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L
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‡
Slow

-potential qualitative neuron m
odel. 

‡
V

arious types of neuron
 m

odels: L
evels of abstraction

‡
M

cC
ulloch-P

itts threshold
 logic: D

iscrete tim
e, discrete state, no spatial structure

T
o

d
ay

‡
W

e develop a "structure-less, continuous signal, and
 discrete tim

e" generic neuron m
odel and and

 from
 

there build a netw
ork.  

T
his "connectionist"

 m
odel is one of several abstractions that w

e saw
 in the previous lecture.

‡
W

e review
 basic linear algebra. M

otivate linear algebra concepts from
 neural netw

orks.

T
h

e g
en

eric
 n

eu
ro

n
 m

o
d

el

T
he generic connectionist m

odel abstracts the basic properties of the integrate and fire neuron, and m
akes provision for 

saturation as w
ell.

Stage 1:L
inear w

eighted sum
 of inputs

fixed bias term
 ()

T
he w

eights correspond to the synaptic efficiency of the inputs to the neuron w
hich m

odel the net effect on the input 
current. T

he bias term
 m

odels a threshold.

Stage 2:non-linearity

     
Popular form

s are: logistic function, arctan(), lim
it function

A
 point non-linearity m

odels both the effects of sm
all signal com

pression (e.g. threshold) and large signal saturation on the 
output frequency of firing.

(Stage 3:)

noise

T
he num

ber of spikes in a neuron's discharge is not strictly determ
ined by the input, but varies statistically. T

his can be 
m

odeled assum
ing som

e form
 of additive (or other) stochastic com

ponent to the neural discharge frequency.

N
ow

 w
e w

ill develop som
e M

athem
atica  tools to m

odel Stage 1 and 2 of the generic connectionist m
odel of the neuron.
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‡
D

efining functions. L
et's define a function to m

odel the non-linearity (in this case, the "logistic function" 

m
entioned earlier):

s
q
u
a
s
h
[
x
_
]
 
:
=
 
N
[
1
/
(
1
 
+
 
E
x
p
[
-
x
]
)
]
;

R
ecall, that the underscore, x_ is im

portant because it tells M
athem

atica that x represents a slot, not an expression. N
ote 

that w
e've used a colon follow

ed by equals ( :=
 ) instead of just an equals sign (=

). W
hen you use an equals sign, the value 

is calculated im
m

ediately. W
hen there is a colon in front of the equals, the value is calculated only w

hen called on later. So 
here w

e use := because w
e need to define the function for later use. A

lso note that our squashing function w
as defined w

ith 
N

[]. M
athem

atica trys to keep everything exact as long as possible and thus w
ill try to do sym

bol m
anipulation if w

e don't 
explicitly tell it that w

e w
ant num

bers.

G
raphics. A

djust the input scale of squash[ ] to plot a very steep
 squashing function for -5<

x<
5. I.e. it should 

look like the step function w
e used w

hen m
odeling the M

cC
ulloch-Pitts neuron. 

‡
L

ists. W
e already introduced lists w

hen w
e studied the M

cC
ulloch-Pitts m

odel. In this course, w
e are going to 

do a lot of w
ork w

ith lists, in particular w
ith vectors (a vector is a list of scalar elem

ents) and m
atrices (a 

m
atrix is a list of vector elem

ents). H
ere is a four-dim

ensional vector w
hich w

e'll call x. x could represent the 

input signals to a neuron.

x
 
=
 
{
2
,
3
,
0
,
1
}
;

A
s you m

ay have discovered earlier, by ending a line w
ith a sem

i-colon, you suppress the output after hitting the return key. 
N

ow
 let's m

ake another vector, this one w
ill be a list of "w

eights", say, representing the efficiency w
ith w

hich the inputs at 
the synapses are transm

itted to the neuron hillock (w
e'll allow

 negative w
eights for the tim

e  being): 

w
 
=
 
{
2
,
1
,
-
2
,
3
}
;

‡
M

odel linear neuron

N
ow

 the output of a m
odel neuron that sim

ply takes a w
eighted sum

 of the inputs is just the dot product of the input w
ith the 

w
eights:

y
 
=
 
w
.
x

1
0
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T
his kind of operation is som

etim
es referred to as a "cross-correlator". It takes a signal x, and cross-correlates it w

ith a 
tem

plate, w
. L

ater on in an exercise you w
ill show

 that for signals of fixed length, the cross-correlator gives the biggest 
response to the signal that exactly m

atches the tem
plate. 

W
e can see w

hat the dot product does algebraically by defining the input and w
eights algebraically:

y
=
8
w
1
,
w
2
,
w
3
,
w
4<

.8
x
1
,
x
2
,
x
3
,
x
4<

N
ow

 let's add the non-linear squashing function to com
plete our m

odel of the generic connectionist neuron:

y
=
s
q
u
a
s
h@

w
.
xD

;

M
o

d
elin

g
 a sim

p
le

 n
eu

ral n
etw

o
rk

W
hat if the input is applied to four neurons, each w

ith a different set of w
eights? W

e can represent the w
eights by a "w

eight 
m

atrix", w
hich is just a list of the four w

eight lists or vectors. H
ere is a 4x4 m

atrix W
:

W
 
=
 
{
{
2
,
1
,
-
2
,
3
}
,
 
{
3
,
1
,
-
2
,
2
}
,
 
{
4
,
6
,
5
,
-
3
}
,
{
1
,
-
2
,
2
,
1
}
}
;

E
ach successive elem

ent of the list W
 is a row

 of m
atrix W

. V
erify this by displaying W

 in M
atrixF

orm

N
ow

 w
hat are the outputs of the four neurons? It is just the product of the m

atrix M
 tim

es the input vector x:

4
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y
 
=
 
W
.
x

{
1
0
,
 
1
1
,
 
2
3
,
 
-
3
}

In traditional form
, this m

atrix m
ultiplication is w

ritten as:

y
i

=
‚
w
i,j  x

j

So to m
ultiply an input vector by a m

atrix, w
e take the dot product of the input w

ith each successive row
 of the m

atrix. 

N
ote that a dot is used for m

ultiplying vectors by them
selves, vectors by a m

atrix, or to m
ultiply tw

o m
atrices together. If 

you w
ant to m

ultiply a vector or m
atrix by a scalar, c, you don't use a dot. For exam

ple, to norm
alize x by its length:

c
 
=
 
1
/
S
q
r
t
[
x
.
x
]
;

x
2
 
=
 
N
[
c
 
x
]

{
0
.
5
3
4
5
2
2
,
 
0
.
8
0
1
7
8
4
,
 
0
,
 
0
.
2
6
7
2
6
1
}

N
ow

 let's apply our squashing function to the output y. N
ote how

 the big positive values are set close to one, and the 
negative value is set close to zero.

s
q
u
a
s
h
[
y
]

{
0
.
9
9
9
9
5
5
,
 
0
.
9
9
9
9
8
3
,
 
1
.
,
 
0
.
0
4
7
4
2
5
9
}

B
y default, our function squash[] is a listable function. T

his m
eans that even though it w

as defined to operate on a scalar, 
w

hen applied to a list, it autom
atically gets applied to each elem

ent of the list in turn.

W
e can do everything at once in our four-neuron netw

ork, producing the four outputs of four generic neurons to an input x:

y
 
=
 
s
q
u
a
s
h
[
W
.
x
]

{
0
.
9
9
9
9
5
5
,
 
0
.
9
9
9
9
8
3
,
 
1
.
,
 
0
.
0
4
7
4
2
5
9
}

T
here w

e have it--a m
odel for a sim

ple four-neural netw
ork! T

his equation w
ill occur m

any tim
es in the rest of the course, 

so it is w
orth taking som

e tim
e to understand it.  O

ur exam
ple has four inputs, and four outputs. T

ry m
aking a graphical 

sketch of the net to illustrate w
hat is connected to w

hat, label the inputs xj .; the w
eights M

ij , and the outputs yi . 

Y
ou can access the com

ponents of vectors. For exam
ple here is the second elem

ent of y, and the elem
ent in the second row

, 
third colum

n of M
:
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y
[
[
2
]
]

0
.
9
9
9
9
8
3

W
[
[
2
,
3
]
]

-
2

M
o

d
elin

g
 n

o
ise

 (S
tag

e 3): G
en

eric
 n

eu
ro

n
 p

lu
s n

o
ise

W
e'd like to add a Stage 3 to our m

odel of the neuron in w
hich w

e take account of the noisiness of neural transm
ission. For 

this, w
e need the notion of a probability distribution. W

e could develop the routines w
e need using basic M

athem
atica  

functions. H
ow

ever, m
uch of the w

ork has been done for us in the Standard M
athem

atica  P
ackages(A

dd-ons, in the H
elp 

m
enu). T

hese packages have to be read in w
hen you need the function definitions they contain. A

s a  first approxim
ation the 

m
aintained action potential discharge can be m

odeled as a Poisson distribution. B
ut to use the Poisson distribution in a 

M
athem

atica m
odel, you have to read in the Statistics package D

iscreteD
istributions as show

n below
.

S
tatistics

 an
d

 sto
ch

astic
 p

ro
cesses

Statistical routines are useful for both theoretical aspects of m
odeling as w

ell as for M
onte C

arlo sim
ulations. So it is w

orth 
a little effort to get acquainted w

ith som
e fundam

ental tools and definitions. L
et's start by reading in one of the statistics 

packages and defining a Poisson distribution w
ith a m

ean of l. A
nd then specify l=

50 (e.g. 50 spikes per second of a 
neuron). 

‡
D

iscrete distributions

<
<
S
t
a
t
i
s
t
i
c
s
`
D
i
s
c
r
e
t
e
D
i
s
t
r
i
b
u
t
i
o
n
s
`

P
D
F
[
P
o
i
s
s
o
n
D
i
s
t
r
i
b
u
t
i
o
n
[

l
]
,
a
]

‰
-

l
l
a

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a

!

L
et's specify a Poisson distribution w

ith m
ean l =

 50:
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p
d
i
s
t
 
=
 
P
o
i
s
s
o
n
D
i
s
t
r
i
b
u
t
i
o
n
[
5
0
]
;

T
he probability distribution function is given by: 

P
D
F
[
p
d
i
s
t
,
a
]

T
he output show

s M
athem

atica's  definition of the function. Y
ou can obtain the m

ean, variance and standard deviation 
(w

hich is the square root of the variance) of the distribution w
e've defined. T

ry it:

M
e
a
n
[
p
d
i
s
t
]

V
a
r
i
a
n
c
e
[
p
d
i
s
t
]

S
t
a
n
d
a
r
d
D
e
v
i
a
t
i
o
n
[
p
d
i
s
t
]

W
hat is your guess of the general relationship

 betw
een

 the m
ean and

 variance for the P
oisson

 

distribution?

W
e are going to approxim

ate the noisiness of neural discharge w
ith a N

orm
al or G

aussian distribution. T
he G

aussian 
distribution is continuous, rather than discrete. It is a fairly good approxim

ation of a Poisson distribution for large values of 
the m

ean. T
o m

odel the G
aussian, w

e need to read in the follow
ing package:

‡
C

ontinuous distributions, probability densities

<
<
S
t
a
t
i
s
t
i
c
s
`
C
o
n
t
i
n
u
o
u
s
D
i
s
t
r
i
b
u
t
i
o
n
s
`

n
d
i
s
t
 
=
 
N
o
r
m
a
l
D
i
s
t
r
i
b
u
t
i
o
n
[
0
.
5
,
.
1
]
;

G
eneral::spell1 :

 Possible
spelling

error:new
sym

bolnam
e

"ndist"
is

sim
ilar

to
existing

sym
bol"pdist".

P
r
i
n
t
[
M
e
a
n
[
n
d
i
s
t
]
,
"
,
 
"
,
V
a
r
i
a
n
c
e
[
n
d
i
s
t
]
,
"
,
 
"
,

S
t
a
n
d
a
r
d
D
e
v
i
a
t
i
o
n
[
n
d
i
s
t
]
]

0.5,0.01,0.1

A
 plot of the probability distribution function for this norm

al distribution looks like:
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P
l
o
t
[
P
D
F
[
n
d
i
s
t
,
x
]
,
{
x
,
-
.
2
5
,
1
.
5
}
,
 
P
l
o
t
R
a
n
g
e
-
>
{
0
,
4
}
,
A
x
e
s
L
a
b
e
l
-
>
{
"
x
"
,
"
p
"
}
]
;

-
0
.
2
5

0
.
2
50
.
50
.
7
5
1
1
.
2
51
.
5
x

0
.
5 1

1
.
5 2

2
.
5 3

3
.
5 4 p

A
 given ordinate value is a "density", rather than probability. B

ut w
e can talk about the probability that x takes on som

e 
value in an interval, say dx. For a sm

all interval, dx, the  probability >
 p(x)dx. W

hat is the probability that x takes on som
e 

value betw
een +¶

 and -¶
? W

hat is area under this curve? 

T
he cum

ulative distribution, f(x2) =
p(x<

x2), tells us the probability of x being less than a particular value of x2:

P
l
o
t
[
C
D
F
[
n
d
i
s
t
,
x
2
]
,
{
x
2
,
-
.
2
5
,
1
.
5
}
,
A
x
e
s
L
a
b
e
l
-
>
{
"
x
2
"
,
"
f
"
}
]
;

-
0
.
2
5

0
.
2
5
0
.
5
0
.
7
5

1
1
.
2
5
1
.
5
x
2

0
.
2

0
.
4

0
.
6

0
.
8 1 f

Y
ou can see from

 the graph that for this distribution, once x2 is greater than 0.7 or so, the probability of x being less than 
that is virtually certain, i.e. is essentially 1.If w

e set the m
ean =

0, and the standard deviation, w
e'd have a graph of the 

"cum
ulative norm

al".

‡
Statistical Sam

pling

H
aving defined the norm

al distribution, how
 can w

e draw
 sam

ples from
 it? In other w

ords, can w
e sim

ulate a process in 
w

hich w
e fill a hat w

ith slips of paper in such a w
ay that the proportions for each value m

im
ic w

hat w
e obtain from

 a 
theoretical  distribution?

M
ost standard program

m
ing languages com

e w
ith subroutines for doing pseudo-random

 num
ber generation. U

nlike the 
Poisson or G

aussian distribution, these num
bers are usually uniform

ly distributed--that is, the probability of being a 
certain value (or w

ithin a tiny range) is constant over the entire sam
pling range of the random

 variable. 

T
his is like filling the hat w

ith slips of paper w
here the num

ber of slips is the sam
e for each value.

A
s w

e noted earlier, M
athem

atica  com
es w

ith a standard function, R
andom

[] that enables us to generate random
 num

bers 
that are uniform

. W
ith the appropriate argum

ent, w
e can also define Poisson, N

orm
al, and other kinds of random

 num
bers. 

(T
here are som

e other possible distributions in the packages too, like the C
hiSquareD

istribution).
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R
a
n
d
o
m
[
n
d
i
s
t
]

0.701706

P
u

ttin
g

 to
g

eth
er stag

es 1, 2 an
d

 3 to
g

eth
er

W
e can do everything at once, producing the output of a generic neuron, w

ith synaptic w
eights w

,  neural noise w
ith a m

ean 
of 0.0 and std. dev. 0.1 to an input x:

w
 
=
 
{
2
,
1
,
-
2
,
3
}
;

n
d
i
s
t
2
 
=
 
N
o
r
m
a
l
D
i
s
t
r
i
b
u
t
i
o
n
[
0
.
0
,
.
1
]
;

y
[
x
1
_
]
 
:
=
 
N
[
s
q
u
a
s
h
[
w
.
x
1
]
 
+
 
R
a
n
d
o
m
[
n
d
i
s
t
2
]
]
;

y
[
{
2
,
3
,
0
,
1
}
]

0.911057

If w
e invoke the y[] function again, w

e get a different response:

y
[
{
2
,
3
,
0
,
1
}
]

0.890749

T
o sum

 up, the m
odel you should have in m

ind is that at any given tim
e interval (w

hich is im
plicit in this continuous-

response, discrete-tim
e m

odel), the neuron com
putes the sum

 of its w
eighted inputs, and the output signal, y,  is a spike rate 

over this interval. W
ith a sigm

oidal non-linearity, there is sm
all-signal suppression, and large-signal saturation.

E
xercise

Suppose all the inputs except the first are clam
ped at zero. W

hat does the response, y look like as a function of x for various 
levels of input signal? Fill in the argum

ent for Plot[]:

P
l
o
t@

,
8
x
,

-
2
,
2<

,
P
l
o
t
R
a
n
g
e

-
>
8
0
,
2<

,
A
x
e
s
L
a
b
e
l

-
>
8
"
I
n
p
u
t

s
i
g
n
a
l
,
x
"
,
"
F
r
e
q
u
e
n
c
y
"<D

;
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V
ecto

r o
p

eratio
n

s
 an

d
 p

attern
s

 o
f n

eu
ral activity

‡
State space and

 state vectors.

 In neural netw
orks, w

e are often concerned w
ith a vector w

hose com
ponents represent the activities of neurons w

hich are 
changing in tim

e. So som
etim

es w
e w

ill talk about state vectors.T
here isn't anything profound about this term

inology--it just 
reflects that w

e are interested in the value of the vector w
hen the system

 is in a particular state at tim
e t. It is often very 

useful to think of an n-dim
ensional vector as a point in an n-dim

ensional space. T
his space is often referred to as state space. 

Suppose, w
e have a 3 neuron system

. W
e can describe the state of this system

 as a 3-dim
ensional vector w

here each com
po-

nent represents the activity of the neuron. Further, suppose just for the sake of an exam
ple to visualize, the activities of the 

first, second, and third neurons (i.e. com
ponents) of a 3-dim

ensional vector are given by: y =
 {C

os[t], Sin[t], t}. W
e can use 

the  M
athem

atica function, Param
etricPlot3D

[] to get a picture of how
 this state vector evolves in tim

e through state space:

C
l
e
a
r
[
y
]
;

y
[
t
_
]
 
:
=
 

{C
os[t], Sin[t], C

os[2 t]};
P

aram
etricP

lot3D
[y[t], {t,0,5}, A

xesL
abel->{"x","y","z"}];

P
a
r
a
m
e
t
r
i
c
P
l
o
t
3
D
:
:
p
p
c
o
m

 :
 F
u
n
c
t
i
o
n

y
@
t
D

c
a
n
n
o
t

b
e

c
o
m
p
i
l
e
d
;
p
l
o
t
t
i
n
g

w
i
l
l

p
r
o
c
e
e
d

w
i
t
h

t
h
e

u
n
c
o
m
p
i
l
e
d

f
u
n
c
t
i
o
n
.

-
1
-
0
.
5

0
0
.
5

1
x

-
1

-
0
.
5
0
0
.
5
1

y

-
1

-
0
.
5 0

0
.
5 1

z

-
1
-
0
.
5

0
0
.
5

x

1

-
0
.
5
0
0
.
5

y
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‡
D

im
ension

 of a vector.

 O
btain the dim

ensionality of a vector using  D
im

ensions[], or L
ength[].

v
 
=
 
{
2
.
1
,
 
3
,
 
-
0
.
4
5
,
 
4
.
9
}
;

D
im

ensions[], w
ill give you the dim

ensions of a m
atrix, w

hile  L
ength[] tells you the num

ber of elem
ents in the list. For 

exam
ple, 

M
 
=
 
{
{
2
,
4
,
2
}
,
 
{
1
,
6
,
4
}
}
;
 

L
e
n
g
t
h
[
M
]

2

C
om

pare L
ength[M

] w
ith D

im
ensions[M

].

‡
T

ranspose of a vector. 

T
he transpose of a colum

n vector is just the sam
e vector arranged in a row

. H
ow

ever, because of the w
ay M

athem
atica uses 

lists to represent vectors you don't have to distinguish betw
een row

 and colum
n vectors. In standard m

ath notation, trans-

pose of a vector x, is often w
ritten x T

. Y
ou can see a vector in colum

n form
 by typing v//M

atrixF
orm

, or:

M
a
t
r
i
x
F
o
r
m
[
v
]

ik jjjjjjjjjjjjj

2.13
-

0.45

4.9

y{ zzzzzzzzzzzzz
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‡
V

ector addition
 is accom

plished by sim
ply adding the com

ponents of each vector to m
ake a new

 vector. 

N
ote that the vectors all have the sam

e dim
ension.

a
 
=
 
{
3
,
1
,
2
}
;

b
 
=
 
{
2
,
4
,
8
}
;

c
 
=
 
a
 
+
 
b

8
5
,
5
,
1
0
<

V
ectors can be m

ultiplied by a constant. W
e saw

 an exam
ple of this earlier.

2
 
a

86,2,4
<

‡
E

uclidean
 length of a vector

 It is unfortunate term
inology, but L

ength[] does N
O

T
 give you the m

etrical or E
uclidean length of the vector. In order to 

get the length of a vector, you calculate the E
uclidean distance from

 the origin to the end-point of the vector. W
e get this by 

squaring each com
ponent, adding up the squares, and taking the square root. First, w

e w
ill do this using the A

pply[] func-
tion, w

here the P
lus operation is applied to all the elem

ents of the list. N
ote that the operation of exponentiation is "listable", 

that is it is applied to each elem
ent of the vector:

a
^
2

8
9
,
1
,
4
<

W
hat is a a ?N

[
S
q
r
t
[
A
p
p
l
y
[
P
l
u
s
,
 
a
^
2
]
]
]

3
.
7
4
1
6
6

A
lternatively, you can read in the package using: <

<L
inearA

lgebra`M
atrixM

anipulation` and then use the function 
V

ectorN
orm

[N
[a],2]. T

he second argum
ent says that you w

ant the  vector 2-norm
 (ie. E

uclidean length). V
ectorN

orm
[-

N
[a],1]  w

ould return the "city-block" norm
.

If you w
ish, you can define your ow

n function to apply to the list. W
hat w

e have just calculated is the square root of the dot 
product or inner product of a w

ith itself. T
he length of a vector a is often w

ritten as |a| in standard m
ath notation. In the next 

section, w
e use the inner or dot product to calculate the E

uclidean length of a vector.
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‡
D

ot or Inner product. T
o calculate the inner product of tw

o vectors, you m
ultiply the corresponding 

com
ponents and add them

 up:

u
 
=
 
{
u
1
,
u
2
,
u
3
,
u
4
}
;

v
 
=
 
{
v
1
,
v
2
,
v
3
,
v
4
}
;

u
.
v

u1
v1

+
u2

v2
+

u3
v3

+
u4

v4

T
he inner product is also called the dot product. L

ater w
e w

ill see w
hat is m

eant by outer product. T
he inner product 

betw
een tw

o vectors a and b is w
ritten either as:

                                                   a.b or [a,b], or a T
b

M
athem

atica  uses the dot notation. 

O
ne use of the inner product is to calculate the length of a vector. a.a  is just the sum

 of the squares of the elem
ents of a, so 

gives us another w
ay of calculating the length of a vector.

N
[
S
q
r
t
[
a
.
a
]
]

3
.
7
4
1
6
6

L
et's define a function that w

ill return the length of a vector, x:

V
e
c
t
o
r
l
e
n
g
t
h
[
x
_
]
 
:
=
 
N
[
S
q
r
t
[
x
.
x
]
]

‡
P

rojection

Projection is an im
portant concept in linear neural netw

orks.

W
hen a pattern of activity, x, is input to a linear neural netw

ork, the w
eight m

atrix W
 transform

s the input pattern to a new
 

output pattern y of activities. T
his linear transform

ation w
orks by "projecting" the input onto a new

 set of dim
ensions by 

taking the dot product of the input w
ith each row

 of the w
eight m

atrix. T
he colum

ns of W
 can be thought of as describing a 

particular set of dim
ensions of the space w

ithin w
hich output vectors of the netw

ork can live. E
ach output elem

ent's activity 
level says how

 m
uch of the input activity got projected onto the vector specified by a colum

n of W
:

Suppose w
e have 3 inputs and 2 outputs to our netw

ork. Inputs to the netw
ork live in a 3-dim

ensional space. O
utputs live in 

2 dim
ensions.
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P
r
o
v
e
:

J
w
1
1

w
2
1

 
w
1
2

w
2
2

 
w
1
3

w
2
3 N
. ik jjjjjjj

x
1

x
2

x
3 y{ zzzzzzz

=
J
w
1
1

w
2
1 N

 x
1

+
J
w
1
2

w
2
2
N

 x
2

+
J
w
1
3

w
2
3
N

 x
3

T
he dot product, a.b, is equal to:

                                                   |a| |b| cos(angle betw
een a and b)

In problem
 set 1, you calculate the output of a linear neuron m

odel as the dot product betw
een an input vector and a w

eight 
vector. B

oth the w
eight and input lists can be thought of as vectors in an n-dim

ensional space. Suppose the w
eight vector 

has unit length.  R
ecall that you can norm

alize any vector to unit length by dividing by its length:

v =
 v/Sqrt[v.v] ;

G
eom

etrically, w
e can think of the output of a neuron as the projection of the activity of the neuron input activity vector 

onto the w
eight vector direction. Suppose the input vector is already perpendicular to the w

eight vector, then the output of 
the neuron is zero, because the cosine of 90 degrees is zero. A

s you found or w
ill find w

ith the cross-correlator of Problem
 

Set 1, the further the input pattern is aw
ay from

 the w
eight vector, as m

easured by the cosine betw
een them

, the poorer the 
"m

atch" betw
een input and w

eight vectors, and the low
er the response.

H
ere are three lines of code that calculate the tw

o-dim
ensional vector z in the direction of w

,  w
ith a length determ

ined by 
"how

 m
uch of x projects in the w

 direction":

x
 
=
 
{
1
,
2
}
;

w
 
=
 
N
[
{
2
/
S
q
r
t
[
5
]
,
1
/
S
q
r
t
[
5
]
}
]
;

z
 
=
 
(
x
.
w
)
 
w
 
;
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S
h
o
w
[
 
 
 
G
r
a
p
h
i
c
s
[
{
L
i
n
e
[
{
{
0
,
0
}
,
 
x
}
]
,
 
 

 
 
 
 
 
 
 
 

L
i
n
e
[
{
{
0
,
0
}
,
 
z
}
]
,

 
 
 
 
 
 
 
 

{
D
a
s
h
i
n
g
[
{
0
.
0
3
,
0
.
0
3
}
]
,
 
L
i
n
e
[
{
x
,
 
z
}
]
 
}
,

 
 
 
 
 
 
 

T
e
x
t
[
F
o
n
t
F
o
r
m
[
"
w
"
,
{
"
H
e
l
v
e
t
i
c
a
-
B
o
l
d
"
,
1
8
}
]
,
 
w
,
 
{
0
,
-
1
}
]
,

 
 
 
 
 
 
 
 

T
e
x
t
[
F
o
n
t
F
o
r
m
[
"
x
"
,
{
"
H
e
l
v
e
t
i
c
a
-
B
o
l
d
"
,
1
8
}
]
,
 
x
,
 
{
-
2
,
0
}
]
,

 
 
 
 
 
 
 
 

T
e
x
t
[
F
o
n
t
F
o
r
m
[
"
z
"
,
{
"
H
e
l
v
e
t
i
c
a
-
B
o
l
d
"
,
1
8
}
]
,
 
z
,
 
{
0
,
-
1
}
]
,

 
 
 
 
 
 
 
 

{
A
b
s
o
l
u
t
e
T
h
i
c
k
n
e
s
s
[
3
]
,
 
L
i
n
e
[
{
{
0
,
0
}
,
 
w
}
]
 
}

 
 
 
 
 
 
 
 
}
]
,
 

 
 
 
 
 
 
 
 
A
x
e
s
-
>
T
r
u
e
,
 
A
s
p
e
c
t
R
a
t
i
o
-
>
1
 
 
 
 
 
 

]
;

0
.
2
5
0
.
5
0
.
7
5

1
1
.
2
5
1
.
5

0
.
5 1

1
.
5 2

w

x

z

‡
A

ngle betw
een tw

o vectors and orthogonality: Sim
ilarity m

easure betw
een

 patterns

O
ften w

e w
ill w

ant som
e m

easure of the sim
ilarity betw

een tw
o patterns of neural firings. A

s w
e have just seen, one 

m
easure of com

parison is the degree to w
hich the tw

o state vectors point in the sam
e direction. T

he cosine of the angle 
betw

een tw
o vectors is one possible m

easure:

c
o
s
i
n
e
[
x
_
,
y
_
]
 
:
=
 
x
.
y
/
(
V
e
c
t
o
r
l
e
n
g
t
h
[
x
]
 
V
e
c
t
o
r
l
e
n
g
t
h
[
y
]
)

c
o
s
i
n
e
[
a
,
b
]

0.758175

N
ote that if tw

o vectors point in the sam
e direction, the cosine of the angle betw

een them
 is 1:

a
 
=
 
{
2
,
1
,
3
,
6
}
;

b
 
=
 
{
6
,
 
3
,
 
9
,
 
1
8
}
;

c
o
s
i
n
e
[
a
,
b
]

1.

T
ry verifying that w

 and z from
 the previous section point in the sam

e direction.

If tw
o vectors point in the opposite directions, the cosine of the angle betw

een them
 is -1:
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a
 
=
 
{
-
2
,
-
1
,
-
3
,
-
6
}
;

b
 
=
 
{
6
,
 
3
,
 
9
,
 
1
8
}
;

c
o
s
i
n
e
[
a
,
b
]

‡
E

uclidean
 distance betw

een
 tw

o vectors

T
w

o vectors m
ay point in the sam

e direction, but could be quite different because they have different lengths. A
nother 

m
easure of sim

ilarity is the E
uclidean length of the difference betw

een tw
o vectors, or the "distance betw

een the tips of their 
vectors":

V
e
c
t
o
r
l
e
n
g
t
h
[
a
 
-
 
b
]
 

28.2843

B
y thinking about the geom

etry, w
hat is V

ectorlength[{3,0}-{0,4}]?

‡
O

rthogonality. T
he case w

here vectors are at right angles to each other is an im
portant special case that is 

w
orth spending a little tim

e on. C
onsider an 8-dim

ensional space. O
ne  very fam

iliar set of orthogonal vectors 

is the follow
ing:

u
1
 
=
 
{
1
,
0
,
0
,
0
,
0
,
0
,
0
,
0
}
;

u
2
 
=
 
{
0
,
1
,
0
,
0
,
0
,
0
,
0
,
0
}
;

u
3
 
=
 
{
0
,
0
,
1
,
0
,
0
,
0
,
0
,
0
}
;

u
4
 
=
 
{
0
,
0
,
0
,
1
,
0
,
0
,
0
,
0
}
;

u
5
 
=
 
{
0
,
0
,
0
,
0
,
1
,
0
,
0
,
0
}
;

u
6
 
=
 
{
0
,
0
,
0
,
0
,
0
,
1
,
0
,
0
}
;

u
7
 
=
 
{
0
,
0
,
0
,
0
,
0
,
0
,
1
,
0
}
;

u
8
 
=
 
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
}
;

E
ach vector has unit length, and it is easy to see just by inspection that the inner product betw

een any tw
o is zero. O

n the 
other hand, here is another set of 8 vectors in 8-space for w

hich it is not im
m

ediately obvious that they are all orthogonal. 
T

hese vectors are called W
alsh functions:

v
1
 
=
 
{
1
,
 
1
,
 
1
,
 
1
,
 
1
,
 
1
,
 
1
,
 
1
}
;

v
2
 
=
 
{
1
,
-
1
,
-
1
,
 
1
,
 
1
,
-
1
,
-
1
,
 
1
}
;

v
3
 
=
 
{
1
,
 
1
,
-
1
,
-
1
,
-
1
,
-
1
,
 
1
,
 
1
}
;

v
4
 
=
 
{
1
,
-
1
,
 
1
,
-
1
,
-
1
,
 
1
,
-
1
,
 
1
}
;

v
5
 
=
 
{
1
,
 
1
,
 
1
,
 
1
,
-
1
,
-
1
,
-
1
,
-
1
}
;

v
6
 
=
 
{
1
,
-
1
,
-
1
,
 
1
,
-
1
,
 
1
,
 
1
,
-
1
}
;

v
7
 
=
 
{
1
,
 
1
,
-
1
,
-
1
,
 
1
,
 
1
,
-
1
,
-
1
}
;

v
8
 
=
 
{
1
,
-
1
,
 
1
,
-
1
,
 
1
,
-
1
,
 
1
,
-
1
}
;
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Y
ou can calculate the inner products betw

een any tw
o, and you w

ill find out that they are all zero. N
ote that w

ith the first 

set of vectors, {ui }, you can tell w
hich vector it is just by looking for w

here the 1 is. For the second set, {vi }, you can't tell 

by looking at just one com
ponent. For exam

ple, the first com
ponent of all of the W

alsh functions has a 1. Y
ou have to look 

at the pattern to tell w
hich W

alsh function you are looking at. 

Suppose for the m
om

ent that w
e w

ant to assign m
eaning to each of the patterns--each pattern is a code for som

e thing, like 
"grandm

a T
om

pkins", "grandm
a W

ilke", and so forth. If w
e use the u's, then w

e could look for the one neuron that lights up 
to find out w

hich grandm
a it is representing--then neuron activity represented, for exam

ple, by the third elem
ent of the 

pattern could m
ean "grandm

a W
ilke". T

his strategy w
ouldn't w

ork if w
e encoded a collection of grandm

others using the v's. 
T

he v's give us a sim
ple exam

ple of w
hat is som

etim
es referred to as a distributed code. T

he w
's are exam

ples of a grand-
m

other cell code. T
he reason for this obscure term

inology can be traced to earlier debates on w
hether there m

ay be single 
cells in the brain w

hose firing uniquely determ
ines the recognition of one's grandm

other.

‡
O

rthonorm
ality. T

he W
alsh set is orthogonal, but they are not of unit length. W

e have already seen som
e of 

the advantages of w
orking w

ith unit length vectors. T
he general issue of norm

alization com
es up all the tim

e 

in neural netw
orks both in term

s of lim
iting overall neural activity, and lim

iting synaptic w
eights. So it is 

som
etim

es convenient to norm
alize an orthogonal set, producing w

hat is know
n as an orthonorm

al set of 

vectors:w
1
 
=
 
v
1
/
V
e
c
t
o
r
l
e
n
g
t
h
[
v
1
]
;

w
2
 
=
 
v
2
/
V
e
c
t
o
r
l
e
n
g
t
h
[
v
2
]
;

w
3
 
=
 
v
3
/
V
e
c
t
o
r
l
e
n
g
t
h
[
v
3
]
;

w
4
 
=
 
v
4
/
V
e
c
t
o
r
l
e
n
g
t
h
[
v
4
]
;

w
5
 
=
 
v
5
/
V
e
c
t
o
r
l
e
n
g
t
h
[
v
5
]
;

w
6
 
=
 
v
6
/
V
e
c
t
o
r
l
e
n
g
t
h
[
v
6
]
;

w
7
 
=
 
v
7
/
V
e
c
t
o
r
l
e
n
g
t
h
[
v
7
]
;

w
8
 
=
 
v
8
/
V
e
c
t
o
r
l
e
n
g
t
h
[
v
8
]
;

V
ecto

r rep
resen

tatio
n

s, lin
ear alg

eb
ra

T
he issue of how

 inform
ation is to be represented is fundam

ental in the inform
ation sciences generally, as w

ell as for neural 
netw

ork theory. A
 pattern of activity over a set of neurons is presum

ed to m
ean som

ething, and there are different w
ays of 

coding the sam
e m

eaning. B
ut different codes have different properties. A

 code m
ay not be sufficient to uniquely code all 

the possible things w
e need to represent. A

 code could be redundant and have m
ore than one w

ay of representing the sam
e 

thing. T
his section continues w

ith our review
 of the basics of vector and linear algebra by going a little m

ore deeply into the 
subject. T

he pay-off w
ill be som

e m
athem

atics that provides intuition about issues of neural representation. Y
ou can think 

of this as a first lesson in the "psychology of linear algebra".
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‡
B

asis sets

 It is pretty clear that given any vector w
hatsoever in 8-space, you can specify how

 m
uch of it gets projected in each of the 

eight directions specified by the unit vectors v1, v2, ...v8. B
ut you can also build back up an arbitrary vector by adding up 

all the contributions from
 each of the com

ponent vectors. T
his is a consequence of vector addition and can be easily seen to 

be true in 2 dim
ensions. W

e can verify it ourselves. Pick an arbitrary vector g, project it onto each of the basis vectors, and 
then add them

 back up again:

g
 
=
 
{
2
,
6
,
1
,
7
,
1
1
,
4
,
1
3
,
 
2
9
}
;

(
g
.
u
1
)
 
u
1
 
 
+
 
(
g
.
u
2
)
 
u
2
 
 
+
(
g
.
u
3
)
 
u
3
 
 
+
(
g
.
u
4
)
 
u
4
 
 
+

(
g
.
u
5
)
 
u
5
 
 
+
(
g
.
u
6
)
 
u
6
 
 
+
(
g
.
u
7
)
 
u
7
 
 
+
(
g
.
u
8
)
 
u
8

82,6,1,7,11,
4,13,

29<

E
xercise

W
hat happens if you project g onto the norm

alized W
alsh basis set defined by {w

1,w
2,...}  above, and then add up all 8 

com
ponents?(

g
.
w
1
)
 
w
1
 
 
+
 
(
g
.
w
2
)
 
w
2
 
 
+
(
g
.
w
3
)
 
w
3
 
 
+
(
g
.
w
4
)
 
w
4
 
 
+

(
g
.
w
5
)
 
w
5
 
 
+
(
g
.
w
6
)
 
w
6
 
 
+
(
g
.
w
7
)
 
w
7
 
 
+
(
g
.
w
8
)
 
w
8

T
he projections, g.ui  are som

etim
es called the spectrum

 of g. T
his term

inology com
es from

 the Fourier basis set used in 

Fourier analysis. A
 discrete version of a Fourier basis set is sim

ilar to the W
alsh set, except that the elem

ents fit a sine w
ave 

pattern, and so are not binary-valued.

T
he orthonorm

al set of vectors w
e've defined above  is said to be com

plete, because any vector in 8-space can be expressed 
as a linear w

eighted sum
 of these basis vectors. T

he w
eights are just the projections. If w

e had only 7 vectors in our set, 
then w

e w
ould not be able to express any 8-dim

ensional vector in term
s of this basis set. T

he seven vector set w
ould be said 

to be incom
plete. A

 basis set w
hich is orthonorm

al and com
plete is very nice from

 a m
athem

atical point of view
. A

nother 
bit of term

inology is that these seven vectors w
ould not span the 8-dim

ensional space. B
ut they w

ould span som
e sub-

space, that is of sm
aller dim

ension, of the 8-space.

T
here has been m

uch interest in describing the effective w
eighting properties of visual neurons in prim

ary visual cortex of 
higher level m

am
m

als (cats, m
onkeys) in term

s of basis vectors. O
ne issue is if the input (e.g. an im

age) is projected (via a 
collection of  receptive fields) onto a set of neurons, is inform

ation lost? If the set of w
eights representing the receptive 

fields of the collection of neurons is com
plete, then no inform

ation is lost. 

18
Lect_4_G

enericM
odel.nb



‡
L

inear dependence

W
hat if w

e had 9 vectors in our basis set used to represent vectors in 8-space? For the u's, it is easy to see that in a sense w
e 

have too m
any, because w

e could express the 9th in term
s of a sum

 of the others. T
his set of nine vectors w

ould be said to 
be linearly dependent. A

 set of vectors is linearly dependent if one or m
ore of them

 can be expressed as a linear com
bination 

of som
e of the others.  Som

etim
es there is an advantage to having an "over-com

plete" basis set (e.g. m
ore than 8 vectors for 

8-space; cf. Sim
oncelli et al., 1992).

T
heorem

: A
 set of m

utually orthogonal vectors is linearly independent. 

H
ow

ever, note it is quite possible to have a linearly independent set of vectors w
hich are not orthogonal to each other.  

Im
agine 3-space and 3 vectors w

hich do not jointly lie on a plane. T
his set is linearly independent.

If w
e have a linearly independent set, say of 8 vectors for our 8-space, then no m

em
ber can be dropped w

ithout a loss in the 
dim

ensionality of the space spanned.

It is useful to think about the m
eaning of linear independence in term

s of geom
etry. A

 set of three linearly independent 
vectors can com

pletely span 3-space. So any vector in 3-space can be represented as a w
eighted sum

 of these 3. If one of the 
m

em
bers in our set of three can be expressed in term

s of the other tw
o, the set is not linearly independent and the set only 

spans a 2-dim
ensional subspace. T

hat is, the set can only represent vectors w
hich lay on a plane in 3-space. T

his can be 
easily seen to be true for the set of u's, but is also true for the set of v's.

T
hought exercise

Suppose there are three inputs feeding into three neurons in the sim
ple linear netw

ork such as defined at the beginning of 
this lecture. If the w

eight vectors of the three neurons are not linearly independent, do w
e lose inform

ation?

L
in

earity, real n
eu

ral n
etw

o
rks, an

d
 w

h
at's

 u
p

 n
ext tim

e?

From
 a com

putational standpoint, the squashing function has both advantages and disadvantages. It  is w
hat m

akes our 
neural netw

ork m
odel non-linear, and as w

e w
ill see later, this non-linearity enables netw

orks to com
pute functions that 

can't be com
puted w

ith a linear netw
ork. O

n the other hand, non-linearities m
ake the analysis com

plicated because w
e leave 

the w
ell-understood dom

ain of linear algebra. In fact, there are cases for w
hich m

ost of the neural activities are in the m
id-

range of the squashing function, and here one can approxim
ate the netw

ork as a purely linear one--just m
atrix operations on 

vector inputs, and the analysis becom
es relatively sim

ple.

C
om

pared to the com
plexity of real neurons and netw

orks, assum
ing linearity m

ight seem
 to be just too sim

ple. B
ut w

e w
ill 

see in the next lecture, that a linear m
odel can be quite good m

odel for som
e biological subsystem

s. W
e w

ill apply the 
techniques of linear vector algebra to m

odel a netw
ork discovered in the visual system

 of the horseshoe crab. L
ater w

e'll see 
how

 som
e aspects of associative m

em
ory can be m

odeled using linear system
s.
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R
eferen

ces

atm
atica (http://w

w
w

.m
athsource.com

/C
ontent/A

pplications/E
ducation/O

ther/0209-551?notables). A
 m

athem
atica-based 

linear algebra course.
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