear neural netw
ork that is a good m

odel of lim
ulus processing, and seem

s to provide a possible 
explanation for hum

an perception of M
ach bands. R

eal neural netw
orks typically have non-linearities. T

here is no general 
theory of non-linear system

s of difference or differential equations. B
ut the exploration of this linear set does lead  us to ask 

questions w
hich are quite general about dynam

ical system
s:

  
W

hat does the trajectory in state-space look like?

  
D

oes it go to a stable point?

  
H

ow
 m

any stable points or "attractors" are there?

 T
here are non-linear system

s w
hich show

 m
ore interesting behavior in  w

hich one sees:

 
Stable orbits

 C
haotic trajectories in state-space

 
"Strange" attractors

 W
e w

ill return to som
e of these questions later w

hen w
e study H

opfield netw
orks.

R
ecu

rren
t lateral in

h
ib

itio
n

 &
 W

in
n

er-take-all (W
T

A
)

Som
etim

es one w
ould like to have a netw

ork that takes in a range of inputs, but as output w
ould like the neuron w

ith 
biggest value to rem

ain high, w
hile all others are suppressed. In other w

ords, w
e w

ant the netw
ork to m

ake a decision. T
he 

lim
ulus equation can be set up to act as such a "w

inner-take-all" netw
ork. W

e w
ill rem

ove self-inhibition by setting all the 
diagonal elem

ents of W
 to zero. W

e w
ill also add a non-linear thresholding function ("rectification") to set negative values 

to zero, and w
e w

ill increase the spatial extent of the inhibition.

12
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‡
M

ake a rectifying threshold
 function

In
[81]:=

t
h
r
e
s
h
@
x
_
D
:

=
N
@
I
f
@
x

<
0
.
0
,
0
.
0
,
x
D
D
;

S
e
t
A
t
t
r
i
b
u
t
e
s
@
t
h
r
e
s
h
,
L
i
s
t
a
b
l
e
D
;

‡
M

ake a "tepee" stim
ulus and

 intialize the neural starting values

In
[155]:=

s
i
z
e
 
=
 
3
2
;

e
 

=
 
J
o
i
n
[
T
a
b
l
e
[
0
,
{
i
,
N
[
s
i
z
e
/
4
]
}
]
,

T
a
b
l
e
[
i
/
N
[
s
i
z
e
/
4
]
,
{
i
,
N
[
s
i
z
e
/
4
]
}
]
,

T
a
b
l
e
[
(
N
[
s
i
z
e
/
4
]
-
i
)
/
N
[
s
i
z
e
/
4
]
,
{
i
,
N
[
s
i
z
e
/
4
]
}
]
,

T
a
b
l
e
[
0
,
{
i
,
N
[
s
i
z
e
/
4
]
}
]
]
;

g
0
 
=
 
L
i
s
t
P
l
o
t
[
e
,
 
P
l
o
t
R
a
n
g
e
 
-
>
 

{
{
0
,
s
i
z
e
}
,
{
-
1
,
2
.
0
}
}
,
P
l
o
t
S
t
y
l
e

Ø
{
R
G
B
C
o
l
o
r
[
1
,
0
,
0
]
}
,

D
i
s
p
l
a
y
F
u
n
c
t
i
o
n
 
-
>
 
I
d
e
n
t
i
t
y
]
;

‡
D

efine w
innertakeall[ ] as for lim

ulus[ ], but w
ith no self-inhibition:

In
[158]:=

w
i
n
n
e
r
t
a
k
e
a
l
l
@

e
_
,
m
a
x
s
t
r
e
n
g
t
h
_
,

i
t
e
r
a
t
i
o
n
s
_
,
s
p
a
c
e
c
o
n
s
t
a
n
t
_
D
:

=
M
o
d
u
l
e
@
8
f
,
W
<
,

W
=
T
a
b
l
e
@
N
@

-
m
a
x
s
t
r
e
n
g
t
h
E
x
p
@

-
A
b
s
@
i

-
j
D
ê
s
p
a
c
e
c
o
n
s
t
a
n
t
D
,
1
D
,

8
i
,
s
i
z
e
<
,
8
j
,
s
i
z
e
<
D
;

F
o
r
@
i

=
1
,
i

<
=
s
i
z
e
,
i

+
+
,
W
@
@
i
,
i
D
D

=
0
.
0
D
;

f
=
T
a
b
l
e
@
R
a
n
d
o
m
@
D
,
8
s
i
z
e
<
D
;

T
@
f
_
D
:

=
t
h
r
e
s
h
@
f

+
e
H
e

+
W
.
f

-
f
L
D
;

g
1

=
L
i
s
t
P
l
o
t
@
N
e
s
t
@
T
,

f
,

i
t
e
r
a
t
i
o
n
s
D
,

P
l
o
t
J
o
i
n
e
d

Ø
T
r
u
e
,
P
l
o
t
R
a
n
g
e

Ø
8
8
0
,
s
i
z
e
<
,
8

-
1
,
2
.
0
<
<
,

P
l
o
t
S
t
y
l
e

Ø
8
R
G
B
C
o
l
o
r
@
0
,
0
,
1
D
<
,
D
i
s
p
l
a
y
F
u
n
c
t
i
o
n

Ø
I
d
e
n
t
i
t
y
D
;

S
h
o
w
@
g
0
,
g
1
,
G
r
a
p
h
i
c
s
@
T
e
x
t
@
i
t
e
r
a
t
i
o
n
s
"
i
t
e
r
a
t
i
o
n
s
"
,
8
s
i
z
e
ê
2
,

-
0
.
8
<
D
D
,

D
i
s
p
l
a
y
F
u
n
c
t
i
o
n

Ø
$
D
i
s
p
l
a
y
F
u
n
c
t
i
o
n
D
;

D
;

H
*
N
o
t
e

t
h
a
t

t
h
i
s
f
u
n
c
t
i
o
n

i
s
n
'

 t
"
c
l
e
a
n
"

-
-

 a
l
t
h
o
u
g
h

f
a
n
d

W
a
r
e

l
o
c
a
l

v
a
r
i
a
b
l
e
s
,
i
t

r
e
l
i
e
s

o
n

e
a
r
l
i
e
r

g
l
o
b
a
l

d
e
f
i
n
i
t
i
o
n
s

o
f

s
i
z
e
,
g
0
,
a
n
d

e
.

*
L

Lect_5_LatInhibition.nb
13

U
se L

istP
lot3D

[W
] to see the m

odified structure of the w
eight m

atrix

R
un sim

ulation: F
ind a set of param

eters that w
ill select the m

axim
um

 response and
 suppress the rest

5
1
0

1
5

2
0

2
5

3
0

-
1

-
0
.
5

0
.
5 1

1
.
5 2

1
0
0
i
t
e
r
a
t
i
o
n
s

If w
e think of the num

ber of iterations to steady-state as "reaction tim
e", does this neural netw

ork for m
aking decisions? 

H
ow

 sensitive is its function to the choice of param
eters?

If you are having a hard tim
e finding a good set of param

eters, select the cell below
, then go to C

ell->C
ell P

roperties->C
ell 

O
pen, and then run it.

14
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N
ext tim

e

‡
R

eview
 m

atrices. R
epresentations of neural netw

ork w
eights

R
eferen

ces

A
nderson, J. A

. (1995). A
n Introduction to N

eural N
etw

orks . C
am

bridge, M
A

: M
IT

 Press. (C
hapter 4.)

H
artline, H

. K
., &

 K
night, B

. W
., Jr. (1974). T

he processing of visual inform
ation in a sim

ple retina. A
nn N

 Y
 A

cad Sci, 
231(1), 12-8.

K
nill, D

. C
., &

 K
ersten, D

. (1991). A
pparent surface curvature affects lightness perception. N

ature, 351, 228-
230.http://gandalf.psych.um

n.edu/~kersten/kersten-lab/dem
os/lightness.htm

l

L
uenberger, D

.G
. (1979). Introduction to dynam

ic system
s : theory, m

odels, and applications. (pp. xiv, 446). N
ew

 Y
ork: 

W
iley.

R
atliff, F., K

night, B
. W

., Jr., D
odge, F. A

., Jr., &
 H

artline, H
. K

. (1974). Fourier analysis of dynam
ics of excitation and 

inhibition in the eye of L
im

ulus: am
plitude, phase and distance. V

ision R
es, 14(11), 1155-68.

A
p

p
en

d
ix

E
xercise: M

ake a gray-level im
age of the  horizontal lum

inance pattern
 show

n below
.

D
oes the left uniform

 gray appear to be the sam
e lightness as the right patch? C

an you explain w
hat you see in term

s of 
lateral inhibition?

C
l
e
a
r
[
y
]
;

l
o
w
 
=
 
0
.
2
;
 
h
i
 
=
 
0
.
8
;

l
e
f
t
 
=
 
0
.
5
;
 
r
i
g
h
t
 
=
 
0
.
5
;

y
[
x
_
]
 
:
=
 
l
e
f
t
 
/
;
 
x
<
4
0

y
[
x
_
]
 
:
=

(
(
h
i
-
l
o
w
)
/
4
0
)
 
x
 
+
 
(
l
o
w
-
(
h
i
-
l
o
w
)
)
 
/
;
 
x
>
=
4
0
 
&
&
 
x
<
8
0

y
[
x
_
]
 
:
=
 
r
i
g
h
t
 
/
;
 
x
>
=
8
0
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P
l
o
t
[
y
[
x
]
,
{
x
,
0
,
1
2
0
}
,
P
l
o
t
R
a
n
g
e
-
>
{
0
,
1
}
]
;

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

0
.
2

0
.
4

0
.
6

0
.
8 1

E
xercise: H

erm
ann

 grid

B
elow

 is the H
erm

ann G
rid. N

otice the phantom
 dark spots w

here the w
hite lines cross. C

an you explain w
hat you see in 

term
s of lateral inhibition?

w
i
d
t
h

=
5
;
g
a
p

=
1
;
n
s
q
u
a
r
e
s

=
6
;

h
e
r
m
a
n
n

=
F
l
a
t
t
e
n
@
T
a
b
l
e
@
8
R
e
c
t
a
n
g
l
e
@
8
x
,
y
<
,
8
x

+
w
i
d
t
h
,
y

+
w
i
d
t
h
<
D
<
,

8
x
,

0
,
H
w
i
d
t
h

+
g
a
p
L

*
H
n
s
q
u
a
r
e
s

-
1
L
,
w
i
d
t
h

+
g
a
p
<
,

8
y
,
0
,
H
w
i
d
t
h

+
g
a
p
L

*
H
n
s
q
u
a
r
e
s

-
1
L
,
w
i
d
t
h

+
g
a
p
<
D
,
1
D
;
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S
h
o
w
@
G
r
a
p
h
i
c
s
@
h
e
r
m
a
n
n
,

A
s
p
e
c
t
R
a
t
i
o

-
>
1
D
D
;
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