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T
o

d
ay• Sum

m
arize the qualitative features of the neuron as a signal processing device

• L
evels of abstraction in neural m

odeling

• T
he M

cC
ulloch-Pitts m

odel

• D
evelop the "integrate and fire" m

odel to justify the assum
ption of frequency codes

--prepares the stage for a slightly sim
pler m

odel: the generic (connectionist) m
odel that 

w
ill be used for a large fraction of the course.

O
ur pedagogical strategy w

ill be to converge on the "right" m
odel for large-scale sim

ulations--w
e'll first be too sim

ple 
(M

cC
ulloch-Pitts), then too com

plex (Integrate-and-fire), and finally just right (generic neural m
odel).

So let's first look at the M
cC

ulloch-Pitts neuron m
odel, and how

 to im
plem

ent it in M
athem

atica. A
lthough it is interesting 

from
 a historical and theoretical perspective,  w

e'll argue that it is biologically too unrealistic. T
he "leaky integrate and fire" 

neuron m
odel better captures the fundam

ental properties of the slow
 potential m

odel, and provides a justification for the 
generic connectionist m

odel ("structure-less, continuous signal").

Q
u

alitative
 su

m
m

ary
 o

f slo
w

 p
o

ten
tial n

eu
ro

n
 m

o
d

el

L
et's sum

m
arize the essential qualitative features of signal integration and transm

ission of a neuron w
ith w

hat is called the 
"slow

 potential m
odel".

Slow
 potential at axon hillock w

axes and w
anes (because of low

-pass tem
poral characteristics and the spatial  distribution of 

the inputs) depending on the num
ber of active inputs, w

hether they are excitatory or inhibitory, and their arrival tim
es.

T
he slow

 integrated voltage potential now
 and then exceeds threshold producing an axon potential.

Further, if the slow
 potential goes above threshold, frequency of firing is related to size of slow

 potential.

C
aveat: N

ot all signal transm
ission in neural com

putation is done through action potentials. For exam
ple, of the 6 types of 

cells in the retina of your eye, essentially 1 type, the ganglion cells,uses action potentials, the others com
m

unicate via slow
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potentials.

B
ut spike generation isn't a strictly determ

inistic process. T
here is "noise" or random

 fluctuation
 that can be due to several 

factors"ion channels open and close probabilistically, quantized

neurotransm
itter release in discrete packages - Poisson

sensory receptors can produce spontaneous signals

O
ver long distances spike train frequency is roughly like a Poisson process (better--an interval G

am
m

a distribution) 
w

hose m
ean is m

odulated by the already noisy slow
 potential.

In order to com
pute w

ith m
odels, w

e need m
ore precision--w

e need to m
ake our m

odels quantitative.

M
o

d
els

 an
d

 n
eu

ral co
m

p
u

tatio
n

N
eu

ral M
o

d
els

W
hat is a m

odel? A
 sim

plification of som
ething com

plicated to help our understanding. T
he schem

atic of the slow
 potential 

m
odel above does that. It reduces com

plexity but still preserves essential features of the phenom
enon. A

 good m
odel, 

how
ever, should go beyond description, and allow

 us to m
ake predictions. Further, to m

ake fine-grain predictions, w
e need 

quantitative m
odels. Q

uantitative m
odels enable us to sim

ulate neural com
putation.

H
ow

 can w
e m

ake the slow
-potential m

odel precise so that w
e can com

pute outputs from
 inputs? T

here are several levels of 
abstraction in neural m

odels that are useful in com
putational neuroscience. O

ne sim
plication is to ignore the spatial struc-

ture of a neuron, and to assum
e that the essential com

putational nature of a neuron is captured by how
 its inputs are inte-

grated at a given tim
e. T

his sim
plication w

ill lead us to three classes of "structure-less" or "point" m
odels (Segev, 1992).

B
ut w

hat if w
e w

ant to go beyond the above slow
 potential m

odel to understand how
 the geom

etry of a neuron affects its 
signalling? T

hen w
e'd w

ant a neuron m
odel that takes into account the m

orphology of the neuron--"structured" m
odels.

T
he upside of structured m

odels is that they include sufficient detail to m
ake testable detailed electrophysiological predic-

tions. T
he dow

nside is that the m
odel of an individual neuron can be so com

plex, it becom
es difficult to sim

ulate how
 tens 

of thousands m
ight behave, and that's w

here the sim
plifying assum

ptions of the "structure-less" m
odels is useful. Structure-

less m
odels m

ake sim
ulation m

ore tractible, but they also m
ake the theory easier.

L
et's look at the various types of neurons, starting from

 the sim
plest to the m

ore com
plex.

S
tru

ctu
re-less

 ("p
o

in
t") m

o
d

els

L
et's look at three classes obtained by m

aking various assum
ptions about the slow

-potential m
odel.
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‡
D

iscrete (binary) signals--discrete tim
e

T
he action potential is the key characteristic in these m

odels. Signals are discrete (on or off), and tim
e is discrete.

A
t each tim

e unit, the neuron sum
s its (excitatory and inhibitory) inputs, and turns on the output if the sum

 exceeds a 
threshold.

e.g. M
cC

ulloch-Pitts,  elem
ents of the Perceptron, H

opfield discrete nets. 

A
 gross sim

plification...but the collective com
putational pow

er of a large netw
ork of these sim

ple m
odel neurons can be 

great. 

A
nd w

hen the m
odel neuron is m

ade m
ore realistic (inputs are graded, last on the order of m

illiseconds or m
ore, output is 

delayed), the com
putational properties of these netw

orks is preserved (H
opfield, 1984).

B
elow

, w
e'll briefly discuss the com

putational properties of netw
orks of M

cC
ulloch-P

itts neurons.

‡
C

ontinuous signals -- discrete tim
e

A
ction potential responses are interpreted in term

s of a single scalar continuous value--the spike frequency--at the ith tim
e 

interval, t[i] .

T
he discrete tim

e m
odel gives us the standard the basic building block for the m

ajority of netw
orks considered in this 

course. It is also the m
odel used in so-called "connectionist" approaches.

B
oth of the above tw

o classes are useful for large scale m
odels (thousands of neurons). 

B
elow

, w
e'll see how

 the continuous signal m
odel is an approxim

ation of the "leaky integrate and fire" m
odel. T

he leaky 
integrate and fire m

odel is an exam
ple of a structure-less continuous-tim

e m
odel. 

‡
Structure-less continuous-tim

e

A
nalog. M

ore realistic than discrete m
odels.  E

m
phasizes nonlinear dynam

ics, dynam
ic threshold, refractory period, 

m
em

brane voltage  oscillations. B
ehavior represented by differential equations.

• "integrate and fire" m
odel -- takes into account m

em
brane capacitance. T

hreshold is a free param
eter. 

• H
odgkin-H

uxley m
odel--R

ealistic. Param
eters defining the m

odel have a physical interpretation (e.g. various ion 
currents), that can be used to account for threshold.

4
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S
tru

ctu
red

 m
o

d
els

‡
P

assive - cable

From
 Segev (1992).

C
able theory - passive trees. A

ssum
e m

em
brane is passive. T

ake into account dendritic m
orphology or structure. (R

all, 
1964). U

ses cable equations on segm
ents of dendrites.

From
 Segev (1992).
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‡
P

assive - com
partm

ental

Segev (1992).

D
endritic structure show

s w
hat a single neuron

 can com
pute--R

all's m
otion selectivity exam

ple

D
endritic structure is im

portant because it can show
 w

hat a single neuron can com
pute. 

A
 m

odel of m
otion selectivity provides an exam

ple of the kind of useful com
putation that requires a consideration of the 

effects of dendritic structure on integration.

"A
 m

otion selective"
 neuron

C
onsider the sequential stim

ulation of the dendrite from
 left to right (A

B
C

D
) vs. right to left (D

C
B

A
). (R

ecall that inform
a-

tion flow
 in the neuron as a w

hole is from
 the dendritic arbor tow

ards the axon. ) (A
nderson, 1995).

6
Lect_3_N

euralM
odeling.nb



T
he m

ain m
essage is that im

portant functions, such as m
otion selectivity or sensitivity to tim

ing, m
ay dependence on 

location of the inputs on a dendrite.

B
asis for visual m

otion selectivity? It is w
orthw

hile pointing out that although this m
odel of m

otion selectivity has been 
around for several decades, it has yet to be established that this is right m

odel for m
otion selectivity of visual neurons. A

 
m

ajor problem
 has been that dendritic transm

ission is actually too fast to account for the slow
 velocities that can be detected 

by anim
als (B

arlow
, 1996).

For the purposes of this course, dendritic m
orphology and its potential for increased com

putational pow
er w

ill unfortunately 
largely be ignored. W

e should rem
em

ber that sim
ple phenom

ena such as our sensitivity to m
otion direction differences m

ay 
be com

puted on a single neuron rather than requiring a collection.

‡
D

ynam
ic - com

partm
ental

A
 m

ore com
plete, but also m

ore com
plex description of neuron processing takes into account the non-linear active proper-

ties of spike generation together w
ith the m

orphological properties of neurons. A
dd N

a+
 and K

+
 conductance com

ponents 
to the com

partm
ental R

C
-circuits, and one can create non-linear trees to m

odel non-linear dynam
ical properties of neurons.  

C
om

puter sim
ulations necessary. T

heory difficult.
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M
cC

u
llo

ch
-P

itts: D
iscrete-tim

e, d
iscrete

 state (b
in

ary)

In
tro

d
u

ctio
n

Published in 1943, the M
cC

ulloch-Pitts m
odel is fam

ous and im
portant because it show

ed that w
ith a few

 sim
ple assum

p-
tions, netw

orks of of neurons m
ay be capable of com

puting the full repertoire of logical operations.  A
lthough som

e of the 
basic facts about the physiology w

ere w
rong, the notion of neurons as com

putational devices rem
ains w

ith us.

T
he m

odel ignores som
e of the very properties w

e just looked at that m
ight be im

portant for certain kinds of neural process-
ing (e.g. m

otion direction selectivity through dendritic cable transm
ission properties, frequency coding, noise). B

ut the 
m

odel abstracts properties that at the tim
e seem

ed the m
ost essential. 

A
part from

 the understanding of the biochem
ical basis of neural transm

ission,  by the 1940's  the basic signalling properties 
of neurons w

ere w
ell-know

n.  In a sem
inal paper, M

cC
ulloch and Pitts form

alized w
hat w

as know
n, and developed a theory 

of neural netw
orks that related the functioning of the brain to the then infant field of digital com

puters. T
hey m

ade the 
follow

ing assum
ptions:

• neuron signals are all-or-none

• a certain fixed num
ber of synapses m

ust be excited w
ithin a latent period of addition to excite the neuron

• the num
ber of synapses is independent of previous activity and position on the neuron

• the only significant delay is synaptic delay

• there are excitatory and inhibitory synapses

• structure of the net does not change w
ith tim

e

W
ith the right choice of param

eters, the M
cC

ulloch-Pitts neuron can do various logical operations.

8
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R
eview

 o
f B

asic L
o

g
ical O

p
eratio

n
s

B
efore looking at the M

cC
ulloch-Pitts m

odel, let's review
 sim

ple tw
o-input logical functions w

here the inputs are a and b, 
and the output is c. Inputs and outputs can take on only tw

o states {False, T
rue}=

{0,1}.

‡
Inclusive O

R
: O

r[ ]

T
he output of a tw

o-input inclusive O
R

 is false (1) if and only if both inputs are false. Y
ou can use "C

" program
m

ing style 
notation:

x
 
=
 
T
r
u
e
;
 
y
 
=
 
F
a
l
s
e
;

x
 
|
|
 
y

...or try the built-in
 function

 notation: O
r[x,y]

‡
A

N
D

: A
nd[ ]

A
nd[] outputs true if and only if both inputs are true. 

A
n
d
@
x
,
y
D

T
ry A

N
D

 w
ith C

 style notation: x&
&

y

C
om

posite functions, e.g. define M
ylogicalfunction

M
y
l
o
g
i
c
a
l
f
u
n
c
t
i
o
n
[
a
_
,
b
_
]
 
:
=
 
O
r
[
A
n
d
[
N
o
t
[
a
]
,
b
]
,
b
]
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W
hat input com

binations produce a "T
rue" output for the logical function"E

xclusive O
R

": X
or[ ]?

M
cC

u
llo

ch
-P

itts: In
clu

sive
 O

R
, A

N
D

L
et's construct a M

cC
ulloch-Pitts neuron to com

pute O
R

 and A
N

D
. For sim

plicity, let's set alpha to zero (no inhibition).T
he 

M
cC

ulloch-Pitts neuron sum
s its (binary) inputs, tests to see if the sum

 is bigger or less than the threshold. If bigger or 
equal, the output is set to 1, otherw

ise it is set to 0.

W
e can m

odel the M
cC

ulloch-Pitts neuron's response like this:

M
c
C
u
l
l
o
c
h
P
i
t
t
s
@
a
_
,
b
_
,
t
_
D
:
=
I
f
@
a
+
b
>
=
t
,
1
,
0
D
;

T
he M

cC
ulloch-Pitts neuron is said to be com

puting threshold logic.

‡
Inclusive O

R

Set the threshold to 1, and find out w
hat kind of function the neuron is com

puting:

c =
 9

1
if

a
+

b
r

1
0

otherw
ise

M
c
C
u
l
l
o
c
h
P
i
t
t
s
@
1
,
1
,
1
D

11

T
ry it out for various values of a and b. 

‡
T

ruth
 tables

T
here are only 2 inputs w

ith 2 possible values each, so let's list all the neuron's possible responses, defining a truth table. 
W

e use tw
o M

athem
atica functions, T

able[], and F
latten[] to define a list that w

e'll call truthtable. T
able[] is used to 

m
ake lists, and because w

e have tw
o indices (a, b), and a list as the first argum

ent to T
able[], it m

akes a list of lists of lists. 

T
a
b
l
e
@
8
a
,
b
,
M
c
C
u
l
l
o
c
h
P
i
t
t
s
@
a
,
b
,
1
D
<
,
8
a
,
0
,
1
<
,
8
b
,
0
,
1
<
D

8
8
8
0
,
0
,
0
<
,
8
0
,
1
,
1
<
<
,
8
8
1
,
0
,
1
<
,
8
1
,
1
,
1
<
<
<
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Sidenote: E
num

erating all possible com
binations crops up so often in m

athem
atics that M

athem
atica has a special function 

O
uter[] function that can be used to com

pute functions on all possible com
binations (see A

ppendix).  E
.g. T

ry O
uter[L

ist,{-
False,T

rue},{False,T
rue},{False,T

rue}]. T
his is just one use of O

uter[ ]. L
ater w

hen w
e study H

ebbian learning, w
e'll use 

O
uter to produce all possible products of inputs and outputs in a neural netw

ork. L
earning w

eights are proportional to these 
"outer products".  O

uter[ ] is also useful for calculating the covariance betw
een variables.

T
he above list has dim

ensions 2x2x3 (because of the extra curly brackets). W
e use F

latten[,1] to flatten truthtable to level 
1 to convert it to a 4x3 m

atrix. T
hen w

e can display it in "truth table" form
at, and view

 the result in "T
ableForm

", "M
atrix-

Form
" or "T

raditionalForm
" (w

hich is the default in M
athem

atica).

t
r
u
t
h
t
a
b
l
e
=
F
l
a
t
t
e
n
@

T
a
b
l
e
@
8
a
,
b
,
M
c
C
u
l
l
o
c
h
P
i
t
t
s
@
a
,
b
,
1
D
<
,
8
a
,
0
,
1
<
,
8
b
,
0
,
1
<
D
,
1
D
ê
ê
T
a
b
l
e
F
o
r
m

0
0

0

0
1

1

1
0

1

1
1

1

Sidenote: M
athem

atica provides a w
ide range of list operations w

hich you can read about in "L
ists and M

atrices: L
ist 

O
perations" in the B

uilt-in F
unctions under H

elp. M
athem

atica also allow
s type-m

ixing in lists, so for exam
ple w

e can 
insert labels into our truthtable like this

I
n
s
e
r
t
@
t
r
u
t
h
t
a
b
l
e
,
8
"
a
"
,
"
b
"
,
"
c
"
<
,
8
1
,
1
<
D
ê
ê
T
a
b
l
e
F
o
r
m

a
b

c

0
0

0

0
1

1

1
0

1

1
1

1

C
om

pare w
ith M

athem
atica's predefined O

r[] function:

t
r
u
t
h
t
a
b
l
e
=

F
l
a
t
t
e
n
@
T
a
b
l
e
@
8
a
,
b
,
O
r
@
a
=
=
1
,
b
=
=
1
D
<
,
8
a
,
0
,
1
<
,
8
b
,
0
,
1
<
D
,
1
D
ê
ê
T
a
b
l
e
F
o
r
m

0
0

F
a
l
s
e

0
1

T
r
u
e

1
0

T
r
u
e

1
1

T
r
u
e

T
ableForm

 can also be specified as a function T
ableF

orm
[ ]. H

ere is another w
ay of displaying headings on a T

able. T
his 

m
ethod doesn't add a row

 to your list:

T
a
b
l
e
F
o
r
m
@
t
r
u
t
h
t
a
b
l
e
,
T
a
b
l
e
H
e
a
d
i
n
g
s
-
>
8
8
<
,
8
"
a
"
,
"
b
"
,
"
c
"
<
<
D
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E
xercise: A

N
D

Find a threshold value that w
ill enable a M

cC
ulloch-Pitts neuron to realize the A

nd[] function w
hose truth table is show

n 
below

. 

t
r
u
t
h
t
a
b
l
e
=
F
l
a
t
t
e
n
@
T
a
b
l
e
@
8
a
,
b
,
A
n
d
@
a
=
=
1
,
b
=
=
1
D
<
,
8
a
,
0
,
1
<
,
8
b
,
0
,
1
<
D
,
1
D
;

T
a
b
l
e
F
o
r
m
@
t
r
u
t
h
t
a
b
l
e
,
T
a
b
l
e
H
e
a
d
i
n
g
s
-
>
8
8
<
,
8
"
a
"
,
"
b
"
,
"
c
"
<
<
D

a
b

c

0
0

F
a
l
s
e

0
1

F
a
l
s
e

1
0

F
a
l
s
e

1
1

T
r
u
e
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M
ain

 co
n

clu
sio

n
s

It is straightforw
ard to show

 that N
ot can be im

plem
ented w

ith the inhibitory input. A
nd, O

r, and N
ot are a com

plete set 
in the sense that any logical operation can be built out of them

. 

M
ain result of 1943 paper: 

A
ny finite logical expression can be realized by M

cC
ulloch-P

itts neurons. 

T
his gave rise to the idea that the brain w

as very m
uch like a digital com

puter. John von N
eum

ann m
ade explicit reference 

to the M
cC

ulloch-Pitts m
odel in his fam

ous 1945 technical report on the E
D

V
A

C
.

H
ow

 good is the M
cC

ulloch-Pitts m
odel? T

he determ
inistic com

puter view
 of the brain did not hold under close exam

ina-
tion.

O
ver the next few

 decades, progress in theory and experim
ental findings led to a significant change in the w

ay neural 
system

s w
ere seen to operate. T

oday m
any people perfer to think of neural netw

orks as doing statistical pattern process-
ing, rather than determ

inistic logical com
putation.

T
he developm

ents that led to this change of view
 included:

• inform
ation theory and statistical decision theory

em
phasized the statistical nature of inform

ation transm
ission and processing in the presence of  uncertainty and 

noise  that w
as m

ore characteristic of  "real w
orld" inform

ation processing.

 • Psychophysics and signal detection theory show
ed the im

portance of noise, false alarm
s, in hum

an perception 
and decision m

aking

• Physiological data on inherent statistical and analog nature of sensory  coding by neurons  becam
e apparent, e.g. 

input  intensities are probably coded in term
s of average frequency of  spike trains,  not  in term

s of a precise  sequence--
but this is still  debated. T

he M
cC

ulloch-Pitts m
odel is a structure-less discrete tim

e m
odel--sensory experim

ents sug-
gested that  "structure-less continuous signal, and continuous-tim

e" m
odels w

ould be better.

• H
odgkin-H

uxley m
odel of neural discharge added substantial richness to our understanding of the m

echanism
 of 

spike generation, and neural conduction.

A
round 1956, from

 his deathbed, John von N
eum

ann w
rote: 

"T
he language of the brain is not the language of m

athem
atics" and

"..the m
essage-system

 used
 in the nervous system

, as described in the above, is of an essentially statistical  charac-
ter. In other w

ords w
hat m

atters are not the precise positions of definite m
arkers, digits, but the statistical charac-

teristics of their occurrence, i.e. frequencies of the periodic or nearly periodic pulse-trains, etc." Italics are his.

H
e predicted that brain theory w

ould eventually com
e to resem

ble the physics of statistical m
echanics and therm

odynam
-

ics. L
ater on in this course, w

e'll see how
 von N

eum
ann's prediction has com

e true, at least in theoretical m
odeling of 

brain functioning. (V
on N

eum
ann died in February, 1957)

L
et us now

 exam
ine m

ore closely the rationale for  continuous-response, and continuous-tim
e m

odels, and look at som
e 

sim
ple m

odels of the neuron that incorporate a frequency response. T
hen w

e w
ill form

ally introduce the "generic neuron 
m

odel" that w
e w

ill use for m
ost of this course.
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In
teg

rate
 an

d
 fire m

o
d

el o
f th

e n
eu

ro
n

T
h

e in
teg

rate-an
d

-fire
 m

o
d

el" o
f th

e n
eu

ro
n

O
ne m

ajor lim
itation of the M

cC
ulloch-Pitts m

odel is that it assum
ed that the fundam

ental language of neural com
m

unica-
tion w

as binary. From
 sensory studies, w

e know
 that neurons often encode inform

ation about stim
ulus intensity in term

s of 
rate of firing. L

et's see how
 this m

ight arise w
ith som

e sim
ple assum

ptions about how
 action potentials are generated.

L
et V

(t), and s(t)  represent the m
em

brane voltage potential and stim
ulus input (ionic current) to a neuron, respectively. 

B
ecause of the m

em
brane's capacitance, the rate of change of the m

em
brane potential is proportional to the input current, 

and so over tim
e the potential, V

(t) grow
s as m

ore and m
ore current pum

ps into the cell. W
hen V

(t) reaches som
e critical 

value, an action potential is generated, after w
hich the neuron returns to it's resting state, and begins integrating again. W

e 
can m

odel the rate of change in voltage, up to, but not including the action potential event, as:

(1)
dV

/dt=
(1/C

) s(t)
T

his equation com
es from

 basic electronics that tells us that the charge across a capacitor is proportional to the voltage: q =
 

C
V

, w
here C

 is a constant called the capacitance. C
urrent, s,  is the rate of change of charge: s  =

 dq/dt =
 C

 dV
/dt. For 

sim
plicity, w

e'll let the capacitance C
=

1, and integrate to obtain the voltage change, V
(t), betw

een tim
e t1 and t2:

(2)
V

(t)=Ÿt1 t2sHtL „
t

For sm
all tim

e intervals, and a sm
ooth input, the integral is approxim

ately the area of the rectangle under s (w
here s is 

plotted against t):

(3)
q=Ÿt1 t2sHtL „

t≈ (t2-t1)s =
T

s

A
fter tim

e ΤΤ ΤΤ
, the neuron's potential increases up to som

e point, say θθ θθ. L
et θθ θθ be the critical  threshold point at w

hich a spike 

is generated, after w
hich tim

e the voltage gets reset. So the tim
e (or period, T

) betw
een spikes is θθ θθ/s. T

he frequency of firing 

is the reciprocal of the period

(4)
1ÅÅÅÅÅT

=
sÅÅÅÅq

=
f

So w
e've show

n that: the frequency of firing, f,  is proportional to the input current level, s.

A
s w

e w
ill see below

, this m
odel assum

es that the m
em

brane integrates current w
ith no leakage--i.e. it is a pure capacitance, 

w
ith no resistance. W

e can im
prove the m

odel by including both a resistive and capacitance elem
ents to the equation--this is 

a leaky integrate-and-fire or "forgetful integrate-and-fire" m
odel. T

he calculus gets a bit m
ore sophisticated, so w

e'll use 
M

athem
atica to solve the equations for us.

So in a m
om

ent, w
e w

ill derive the relationship betw
een stim

ulus input level and the frequency of firing for the "leaky" or 
"forgetful integrate-and-fire" m

odel. First, w
e go over som

e m
ore M

athem
atica  basics, and then develop a few

 tools. 
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M
o

re M
ath

em
atica: ru

les, fu
n

ctio
n

s, an
d

 d
erivatives

R
u

les an
d

 d
efin

in
g

 fu
n

ctio
n

s. 

In M
athem

atica, you can define functions in term
s of rules. O

ne use of rules is to define functions over specific ranges. For 
exam

ple,

C
l
e
a
r
[
s
t
e
p
]
 
(
*
 
I
f
 
y
o
u
'
v
e
 
b
e
e
n
 
p
l
a
y
i
n
g
 
w
i
t
h
 
t
h
e
 
d
e
f
i
n
i
t
i
o
n
,
 
i
t
 
i
s
 
a
 
g
o
o
d
 

i
d
e
a
 
t
o
 
c
l
e
a
r
 
i
t
 
*
)

s
t
e
p
[
x
_
]
 
:
=
 
1
 
/
;
 
 
x
 
>
=
 
0

s
t
e
p
[
x
_
]
 
:
=
 
-
1
 
/
;
 
x
 
<
 
0

H
ere /; m

eans the function is defined w
ith the follow

ing rule. T
he rules can be incom

patible and M
athem

atica w
ill evaluate 

the rules in a specific order, usually the order that you specified. Y
ou can find out w

hat order the rules w
ill be evaluated by 

typing ?step
. T

he C
lear[] function clears any prior definition of the function step[]. C

lear can take m
ultiple argum

ents (e.g. 
C

lear[f,g,h]).

P
l
o
t
[
s
t
e
p
[
x
]
,
 
{
x
,
 
-
3
,
 
3
}
,
 
A
x
e
s
-
>
F
a
l
s
e
]

T
he rule for replacing a variable w

ith a value in an expression is denoted by the operator /. m
eaning given that and ->

 
m

eaning goes to:

d
 
+
 
2
 
e
 
/
.
 
d
-
>
3
 
e

5
 
e

D
erivatives

 an
d

 in
teg

rals.

 T
he derivative of f[x],  w

ith respect to x is D
[f[x], x]. For exam

ple, here is the derivative of x^3:
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D
[
x
^
3
,
 
x
]

 
 
 
2

3
 
x

W
e can use M

athem
atica to calculate the indefinite integral of this function:

I
n
t
e
g
r
a
t
e
[
3
 
x
^
2
,
 
x
]

 
3
x

Y
ou can also do a num

erical integration, w
hich is particularly useful w

hen a closed form
 solution isn't available:

N
I
n
t
e
g
r
a
t
e
[
3
 
x
^
2
,
 
{
x
,
 
0
,
 
2
}
]

8
.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3

D
ifferen

tial eq
u

atio
n

s

‡
 Som

e illustrations of differential equation
 solution

T
he dynam

ics of m
any natural system

s can be described in term
s of differential equations. L

ater on w
e w

ill see how
 the 

dynam
ics of m

odels of large scale neural system
s can be described in term

s of coupled differential equations. A
 differential 

equation captures a set of constraints on the rates of change of som
e dependent variables. G

iven these rates of change, w
e 

w
ould often like to find out how

 the dependent variable itself changes w
ith tim

e. In the above integrate and fire m
odel, w

e 
used the result from

 basic electronics that tells us that the charge across a capacitor is proportional to the voltage: q =
 C

V
, 

w
here C

 is a constant called the capacitance. C
urrent, s,  is the rate of change of charge: s  =

 dq/dt =
 C

 dV
/dt.

T
o illustrate, suppose, w

e know
 that s[t] =

 cos(t), and that at tim
e t=

0, V
=

0, then w
hat is the dependent variable V

(t)? 

D
S
o
l
v
e
[
{
V
'
[
t
]
 
-
 
(
1
/
C
)
 
C
o
s
[
t
]
 
=
=
 
0
,

V
[
0
]
 
=
=
 
0
}
,
 
V
[
t
]
,
 
t
]

99VHtLØ
sinHtL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

C
==

Y
ou have probably noticed that this problem

 could have been easily solved by integration, (e.g. using Integrate[]). B
ut as 

you w
ill see below

 for the leaky integrate-and-fire neuron m
odel, you can't alw

ays sim
ply solve an integral to find the 

solution. In particular, this happens w
hen the rate of change of V

 depends on V
 itself. For exam

ple, here is a second order 
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(second order because it involes a second derivative) equation for an oscillator. T
he acceleration of a m

ass on an ideal 

spring is proportional to the displacem
ent: d 2X

/dt 2 =
 - k x. L

et k =
 1, and assum

e initial conditions X
[0] =

0, X
'[0] =

 1, then 

D
Solve tells us that the m

ass on the spring w
ill oscillate sinusoidally:

D
S
o
l
v
e
[
{
X
'
'
[
t
]
 
+
 
 
X
[
t
]
 
=
=
 
0
,

X
[
0
]
 
=
=
 
0
,
 
X
'
[
0
]
 
=
=
 
1
}
,
 
X
[
t
]
,
 
t
]

8
8
X
@
t
D
Ø
S
i
n
@
t
D
<
<

W
hat is the solution

 if the initial speed
 is zero and the start position

 is zero too?

W
hat if the initial speed

 is zero, but you pull back the end of the spring to -1?

T
h

e "L
eaky in

teg
rate-an

d
-fire

 m
o

d
el" o

f th
e n

eu
ro

n
 u

sin
g

 D
S

o
lve[]

T
he integrate and fire m

odel of the neuron is a sim
ple extension of the integrate and fire m

odel w
here w

e now
 assum

e (up 
until depolarization threshold, q) that the neuron m

em
brane is a passive resistor and capacitor w

ith som
e input current 

source. T
he current input leads to an increase in the resting potential until sufficient depolarization triggers an action 

potential. 

W
e w

ill develop the m
odel in tw

o parts. O
ur goal is to find how

 firing rate depends on the input current and threshold. First, 
w

e'll derive the relationship betw
een m

em
brane potential and tim

e. T
hen w

e w
ill derive the relationship betw

een frequency 
of firing and input current, sim

ilar to how
 w

e did it for the sim
ple integrate-and-fire m

odel above.

T
he input current, s[t] is conserved and is determ

ined by the sum
 of the current through the resistance and the capacitor.  

iR
 = V

/R
ic

 =C
 d

V
/d

t

 B
y K

irchoff's current law
, the current in  equals the current out: :

s =
 iR

 +
 iC

 , or

using O
hm

's law
, and the definitions of capacitance (q =

 C
V

) and current (i=
dq/dt):

s[t] =
 V

/R
 +

 C
 dV

/dt, or rearranging

dV
/dt =

 s/C
 - V

/(R
C

). 
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(W
hat if R

->¶
?)

W
e can find the solution using the M

athem
atica  function D

Solve, given the initial conditions that at tim
e t=

0, the voltage is 
a. L

et R
C

 =
1D
S
o
l
v
e
[
{
V
'
[
t
]
 
+

        V
[
t
]
 
-
 
s
/
C
 
=
=
 
0
,

V
[
0
]
 
=
=
 
a
}
,
 
V
[
t
]
,
t
]

{
{
V
[
t
]
 
-
>
 
(
E
x
p
[
-
t
]
*
(
E
x
p
[
t
]
*
s
 
+
 
C
*
(
a
 
-
 
s
/
C
)
)
)
/
C
}
}

A
fter t seconds, the voltage reaches threshold, q, and a spike occurs. W

e can solve the above equation in term
s of t: 

S
o
l
v
e
[
q
 
=
=
 
(
a
*
C
 
-
 
s
 
+
 
E
^
t
*
s
)
/
(
C
*
E
^
t
)
,
 
t
]

Solve::ifun :
 Inverse

functions
are

being
used

by
Solve,so

som
e

solutions
m

ay
notbe

found.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a
 
C
 
-
 
s

{
{
t
 
-
>
 
L
o
g
[
-
(
-
-
-
-
-
-
-
-
-
-
-
)
]
}
}

 
 
 
 
 
 
 
 
 
 
 
 
 
-
-
-
-
-
-
-
-
-
-
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
s
 
-
 
C
 
t
h
e
t
a

E
 is 2.718..., and E

^x is the sam
e as E

xp[x]. A
s w

e saw
 before, the frequency is 1/t and is thus given by the follow

ing 
function:

f
r
e
q
[
s
_
,
C
_
,
a
_
,
q
_
]
 
:
=

1
/
(
L
o
g
[
(
-
(
a
*
C
)
 
+
 
s
)
/
(
s
 
-
 
C
*
q
)
]
)
;

If w
e plot it for a capacitance of 1, and threshold of 1, frequency of firing as a function of input strength (current) looks like:

P
l
o
t
[
f
r
e
q
[
s
,
1
,
0
,
1
]
,
 
{
s
,
 
0
,
 
5
}
,
 

P
l
o
t
R
a
n
g
e
-
>
{
{
0
,
5
}
,
{
0
,
5
}
}
,
A
s
p
e
c
t
R
a
t
i
o
-
>
1
,
A
x
e
s
L
a
b
e
l
-
>
{
"
I
n
p
u
t
 
c
u
r
r
e
n
t
,
 

s
"
,
"
F
r
e
q
u
e
n
c
y
"
}
]
;

1
2

3
4

5
I
n
p
u
t
c
u
r
r
e
n
t
,
s

1 2 3 4 5
F
r
e
q
u
e
n
c
y
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T
o review

 w
hat w

e've done, the "leaky integrate and fire" neuron show
s tw

o properties characteristic of m
any neurons. 

First, it show
s a threshold--it doesn't begin firing until the input current is sufficiently high. Second, once threshold is 

exceeded, the frequency of firing grow
s in proportion to the input current. O

ne characteristic w
e haven't m

odeled is the 
absolute refractory period.  H

ow
 w

ould the shape of the above plot change if w
e included the effects of the absolute refrac-

tory period?

R
eferen
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B
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H
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R
all, W
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A
p

p
en

d
ix

M
athem

atica fu
n

ctio
n

s
 fo

r g
en

eratin
g

 an
d

 p
lo

ttin
g

 lists

‡
U

sing T
ables to m

ake L
ists. 

O
ften w

e w
ill have to define a list of input values to a neuron, or a list of synaptic w

eights. A
 convenient w

ay of defining 
lists in M

athem
atica  is to use the T

able[] function. For exam
ple, you can m

ake a list w
hose elem

ents are the squares of the 
elem

ent location. 

s
 
=
 
T
a
b
l
e
[
x
^
2
,
{
x
,
 
1
,
 
1
6
}
]
;

Y
ou can also use T

able to m
ake a list of lists, H

ere is a 16x16  m
atrix:

A
 
=
 
T
a
b
l
e
[
x
^
2
*
C
o
s
[
2
 
P
i
 
(
1
/
8
)
 
y
]
,
 
{
x
,
1
,
1
6
}
,
 
{
y
,
1
,
1
6
}
]
;
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T
o graph a one-dim

ensional list, you have to use L
istPlot:

L
i
s
t
P
l
o
t
[
s
]
;

T
o graph a tw

o-dim
ensional list, you have to use L

istPlot3D
:

L
i
s
t
P
l
o
t
3
D
[
A
]
;

O
th

er M
athem

atica fu
n

ctio
n

s fo
r g

en
eratin

g
 tru

th
 tab

les

‡
T

he O
uter[ ] function

L
et's list all possible input states a:

a
=
8
F
a
l
s
e
,
T
r
u
e
<
;

A
ll possible pairs of inputs can be obtained using the O

uter[] function w
ith the L

ist function as the first argum
ent:

O
u
t
e
r
@
L
i
s
t
,
a
,
a
D

8
8
8
F
a
l
s
e
,
F
a
l
s
e
<
,
8
F
a
l
s
e
,
T
r
u
e
<
<
,
8
8
T
r
u
e
,
F
a
l
s
e
<
,
8
T
r
u
e
,
T
r
u
e
<
<
<

If w
e w

ant a function, say logical O
r,  of all possible com

binations of the inputs, w
e w

rite:

O
u
t
e
r
@
O
r
,
a
,
b
D

8
8
F
a
l
s
e
,
T
r
u
e
<
,
8
T
r
u
e
,
T
r
u
e
<
<

A
nd if w

e w
ant to sum

m
arize the O

r function w
ith a  truth table, w

e can just put it together by hand:

Inclusive
 O

R

a
 b

 
c

--------------------

0
 0

 
0

0 
1 

1

1 
0 

1

1 
1 

1

...or to autom
ate the process of truth table generation, w

e can create the follow
ing rather m

essy function com
posed of a 

bunch of built-in list m
anipulation functions:
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‡
T

ruth
 table function

t
r
u
t
h
t
a
b
l
e
@
l
o
g
i
c
f
u
n
c
t
i
o
n
_
D
:
=

T
a
b
l
e
F
o
r
m
@
T
r
a
n
s
p
o
s
e
@
A
p
p
e
n
d
@
T
r
a
n
s
p
o
s
e
@
F
l
a
t
t
e
n
@
O
u
t
e
r
@
L
i
s
t
,
a
,
a
D
,
1
D
D
,

F
l
a
t
t
e
n
@
O
u
t
e
r
@
l
o
g
i
c
f
u
n
c
t
i
o
n
,
a
,
b
D
D
D
D
,

T
a
b
l
e
H
e
a
d
i
n
g
s
-
>
8
8
<
,
8
"
a
"
,
"
b
"
,
"
o
u
t
p
u
t
"
<
<
D

t
r
u
t
h
t
a
b
l
e
@
O
r
D

a
b

o
u
t
p
u
t

F
a
l
s
e

F
a
l
s
e

F
a
l
s
e

F
a
l
s
e

T
r
u
e

T
r
u
e

T
r
u
e

F
a
l
s
e

T
r
u
e

T
r
u
e

T
r
u
e

T
r
u
e

‡
3-input truth tables

t
r
u
t
h
t
a
b
l
e
3
@
l
o
g
i
c
f
u
n
c
t
i
o
n
_
D
:
=

T
a
b
l
e
F
o
r
m
@
T
r
a
n
s
p
o
s
e
@
A
p
p
e
n
d
@
T
r
a
n
s
p
o
s
e
@
F
l
a
t
t
e
n
@
O
u
t
e
r
@
L
i
s
t
,

8
F
a
l
s
e
,
T
r
u
e
<
,
8
F
a
l
s
e
,
T
r
u
e
<
,
8
F
a
l
s
e
,
T
r
u
e
<
D
,
2
D
D
,
F
l
a
t
t
e
n
@

O
u
t
e
r
@
l
o
g
i
c
f
u
n
c
t
i
o
n
,
8
F
a
l
s
e
,
T
r
u
e
<
,
8
F
a
l
s
e
,
T
r
u
e
<
,
8
F
a
l
s
e
,
T
r
u
e
<
D
D
D
D
,

T
a
b
l
e
H
e
a
d
i
n
g
s
-
>
8
8
<
,
8
"
a
"
,
"
b
"
,
"
c
"
,
"
o
u
t
p
u
t
"
<
<
D
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t
r
u
t
h
t
a
b
l
e
2
@
A
n
d
D

a
b

c
o
u
t
p
u
t

F
a
l
s
e

F
a
l
s
e

F
a
l
s
e

F
a
l
s
e

F
a
l
s
e

F
a
l
s
e

T
r
u
e

F
a
l
s
e

F
a
l
s
e

T
r
u
e

F
a
l
s
e

F
a
l
s
e

F
a
l
s
e

T
r
u
e

T
r
u
e

F
a
l
s
e

T
r
u
e

F
a
l
s
e

F
a
l
s
e

F
a
l
s
e

T
r
u
e

F
a
l
s
e

T
r
u
e

F
a
l
s
e

T
r
u
e

T
r
u
e

F
a
l
s
e

F
a
l
s
e

T
r
u
e

T
r
u
e

T
r
u
e

T
r
u
e
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