
suo!!ounı u!-tו!ng

 You can go back and select an expression by clicking on the brackets on the far right. These brackets are features of the user
interface and serve to organize text and calculations into a Notebook with outlining features. You can group or ungroup
Front-end stuff

Compare ($\left.\mathbf{2}^{\wedge .000000000001}\right)^{\wedge} 1000000000000$ with $\left(\mathbf{2}^{\wedge}(1 / 1000000000000)\right)^{\wedge} \mathbf{1 0 0 0 0 0 0 0 0 0 0 0 0}$ also interpreted as multiplication.

z
Defining functions
Soon, you will use Mathematica to model the generic connectionist neuron. Part of the model will require defining a
function that suppresses large inputs. Here is an example:

$$
\text { squash }\left[\mathbf{x}_{\mathbf{\prime}}\right]:=\mathrm{N}[1 /(1+\operatorname{Exp}[-\mathbf{x}+4])] \text {; }
$$

The underscore, $\mathbf{x}_{\mathbf{-}}$ is important because it tells Mathematica that x represents a slot, not an expression.

Also note that our squashing function was defined with $\mathbf{N}[$. Mathematica trys to keep everything exact as long as possible
and thus will try to do symbol manipulation if we don't explicitly tell it that we want numerical representations and
calculations.

You can get information more about a function, by clicking on the resulting link more.
Did it return log to the base 10 or e? Check the definition by typing ?Log

This squashing function is often used to model the small-signal compression and large signal saturation characteristics of
neural output.

 Graphics \& more function defintions
 \longrightarrow

The Neuron - overview of structure

6
Now evaluate $\mathbf{r} 1$ and $\mathbf{r 2}$ three times each. What is the difference between the two definitions?
Plot squash $[\mathrm{x}]+\mathrm{r} 2$ for $-5<\mathrm{x}<5$ Now plot $\operatorname{squash}[\mathrm{x}]+\mathrm{r} 1$ for $-5<\mathrm{x}<5$

Information flow: dendrites -> (soma -> axon hillock) $->$ axon $->$ terminal buds
Basic Structure

occur, where the voltage difference increases). voltage. (Depolarization means the voltage potential difference across the membrane decreases; hyperpolarization can also sufficient potential change to reach threshold, an active process of depolarization kicks in leading to a spike in membrane body. There is passive or electrotonic conduction along the dendrites up to the axon hillock at which point, if there is a Certain neurons are equipped with a specialized process called an axon that serves to "digitize" the data into all-or-none
responses (voltage changes) called action potentials or spikes. This digitization occurs at the axon hillock near the cell How can the range and speed be increased?

uoxe pue צроІІ! ب uoxy ■

 periodic points (Nodes of Ranvier) the myelin sheath is interrupted where high extracellular concentrations of $\mathrm{Na}+$ ions

 From Segev (1992)

- Solutions of the cable equation active properties. To model the active properties, one needs a more complicated set of differential equations: the Hodgkin-
Huxley equations. A. illustrates an RC-circuit at a single point of passive membrane. B is the temporal response to a step current input. C
illustrates additional variable conductance components that model the electrical processes of spike generation (panel D)-the

Clear $[\mathrm{V}] ;$
$\mathrm{V}\left[\mathrm{x}_{-}\right]:=\mathrm{V} 0 \operatorname{Exp}[-\mathrm{x} / \lambda] ;$
Using Mathematica's derivative function $D[]$ to verify the solution. Differentiate $V(x)$ twice with respect
to x, where $V(x)$ is re-defined over positive x values (it is simpler to treat positive and negative x
separately):

|Plot[V[x], $\{x,-4,4\}$, PlotRange $->\{0,1\}]$;
$\mathrm{vo}=1 ;$ lambda $=2 ; \quad$ (*Space constant*)
$\mathrm{V}\left[\mathrm{x}_{-}\right]:=\mathrm{vo} \operatorname{Exp}[-\mathrm{Abs}[\mathrm{x}] /$ lambda $] ;$
$\gamma_{/\left(x_{-}\right.} \partial^{0} \Lambda=(x)_{\Lambda}$
The solution of this equation (which you can verify be differentiating twice, see exercise below) is a standard result. The
voltage drops exponentially. Lambda is the "space constant", which for an axon would be about 3 to 5 mm . The solution of this equation (which you can verify be differentiating twice, see e
voltage drops away from zero. Steady-state means that the voltage is no longer changing with time, or in another words that
$\frac{\partial V}{\partial t}=0$. Space. In a later Notebook, we'll see how to use Mathematica to find solutions to equations, including differential equa-
tions. For now, let's take the steady-state solution for a fixed voltage, V0, at a specific place, say $x=0$, and see how the

 Now let's see how membrane voltage changes with time at a single location by plotting the dynamical solution to the cable

increased. This leads to the idea of the neuron as a "voltage-to-frequency" converter. But it gets a because neurons often show "adaptation" and the firing rate declines for a fixed step input. More on that later increased. This leads to the idea of the neuron as a "voltage-to-frequency" converter. But it gets a little more complicated of a particular frequency (e.g. if the absolute refractory period is 1 msec , wed expect a maximum spike frequency of 1000 signal. This is one of the factors that leads to the idea of frequency coding. A constant step input leads to a series of spikes be sufficient for another spike. The ion pumps need time to restore some of the ionic imbalance.
Relative refractory period- threshold gradually lowers with time. One can elicit a spike, but it re
Absolute refractory period is a brief time ($\sim 1 \mathrm{msec}$) right after the depolarization where no strength of input current would Refractory period: absolute, and relative above). The general equations due to Hodgkin \& Huxley equations are more complicated that the cable equation
Time properties To quantitatively model these voltage changes, one needs to add extra terms to the RC circuit (panels C and D
above). The general equations due to Hodgkin \& Huxley equations are more complicated that the cable equation.

Action potentials, spike trains are nature's solution to the problem of fast long distance signalling.

K01102!, \%od90

Active (non-linear) properties
Our generic connectionist model introduced later will assume linear algebraic summation.
algebraic? sometimes but not always
угоџ! шохе

Two types: excitatory (make the cell more likely to fire) and inhibitory (less likely to fire) postsynaptic potentials
long duration - fast EPSP is 1 to 2 msec rise time and 3 to 5 msecs decay (action potential $1-2 \mathrm{msecs}$)

pre-synaptic potential --across the membrane of the terminal of the "transmitting" neuron Some definitions: ио!ңе»бәџи э!џdeикS
 Ache ran
the membrane. Action potential at one location provides the depolarization stimulus at a nearby spatial location, travels like a lit fuse down Space properties
..and the solution to
Lect_2_TheNeuron.nb

 ion channels open and close probabilistically, quantized

But spike generation isn't a strictly deterministic process. There is "noise" or random fluctuation that can

 Further, if the slow potential goes above threshold, frequency of firing is related to size of slow potential. The slow integrated voltage potential now and then exceeds threshold producing an axon potential. Slow potential at axon hillock waxes and wanes (because of low-pass temporal characteristics and the spatial distribution of
the inputs) depending on the number of active inputs, whether they are excitatory or inhibitory, and their arrival times.

[^0]\[

$$
\begin{aligned}
& 1 \\
& \text { (Enusod }
\end{aligned}
$$
\]

[^1]
[^0]: (2)

[^1]: Lect_2_TheNeuron.nb

