

 әs!ou
$\quad(: \varepsilon$ output frequency of firing.
(Stage 3:)

The weights correspond to the synaptic efficiency of the inputs to the neuron which model the net effect on the input
() ш..əə se!q pəx!y

The generic connectionist model abstracts the basic properties of the integrate and fire neuron, and makes provision for
saturation as well. 2
The generic neuron model Stage 1 Stage 3
${ }^{N}$

$y=w \cdot x$ 10

 :S!Чठิ! 2 M әЧł ЧІ! - Model linear neuron $w=\{2,1,-2,3\} ;$ the synapses are transmitted to the neuron hillock (we'll allow negative weights for the time being): $\leq\left\{\tau^{\prime} 0^{\prime} \varepsilon^{\prime} z\right\}=x$ input signals to a neuron. matrix is a list of vector elements). Here is a four-dimensional vector which we'll call \mathbf{x}. \mathbf{x} could represent the do a lot of work with lists, in particular with vectors (a vector is a list of scalar elements) and matrices (a
 look like the step function we used when modeling the McCulloch-Pitts neuron Graphics. Adjust the input scale of squash[] to plot a very steep squashing function for $-5<x<5$. I.e. it should here we use := because we need to define the function for later use. Also note that our squashing function was defined with is calculated immediately. When there is a colon in front of the equals, the value is calculated only when called on later. So Recall, that the underscore, \mathbf{x}_{-}is important because it tells Mathematica that x represents a slot, not an expression. Note
that we've used a colon followed by equals $(:=)$ instead of just an equals sign $(=)$. When you use an equals sign, the value - $\operatorname{squash}\left[x_{-}\right]:=\mathrm{N}[1 /(1+\operatorname{Exp}[-x])]$ $\leq[([x-] d x G+\tau) / \tau] N=:[-x] u \operatorname{senbs}$ mentioned earlier):
■ Defining functions. Let's define a function to model the non-linearity (in this case, the "logistic function"

sketch of the net to illustrate what is connected to what, label the inputs x_{j}; the weights $M_{i j}$, and the outputs y_{i}. so it is worth taking some time to understand it. Our example has four inputs, and four outputs. Try making a graphical There we have it--a model for a simple four-neural network! This equation will occur many times in the rest of the course $\{0.999955,0.999983,1 ., 0.0474259\}$
$y=$ squash $[W . x]$
We can do everything at once in our four-neuron network, producing the four outputs of four generic neurons to an input \mathbf{x} :
By default, our function squash[] is a listable function. This means that even though it was defined to operate on a scalar,
when applied to a list, it automatically gets applied to each element of the list in turn. $\{0.999955,0.999983,1 ., 0.0474259\}$ $\{0.999955$ squash[y] negative value is set close to zero. Now let's apply our squashing function to the output \mathbf{y}. Note how the big positive values are set close to one, and $\{0.534522,0.801784,0,0.267261\}$ $\mathrm{C}=1 / \mathrm{Sqrt}[\mathrm{x} \cdot \mathrm{x}]$
$\mathrm{x} 2=\mathrm{N}[\mathrm{Cx}]$
you want to multiply a vector or matrix by a scalar, c , you don't use a dot. For example, to normalize x by its length:
 So to multiply an input vector by a matrix, we take the dot product of the input with each successive row of the matrix. $x_{x} \times!m 马=1 \kappa$ In traditional form, this matrix multiplication is written as $\bar{\circ}$
\vdots
\vdots
\vdots
\vdots $x \cdot M=\Sigma$

suọnqq!.!s!p әұә.ıs!! ■
 Statistical routines are useful for both theoretical aspects of modeling as well as for Monte Carlo simulations. So it is worth

Statistics and stochastic processes
Mathematica model, you have to read in the Statistics package DiscreteDistributions as shown below. maintained action potential discharge can be modeled as a Poisson distribution. But to use the Poisson distribution in a menu). These packages have to be read in when you need the function definitions they contain. As a first approximation the this, we need the notion of a probability distribution. We could develop the routines we need using basic Mathematica We'd like to add a Stage 3 to our model of the neuron in which we take account of the noisiness of neural transmission. For Modeling noise (Stage 3): Generic neuron plus noise

We are going to approximate the noisiness of neural discharge with a Normal or Gaussian distribution. The Gaussian
distribution is continuous, rather than discrete. It is a fairly good approximation of a Poisson distribution for large values of
the mean. To model the Gaussian, we need to read in the following package:
distribution?

The probability distribution function is given by:

$$
\text { PDF [pdist, a] }
$$

The output shows Mathematica's definition of the
(which is the square root of the variance) of the d

Exercise
$\begin{array}{l}\text { Suppose all } \\ \text { levels of in }\end{array}$

We can do everything at once, producing the output of a generic neuron, with synaptic weights \mathbf{w}, neural noise with a mean
of 0.0 and std. dev. 0.1 to an input x :
Putting together stages 1, 2 and 3 together

$$
99 \tau \nabla L \cdot \varepsilon
$$

N[Sqrt[Apply[P1us, a 2$]]$]
3.74166
(N[Sqrt[Apply[Plus, a^2]]] What is a a ?

tion, where the Plus operation is applied to all the elements of the list. Note that the operation of exponentiation is "listable",
that is it is applied to each element of the vector:
 It is unfortunate terminology, but Length[] does NOT give you the metricald the end length of the vector. In order to
get the length of a vector, you calculate the Euclidean distance from the origin to the end-point of the vector. We get this by

- Euclidean length of a vector

$$
\left\{t^{\prime} z^{\prime} 9\right\}
$$

- 2
$2 a$

$\{0 \mathrm{I}$ ' c ' G$\}$
$c=a+b$
$a=\{3,1,2\}$
$b=\{2,4,8\}$
$c=a+b$ ote that the vectors all have the same dimension.

Vector addition is accomplished by simply adding the components of each vector to make a new vector.
Note that the vectors all have the same dimension.
'suo!̣suәu!̣ Z
 level says how much of the input activity got projected onto the vector specified by a column of \mathbf{W} : taking the dot product of the input with each row of the weight matrix. The columns of \mathbf{W} can be thought of as describing a output pattern \mathbf{y} of activities. This linear transformation works by "projecting" the input onto a new set of dimensions by

\section*{
 | | N[Sqrt[a.a] $]$ |
| :---: | :---: |
| | 3.74166 |
 One use of the inner product is to calculate the length of a vector. a.a is just the sum of the squares of the elements of a, so

gives us another way of calculating the length of a vector.
} a.b or $[\mathbf{a}, \mathbf{b}]$, or $\mathbf{a}^{\mathbf{T}} \mathbf{b}$

 $\left.\begin{array}{r} \\ \left\{\left\{\Delta^{\prime} \varepsilon \Lambda^{\prime} \tau \Lambda^{\prime} \tau \Lambda\right\}=n\right. \\ \left\{\left\{\delta n^{\prime} \varepsilon n^{\prime} \tau n^{\prime} \tau n\right\}=n\right.\end{array} \right\rvert\,$

- Dot or Inner product. To calculate the inner product of two vectors, you multiply the corresponding
components and add them up:
 Set 1 , the further the input pattern is away from the weight vector, as measured by the cosine between them, the poorer the
"match" between input and weight vectors, and the lower the response. the neuron is zero, because the cosine of 90 degrees is zero. As you found or will find with the cross-correlator of Problem onto the weight vector direction. Suppose the input vector is already perpendicular to the weight vector, then the output of Geometrically, we can think of the output of a neuron as the projection of the activity of the neuron input activity vector
 In problem set 1 , you calculate the output of a linear neuron model as the dot product between an input vector and a weight
vector. Both the weight and input lists can be thought of as vectors in an n-dimensional space. Suppose the weight vector

The dot product, a.b, is equal to:
Prove : $\left(\begin{array}{lll}w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23}\end{array}\right) \cdot\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\binom{w_{11}}{w_{21}} x_{1}+\binom{w_{12}}{w_{22}} x_{2}+\binom{w_{13}}{w_{23}} x_{3}$

 Try verifying that \mathbf{w} and \mathbf{z} from the previous section point in the same direction.

Note that if two vectors point in the same direction, the cosine of the angle between them is 1

between two vectors is one possible measure
measure of comparison is the degree to which the two state vectors point in the same direction. The cosine of the angle Often we will want some measure of the similarity between two patterns of neural firings. As we have just seen, one

- Angle between two vectors and orthogonality: Similarity measure between patterns

 is the following worth spending a little time on. Consider an 8 -dimensional space. One very familiar set of orthogonal vectors
is the following.

By thinking about the geometry, what is Vectorlength $[\{3,0\}-\{0,4\}]$?

$\varepsilon+8 \overbrace{}^{\prime} 8 \tau$
 $[q-e] ч 7$ биәтхо7จәл

■ Euclidean distance between two vectors

 subject. The pay-off will be some mathematics that provides intuition about issues of neural representation. You can think the possible things we need to represent. A code could be redundant and have more than one way of representing the same

 Vector representations, linear algebra

vectors:
sometimes convenient to normalize an orthogonal set, producing what is known as an orthonormal set of in neural networks both in terms of limiting overall neural activity, and limiting synaptic weights. So it is

Orthonormality. The Walsh set is orthogonal, but they are not of unit length. We have already seen some of
cells in the brain whose firing uniquely determines the recognition of one's grandmother. mother cell code. The reason for this obscure terminology can be traced to earlier debates on whether there may be single The v^{\prime} s give us a simple example of what is sometimes referred to as a distributed code. The w's are examples of a grandto find out which grandma it is representing--then neuron activity represented, for example, by the third element of the "grandma Tompkins", "grandma Wilke", and so forth. If we use the u's, then we could look for the one neuron that lights up Suppose for the moment that we want to assign meaning to each of the patterns--each pattern is a code for some thing, like

 fields of the collection of neurons is complete, then no information is lost.

 There has been much interest in describing the effective weighting properties of visual neurons in primary visual cortex of

 pattern, and so are not binary-valued. әлвм әи!

 8ic dith

asporax

then add them back up again:
 all the contributions from each of the component vectors. This is a consequence of vector addition and can be easily seen to

şas s!seg

 see in the next lecture, that a linear model can be quite good model for some biological subsystems. We will apply the
 vector inputs, and the analysis becomes relatively simple

Suppose there are three inputs feeding into three neurons in the simple linear network such as defined at the beginning of
this lecture. If the weight vectors of the three neurons are not linearly independent, do we lose information?
easily seen to be true for the set of u 's, but is also true for the set of v 's. spans a 2-dimensional subspace. That is, the set can only represent vectors which lay on a plane in 3-space. This can be vectors can completely span 3 -space. So any vector in 3 -space can be represented as a weighted sum of these 3 . If one of the
members in our set of three can be expressed in terms of the other two, the set is not linearly independent and the set only It is useful to think about the meaning of linear independence in terms of geometry. A set of three linearly independent If we have a linearly independent set, say of 8 vectors for our 8 -space, then no member can be dropped without a loss in the
dimensionality of the space spanned. Imagine 3 -space and 3 vectors which do not jointly lie on a plane. This set is linearly independent. However, note it is quite possible to have a linearly independent set of vectors which are not orthogonal to each other. Theorem: A set of mutually orthogonal vectors is linearly independent. 8 -space; cf. Simoncelli et al., 1992).

 What if we had 9 vectors in our basis set used to represent vectors in 8 -space? For the u's, it is easy to see that in a sense we - Linear dependence
 Information Theory, $\mathbf{3 8 (2) , 5 8 7 - 6 0 7 \text { . }}$ atmatica (http://www.mathsource.com/Content/Applications/Education/Other/0209-551?notables). A mathematica-based
linear algebra course.

