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 d
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N
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m
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alcu
latio

n
s

L
ast tim

e you saw
 how

 you can do arithm
etic. L

et's try som
e other sim

ple operations.

E
valuate 4*3

C
om

pare w
ith 4 3 (i.e. 4 follow

ed by a space, and then 3). N
ote that 4 3, w

here a space separates the digits is 

also interpreted as m
ultiplication. 

C
om

pare (2^
.000000000001)^

1000000000000
 w

ith (2^
(1/1000000000000))^

1000000000000

F
ront-end

 stuff

Y
ou can go back and select an expression by clicking on the brackets on the far right. T

hese brackets are features of the user 
interface and serve to organize text and calculations into a N

otebook w
ith outlining features. Y

ou can group or ungroup 
cells for text, graphs, and expressions in various w

ays to present your calculations. E
xplore these options under C

ell in the 
m

enu.  Y
ou can see the possible cell types under the Style m

enu.

‡
B

y ending an expression
 w

ith ; you can suppress the output--this is V
E

R
Y

 useful later w
hen the output 

m
ight be a list of a 10,000 neural activity levels!

(
3
/
4
)
/
6
;

(
3
 
4
)
/
6
;

T
he m

ost recent result of a calculation
 is given

 by %
, the one before by %

%
, and so forth.  T

ry it on the 

previous tw
o outputs

B
u

ilt-in
 fu

n
ctio

n
s

M
athem

atica has a very large library of built-in functions. T
hey all begin w

ith an uppercase letter and the argum
ents are 

enclosed by square brackets. K
now

ing that, you can often guess the form
 of a function
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T
ry taking the logarithm

 of 8.0

D
id it return log to the base 10 or e? C

heck
 the definition

 by typing ?L
og

Y
ou can get inform

ation m
ore about a function, by clicking on the resulting link m

ore.

T
ry ?E

xp

T
ry ?P

lot

If you type tw
o question m

arks before a function, ??P
lot, you'll get m

ore inform
ation. T

ry it. 

W
hat does the R

andom
[ ] function do?

D
efin

in
g

 fu
n

ctio
n

s

Soon, you w
ill use M

athem
atica  to m

odel the generic connectionist neuron. Part of the m
odel w

ill require defining a 
function that suppresses large inputs. H

ere is an exam
ple:

s
q
u
a
s
h
[
x
_
]
 
:
=
 
N
[
1
/
(
1
 
+
 
E
x
p
[
-
x
+
4
]
)
]
;

T
he underscore, x_ is im

portant because it tells M
athem

atica that x represents a slot, not an expression. 

A
lso note that our squashing function w

as defined w
ith N

[]. M
athem

atica trys to keep everything exact as long as possible 
and thus w

ill try to do sym
bol m

anipulation if w
e don't explicitly tell it that w

e w
ant num

erical representations and 
calculations.
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D
efine a new

 function squashedE
xp[ ] that applies squash

 to an exponentiated
 value (i.e. takes E

xp[x] as 

the argum
ent of squash[ ])

G
rap

h
ics &

 m
o

re fu
n

ctio
n

 d
efin

tio
n

s

L
et's plot a graph of the squash function using the syntax w

e discovered above for -5<
x<

10

P
l
o
t
[
s
q
u
a
s
h
[
x
]
,
 
{
x
,
-
5
,
 
1
0
}
]
;

-
4

-
2

2
4

6
8

1
0

0
.
2

0
.
4

0
.
6

0
.
8 1

T
his squashing function is often used to m

odel the sm
all-signal com

pression and large signal saturation characteristics of 
neural output.

P
lot squashedE

xp[ ] for x going from
 -5 to 5

P
l
o
t
[
{
E
x
p
[
x
]
,
 
s
q
u
a
s
h
e
d
E
x
p
[
x
]
}
,
 
{
x
,
-
5
,
 
5
}
]
;

-
4

-
2

2
4

0
.
5 1

1
.
5 2

E
ven though E

xp grow
s exponentially fast w

ith x (by definition!), squash keeps a lid on it.
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A
sk M

athem
atica for the definition

 of squashedE
xp[ ]

It can be im
portant to check your definitions like this. O

ne reason is that, as w
e w

ill see later, M
athem

atica definitions can 
be built up w

ith m
ultiple constraints. A

nd som
etim

es you m
ight add to a function unw

ittingly and it appears to m
isbehave. 

Y
ou can check your defintion by asking M

athem
atica for it.

:= vs  =

N
ote that w

hen defining a function, w
e used a colon follow

ed by equals ( :=
 ) instead of just an equals sign (=

). W
hen you 

use an equals sign, the value is calculated im
m

ediately. W
hen there is a colon in front of the equals, the value is calculated 

only w
hen called on later. So w

e use :=
 for function definition because w

e need to define the function for later use and 
evaluation.

L
et's define r1 using :=, and

 r2 using =

r
1
:
=
R
a
n
d
o
m
@
D
;

r
2

=
R
a
n
d
o
m
@
D
;
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N
ow

 evaluate r1 and
 r2 three tim

es each. W
hat is the difference betw

een
 the tw

o definitions?

P
lot squash[x]+r2 for -5<x<5

N
ow

 plot squash[x]+r1 for -5<x<5

T
h

e N
eu

ro
n

 - o
verview

 o
f stru

ctu
re
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From
 A

nderson (1995)

B
asic S

tru
ctu

re

Inform
ation flow

: dendrites ->
 (som

a ->
 axon hillock) ->

 axon ->
 term

inal buds
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‡
D

endrites

T
he inform

ation receiving end of a neuron is a tree-like structure consisting of "dendrites" w
ith special processes  or 

connection sites called synapses.  M
uch com

putational pow
er is thought to reside in the strength of connections, and in the 

dendritic tree itself. In this course, w
e w

ill prim
arily exam

ine the com
putational properties of groups of sim

ple neurons, 
rather than aggregates of dendrites in a single neuron.

D
endrites play the role of w

ires that convey inform
ation through changes in voltage. B

ut they behave rather differently than 
copper w

ires.  T
hese neural processes are tubes of ionized cytoplasm

 sitting in a bath of ionized fluid w
hose ionic com

posi-
tion is not that m

uch different from
 "seaw

ater".  T
he inside of these tubes during resting state sits at about m

inus 70 m
illi-

volts relative to the outside of the cell.  T
he tubes are on the order of m

icrons in diam
eter, (but other processes, such as the 

axons discussed below
, can reach half a m

illim
eter or so). A

nd for further com
parison, the m

em
branes m

aking up the tubes 
are on the order of 50 A

ngstrom
s (50 x 10-10 m

eters) thick.

Signal transm
ission is lim

ited by high resistance of the axoplasm
, and  high capacitance of the neural m

em
brane. Inform

a-
tion transm

ission consequences of these properties are:

 • the voltage potential changes have a short range of influence, w
ith the am

plitude decreasing rapidly as one m
oves 

aw
ay from

 the synaptic source.  

• the signals travel relatively slow
ly.

W
e'll take a quantitative look at these facts shortly.

‡
Som

a (or cell body)

• Integrates dendritic signals

• T
he storage of electrical charge across the m

em
brane, and the chem

ical nature of synaptic transm
ission leads to 

tem
poral integration of signals. T

his observation together w
ith spatial integration  of signals from

 the dendritic tree arriving 
at the axon hillock w

ill lead to our basic m
odel of the neuron.
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‡
A

xon hillock
 and axon

H
ow

 can the range and speed be increased? 

C
ertain neurons are equipped w

ith a specialized process called an axon that serves to "digitize" the data into all-or-none 
responses (voltage changes) called action potentials or spikes.  T

his digitization occurs at the axon hillock  near the cell 
body. T

here is passive or electrotonic conduction  along the dendrites up to the axon hillock at w
hich point, if there is a 

sufficient potential change to reach threshold,  an active process of depolarization kicks in leading to a spike in m
em

brane 
voltage. (D

epolarization m
eans the voltage potential difference across the m

em
brane decreases; hyperpolarization can also 

occur, w
here the voltage difference increases).
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T
he action potential signals are carried by rapid (1 m

sec) voltage depolarizations going from
 -70 to +

40 m
V

 via N
a+

 influx, 
and K

+
 outflow

 through the m
em

brane.  From
 the axon hillock on, a m

yelin sheath serves to low
er the capacitance and 

speed up conduction. H
ow

ever it interferes w
ith the regenerative processes that preserve the all-or-none response. A

t 
periodic points (N

odes of R
anvier) the m

yelin sheath is interrupted w
here high extracellular concentrations of N

a+
 ions 

exist w
ith sodium

 gates. W
hen a sm

all depolarization arrives, this decreases m
em

brane conductance allow
ing an increased 

depolarizing influx of N
a+

, regenerating the spike.

‡
T

erm
inal arborization

 and term
inal buds

N
eurons w

ith axons end in a term
inal arborization . T

he term
inal buds m

ake synaptic contacts w
ith the dendrites of subse-

quent neurons, and w
e have the beginnings of a neural netw

ork.  Synaptic contacts can either be electrical or chem
ical, but 

m
ore about these later.
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B
asic electro

p
h

ysio
lo

g
y

P
assive p

ro
p

erties

A
bove w

e noted that the potential m
aintained by ionic im

balance (excess N
a+

 outside, and K
+

 inside). B
alance betw

een  
ionic concentration and electric field forces - determ

ined by the N
ernst  equation (see A

nderson text for a derivation).

W
e noted tw

o problem
s: passing a signal over a long distance and w

ith sufficient speed--B
IG

 problem
 for an organism

 that 
has to transm

it signals fast over a few
 feet. L

et's take a m
ore quantitative look at these problem

s that arise from
 the passive 

electrical properties of neuronal "electronics".

M
odel the passive electrical properties as a function of tim

e :

• A
cross a sm

all portion of the m
em

brane m
odeled by an "R

C
 circuit" w

here R
 stands for resistance, and C

 for 
capacitance.

W
e'll see shortly that there is a tem

poral delay in voltage response characterized by tim
e constant t or rise tim

e.

R
C

-circuits are "low
 pass tem

poral filters", i.e. favor signals w
ith low

 tem
poral frequencies. 

and space:

• If w
e im

agine cascading a series of R
C

-circuits, each connected by additional resistances, w
e have a discrete 

m
odel of a section of 

neural m
em

brane. T
his kind of m

odel is good for com
puter sim

ulation. B
ut a continuous m

odel can 
be solved exactly.

A
 continous m

odel over tim
e and short lengths is by the "C

able equation"  (see pages 25-32 of A
nderson)

W
e'lll see shortly how

 that the cable equation predicts an exponential drop-off of voltage w
ith distance for 

constant current. 
L

ength constant  l ( distance to the 1/e drop-off point or 63%
 drop) is on the order of m

illim
e-

ters.

B
y solving the cable equation governing the voltage change over distance and tim

e, w
e can get a quantitative idea of how

 
voltage drops w

ith distance, and how
 voltage changes w

ith tim
e--change is not instantaneous.
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A
. illustrates an R

C
-circuit at a single point of passive m

em
brane. B

 is the tem
poral response to a step current input. C

  
illustrates additional variable conductance com

ponents that m
odel the electrical processes of spike generation (panel D

)--the 
active properties. T

o m
odel the active properties, one needs a m

ore com
plicated set of differential equations: the H

odgkin-
H

uxley equations.

From
 Segev (1992)

‡
Solutions of the cable equation

T
he cable equation is a (partial) differential equation and is given by:

w
here V

 =
 V

(x,t) is a function of distance x along the m
em

brane and tim
e t. 

12
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Space. In a later N
otebook, w

e'll see how
 to use M

athem
atica  to find solutions to equations, including differential equa-

tions. For now
, let's take the steady-state solution for a fixed voltage, V

0,  at a specific place, say x =
 0, and see how

 the 
voltage drops aw

ay from
 zero. Steady-state m

eans that the voltage is no longer changing w
ith tim

e, or in another w
ords that 

_∑t
∑V

=
0.

 T
he solution of this equation (w

hich you can verify be differentiating tw
ice, see exercise below

) is a standard result. T
he 

voltage drops exponentially. L
am

bda is the "space constant", w
hich for an axon w

ould be about 3 to 5 m
m

. 

V
0
 
=
 
1
;
 
l
a
m
b
d
a
 
=
 
2
;
 
(
*
S
p
a
c
e
 
c
o
n
s
t
a
n
t
*
)

V
[
x
_
]
 
:
=
 
V
0
 
E
x
p
[
-
A
b
s
[
x
]
/
l
a
m
b
d
a
]
;

P
l
o
t
[
V
[
x
]
,
 
{
x
,
-
4
,
4
}
,
 
P
l
o
t
R
a
n
g
e
-
>
{
0
,
1
}
]
;

-
4

-
2

0
2

4

0
.
2

0
.
4

0
.
6

0
.
8 1

U
sing M

athem
atica's derivative function D

[ ] to verify the solution.  D
ifferentiate V

(x) tw
ice w

ith respect 

to x, w
here V

(x) is re-defined
 over positive x values (it is sim

pler to treat positive and negative x 

separately):C
l
e
a
r
@
V
D
;

V
@
x
_
D
:
=
V
0
E
x
p
@
-
x
ê
l
D
;
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N
ow

 let's see how
 m

em
brane voltage changes w

ith tim
e at a single location by plotting the dynam

ical solution to the cable 
equation. W

e'll assum
e no space variation. Standard integration techniques can be used to solve this sim

plified cable 
equation. L

et's assum
e som

e initial conditions.

Suppose a 1 volt step is applied (through som
e resistance to generate a step current change) across the neuron m

em
brane at 

tim
e t=

0. H
ow

 does voltage change w
ith tim

e at a fixed point x? It doesn't im
m

ediately change to 1 volt, but grow
s gradu-

ally. A
 typical tim

e constant t is on the order of 1 or 2 m
sec.

t
 
=
 
1
;
 
(
*
T
i
m
e
 
c
o
n
s
t
a
n
t
*
)

V
[
t
_
]
 
:
=
 
1
 
-
 
E
x
p
[
-
t
/
t
]
;

P
l
o
t
[
{
V
[
t
]
,
 
U
n
i
t
S
t
e
p
[
t
]
}
,
 
{
t
,
-
1
,
6
}
,

P
l
o
t
R
a
n
g
e
-
>
{
0
,
1
.
5
}
,
 
A
x
e
s
O
r
i
g
i
n
-
>
{
-
1
,
0
}
,

P
l
o
t
S
t
y
l
e
-
>
{
R
G
B
C
o
l
o
r
[
1
,
0
,
0
]
,
 
R
G
B
C
o
l
o
r
[
0
,
0
,
1
]
}
]
;

0
1

2
3

4
5

6

0
.
2

0
.
4

0
.
6

0
.
8 1

1
.
2

1
.
4

(U
nitStep is a built-in M

athem
atica function. Y

ou could define your ow
n as: m

yU
nitStepstep[x_] :=

 If[x<0,0,1]; )
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A
ctive (n

o
n

-lin
ear) p

ro
p

erties
 

A
ction potentials, spike trains are nature's solution to the problem

 of fast long distance signalling.

"toilet flush m
odel" - sm

all push of the handle and a little leak, but reach a threshold, and the w
hole thing  goes.

T
o quantitatively m

odel these  voltage changes, one needs to add extra term
s to the R

C
 circuit (panels C

 and D
 

above). T
he general equations due to H

odgkin &
 H

uxley equations are m
ore com

plicated that the cable equation.

T
im

e properties

R
efractory period: absolute, and relative

A
bsolute refractory period is a brief tim

e (~1 m
sec) right after the depolarization w

here no strength of input current w
ould 

be sufficient for another spike. T
he ion pum

ps need tim
e to restore som

e of the ionic im
balance.

R
elative refractory period- threshold gradually low

ers w
ith  tim

e. O
ne can elicit a spike, but it requires a stronger input 

signal. T
his is one of the factors that leads to the idea of frequency coding. A

 constant step input leads to a series of spikes 
of a particular frequency (e.g. if the absolute refractory period is 1 m

sec, w
e'd expect a m

axim
um

 spike frequency of 1000 
spikes/second), but usually m

uch low
er (e.g. 20 spikes/second). T

o get a faster rate, the input voltage w
ould have to be 

increased. T
his leads to the idea of the neuron as a "voltage-to-frequency" converter. B

ut it gets a little m
ore com

plicated 
because neurons often show

 "adaptation" and the firing rate declines for a fixed step input. M
ore on that later.
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Space properties

..and the solution to the rapid decline in voltage signal over distance due to passive properties?

A
ction potential at one location provides the depolarization stim

ulus at a nearby spatial location,  travels like a lit fuse dow
n 

the m
em

brane.

A
nd how

 about the speed problem
?

m
yelin sheath (insulation reduces leakage)

N
odes of R

anvier, action potentials jum
p from

 node to node, up to 30x.

S
yn

ap
tic In

teg
ratio

n

Som
e definitions:

pre-synaptic potential --across the m
em

brane of the term
inal of the "transm

itting" neuron

post-synaptic potential -- across the m
em

brane of the dendrite of the "receiving" neuron 

T
w

o types: excitatory (m
ake the cell m

ore likely to fire) and inhibitory (less likely to fire) post-synaptic potentials

long duration - fast E
PSP

 is 1 to 2 m
sec rise tim

e and 3 to 5 m
secs  decay (action potential 1-2 m

secs)

synaptic delay - about 500 m
icro-seconds.

Interaction
 of synaptic potentials

Im
agine 1000's of synaptic inputs to a single neuron. H

ow
 do they interact?

axon hillock

algebraic? som
etim

es but not alw
ays

O
ur generic connectionist m

odel introduced later w
ill assum

e linear algebraic sum
m

ation.
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A
nderson (1995). Interaction of inhibitory postsynaptic potentials (IPSP) and excitatory postsynaptic potentials (E

PSP) can 
be linear (left colum

n, A
) or non-linear (right colum

n, B
). From

 R
all (1967). D

otted line show
s linear prediction.

Q
u

alitative
 su

m
m

ary
 o

f slo
w

 p
o

ten
tial n

eu
ro

n
 m

o
d

el

L
et's sum

m
arize the essential qualitative features of signal integration and transm

ission of a neuron w
ith w

hat is called the 
"slow

 potential m
odel".

Lect_2_T
heN

euron.nb
17

Slow
 potential at axon hillock w

axes and w
anes (because of low

-pass tem
poral characteristics and the spatial  distribution of 

the inputs) depending on the num
ber of active inputs, w

hether they are excitatory or inhibitory, and their arrival tim
es.

T
he slow

 integrated voltage potential now
 and then exceeds threshold producing an axon potential.

Further, if the slow
 potential goes above threshold, frequency of firing is related to size of slow

 potential.

C
aveat: N

ot all signal transm
ission in neural com

putation is done through action potentials. For exam
ple, of the 6 types of 

cells in the retina of your eye, essentially 1 type, the ganglion cells,uses action potentials, the others com
m

unicate via slow
 

potentials.

B
ut spike generation isn't a strictly determ

inistic process. T
here is "noise" or random

 fluctuation
 that can

ion channels open and close probabilistically, quantized

neurotransm
itter release in discrete packages - Poisson

sensory receptors can produce spontaneous signals

O
ver long distances spike train frequency is roughly like a Poisson process (better--an interval G

am
m

a distribution) 
w

hose m
ean is m

odulated by the already noisy slow
 potential.
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