Introduction to Neural Networks

U. Minn. Psy 5038

Daniel Kersten

Expectation-Maximization (EM)

Initialize

- Read in Statistical and Graphics Add-in packages:

Off[General: :spell1]

<< Statistics` NormalDistribution <<Statistics`ContinuousDistributions << Statistics`MultinormalDistribution <<Statistics`DiscreteDistributions

```
<<Graphics`MultipleListPlot
<< Graphics`Graphics
```


Introduction

The Expectation Maximization algorithm can be viewed as an example of unsupervised learning and crops up in a wide range of applications, including probability density estimation, clustering, and discovering prototypes from data. In principle, it is very general and is guaranteed to converge to a local likelihood maximum. The EM algorithm is a common procedure for integrating out "hidden variables"--i.e. for marginalizing.

Integrating out secondary variables

Suppose we have 5 (hidden) processes each of which can contribute to our data.

For mixture distributions, we are often not directly interested in the mixing probabilities--we are mainly interested in the parameters of the distributions, e.g. the 5 means. These means, in an N-dimensional space for example, could represent prototypes in memory.

- Simple case \& intuition
(Example from draft chapter by: Yuille, Coughlan, Kerten \& Schrater)
Suppose there is some agent that randomly chooses whether to flash a bright ($\mathrm{a}=1$) or the $\operatorname{dim}(\mathrm{a}=2$) light, and for each flash we make a measurement x. To keep things simple, we'll assume that the probability of the bright and dim switch settings are both equal, $p(a=1)=p(a=2)=1 / 2$. Further suppose that the light measurements x are Gaussian distributed, and the standard deviations are known (we will drop these assumptions later).
Rather than making decisions about whether a given flash is bright or dim, we want to estimate the two means from a series of measurements (e.g. photon counts), $\left\{x _i: i=1, \ldots, N\right\}$, without knowing which measurement came from which light setting. Of course, if we knew which measurement came from which switch setting, our job would be easy. Let V_\{ia\}=1 if data $x_{-} i$ is generated by model $P\left(x \mid m u _a\right.$, sigma $\left.\wedge 2\right)$ and $V_{-}\{i a\}=0$ otherwise, for $a=1,2$. Then,

$$
\mu_{a} \approx \frac{\sum_{i=1}^{N} V_{i a} x_{i}}{\sum_{i=1}^{N} V_{i a}}
$$

The problem is that the values of $V_{_}\{i a\}$ are unknown secondary (hidden) variables which influence the observations However, if we could somehow estimate the probability of which switch generated each measurement $\mathrm{x}_{-} \mathrm{i}$, then the means could be approximated as:

$$
\mu_{a} \approx \frac{\sum_{i=1}^{M} \bar{V}_{i a} x_{i}}{\sum_{i=1}^{M} \bar{V}_{i a}}, \forall a
$$

where $\bar{V}\{\mathrm{ia}\}$ is the average value of $\mathrm{V}\{\mathrm{ia}\}$ and is given by $\bar{\nabla}\{\mathrm{ia}\}=\mathrm{p}\left(\mathrm{V}\{\mathrm{ia}\}=1 \mid \mathrm{x}_{-} \mathrm{i}\right)=\mathrm{p}\left(\mathrm{a} \mid \mathrm{x}_{-} \mathrm{i}\right)$. This brings us a step closer to a solution, but raises another problem--to calculate $\bar{\nabla}\{i a\}$ we will need to know the means--the very parameters we were trying to estimate in the first place!
Let's see how to justify our intuitive estimate of the means, and in the process solve the dilemma of how to determine the probability of which switch generated each measurement. Our goal will be to find the maximum likelihood estimates of the means (and eventually other state variables) conditional on the observations. We will derive the EM rules for a mixture of multi-variate gaussians. Then we will derive a more general rule for arbitrary discrete distributions

Mixtures of multivariate gaussians

Let x represent a d-dimensional vector generated from a mixture of M Gaussian densities, with $\mathrm{s}=\{$ mu_a,C_a $\}$ and $\mathrm{h}=$ $\{a\}$, where mu_a, C_a , and p(a) are the vector means, covariance matrices, and mixture probs, respectively
(The notation s , and h is used later for an unknown parameter s (or a set s), that we want to estimate, and another parameter h (or set h) that is hidden.)

$$
p(x)=p\left(x \mid \mu_{a}, C_{a}\right)=\sum_{a} p(x \mid a) p(a)
$$

where $\mathrm{a}=1, \ldots, \mathrm{M}$, and $\sum_{a} \mathrm{p}(\mathrm{a})=1$. The $\mathrm{p}(\mathrm{x}$ la) are the class-conditional probability densities:

$$
p(x \mid a)=\frac{1}{\sqrt{(2 \pi)^{d}\left|C_{a}\right|}} \exp \left\{-\left(x-\mu_{a}\right)^{T} \cdot C_{a}^{-1} \cdot\left(x-\mu_{a}\right) / 2\right\}
$$

We are given a sequence of vector measurements $\left\{x _i: i=1, \ldots, N\right\}$ and wish to estimate the means, the covariances and mixing parameters. Let the probability that $x _i$ came from mixture component a be $p\left(x _i l a\right)$.

$$
p\left(x_{1}, x_{2}, \ldots, x_{N} \mid \mu_{a}, C_{m}\right)=\prod_{i} \sum_{a} p\left(x_{i} \mid a\right) p(a)
$$

The log-likelihood of the data is given by:

$$
E\left(\mu_{a}, C_{a}\right)=\log \left(p\left(x_{1}, x_{2}, \ldots, x_{N}\right)\right)=\sum_{i} \log \left\{\sum_{a} p\left(x_{i} \mid a\right)\right.
$$

For the moment, suppose the mixing parameters and covariance matrices are known, and we want to estimate the means. The values of mu_a which maximize E can be found analytically by solving:

$$
\partial E / \partial \mu_{j}=\sum_{i} \frac{p\left(x_{i} \mid j\right) p(j)}{\sum_{a} p\left(x_{i} \mid a\right) p(a)} \frac{\left(\mu_{j}-x_{i}\right)}{\sigma_{j}^{2}}=\sum_{i} p\left(j \mid x_{i}\right) \frac{\left(\mu_{j}-\right.}{\sigma_{j}^{2}}
$$

where we've used:

$$
p\left(a \mid x_{i}\right)=\frac{p\left(x_{i}, a\right)}{p\left(x_{i}\right)}=\frac{p\left(x_{i} \mid a\right) p(a)}{\sum_{a} p\left(x_{i} \mid a\right) p(a)}
$$

Solving for the $\mu_{j}{ }^{\prime} s\left(=\mu_{a}{ }^{\prime} s\right)$, we have

$$
\mu_{a}=\frac{\sum_{i} x_{i} p\left(a \mid x_{i}\right)}{\sum_{i} p\left(a \mid x_{i}\right)}
$$

The rub, of course, is that p (alx_i) depends on mu_a..., so

E\&M iteration steps

■ Estimate conditional mixing probabilities: E-step
Let mu_\{a,t\} be an initial guess. Then in the E-step we let:

$$
p\left(a \mid x_{i}, \mu_{a, t}\right)=\frac{p\left(x_{i} \mid a, \mu_{a, t}\right) p(a)}{\sum_{a} p\left(x_{i} \mid a, \mu_{a, t}\right) p(a)}
$$

■ And then find the mean that maximizes the likelihood of the data: M-step
The M-step,

$$
\mu_{a, t+1}=\frac{\sum_{i} x_{i} p\left(a \mid x_{i}, \mu_{a, t}\right)}{\sum_{i} p\left(a \mid x_{i}, \mu_{a, t}\right)}
$$

Demo: Two gaussians, unknown μ 's σ^{\prime} s , and mixing probabilities

■ How about the covariance?
Suppose we don't know the covariance matrix or the mixing probabilities? We can use the updated values of p_t(alx_i),

$$
p_{t+1}\left(a \mid x_{i},\right)=p_{t}\left(a \mid x_{i}, \mu_{a}(t), C_{a}(t), p_{t}(a)\right)
$$

to progressively estimate the state parameters $\mathrm{C}_{-} \mathrm{a}$ and $\mathrm{p}(\mathrm{a})$, as well as mu_a. The M-step for the covariance is:

■ M-step for covariance $\& \mathbf{p}(\mathbf{a})$

$$
C_{a}(t+1)=\frac{\sum_{i}\left(x_{i}-\mu_{a}\right)\left(x_{i}-\mu_{a}\right)^{T} p_{t}\left(a \mid x_{i}\right)}{\sum_{i} p_{t}\left(a \mid x_{i}\right)}
$$

(where $a b^{\wedge} \mathrm{T}$ is the outer product between vectors a and b). The mixing probabilities are estimated by:

$$
p_{t+1}(a)=\frac{1}{N} \sum_{i} p_{t}\left(a \mid x_{i}\right)
$$

(revised)

Generating samples from a Gaussian Mixture Distribution

■ Generative model

```
\mu1=1.3;\sigma1=1;
\mu2=6.5;\sigma2=.8
a1=.16; a2 = 1-a1;
p1dist=NormalDistribution[ }\mu1,\sigma1]
p2dist=NormalDistribution[\mu2,\sigma2];
p1[x_]:=PDF[p1dist,x];
p2[x_]:=PDF[p2dist,x];
(*mix[x_]:=a1*p1[x]+a2*p2[x];*)
samplemix:=If[Random[]<a1,Random[p1dist],Random[p2dist]];
```

data $=$ Table[samplemix, $\{i, 1,500\}]$;
Histogram[data, HistogramCategories \rightarrow Range $[-20,20, .3]$,
Epilog \rightarrow \{Text[ToString [$\mu 1$] <> ", " <> ToString[$\sigma 1$] <> ", " <> ToString[a1],
$\{\mu 1,40\}]$, Text [ToString [$\mu 2$] <> ", " <>
ToString[$\sigma 2$] <> ", " <> ToString[a2], \{ 2 2-2, 60\}]\}];

EM algorithm--Now learn the parameters--means, standard deviations, and mixing

 probabilities$$
\operatorname{pxdm}\left[x_{-}, m u _, \sigma_{-}\right]:=\operatorname{PDF}[\text { NormalDistribution }[m u, \sigma], x] ;
$$

E-step: The prob of mixing labels conditional on the data x is:

$$
p\left(a \mid x_{i}, \mu_{a, t}\right)=\frac{p\left(x_{i} \mid a, \mu_{a, t}\right) p(a)}{\sum_{a} p\left(x_{i} \mid a, \mu_{a, t}\right) p(a)}
$$

In Mathematica code,

```
pmcx[a_, x_]:= pxdm[x, }[[[a]],\sigma[[a]]] * pa[[a]]
```

 (pxdm [x, \(\mu[[1]], \sigma[[1]]] * \operatorname{pa}[[1]]+\operatorname{pxdm}[\mathrm{x}, \mu[[2]], \sigma[[2]]] * \operatorname{pa}[[2]])\);
 M-step: The maximum liklihood estimates of the means is:

$$
\mu_{a}=\frac{\sum_{i} x_{i} p\left(a \mid x_{i}\right)}{\sum_{i} p\left(a \mid x_{i}\right)}
$$

or in Mathematica:
$\mu[[1]]=\mathrm{pmcx}[1$, data $]$. data/Plus@@(pmcx[1,\#]\&/@data)
$\mu[[2]]=\mathrm{pmcx}[2$, data $] . d a t a / P l u s @ @(p m c x[2, \#] \& / @ d a t a)$
Similarly, the variances and mixing probabilities are also weighted averages:
$\sigma[[1]]=$ Sqrt[pmcx[1,data].(data- $\left.\mu[[1]])^{\wedge} 2 / P l u s @ @(p m c x[1, \#] \& / @ d a t a)\right]$ $\sigma[[2]]=\operatorname{Sqrt[pmcx}[2, \text { data].(data- } \mu[[2]])^{\wedge} 2 /$ Plus@@(pmcx[2,\#]\&/@data)] pa[[1]]=Plus@@(pmcx[1,\#]\&/@data)/Length[data] pa[[2]]=Plus@@(pmcx[2,\#]\&/@data)/Length[data]

To estimate the unknown parameters from the data, we first initialize to random values:

```
\mu={Random[Real, {-10, 10}], Random[Real, {-10, 10}]};
\sigma={Random[Real, {0,10}], Random[Real, {0, 10}]};
pa = {temp = Random[], 1 - temp};
```

The interate for $\mathrm{i}=1$ to iter. Note that the E-step occurs on the right-hand side, where pmcx[] is a function of the most recent value of the mean, std, and mixing parameters.

```
iter=6;
\muparameterList = Table[0, {a, 1, 2}, {k, 1, iter}];
oparameterList = \muparameterList; paparameterList = \muparameterList;
For[k=1,k iter, k++,
    For[a=1,a\leq2,a++,
        \mu[[a]] = pmcx [a, data].data / Plus @@ (pmcx[a, #] &/@ data);
        \sigma[[a]] =
        Sqrt[pmcx[a, data].(data - \mu[[a]])^2 /Plus @@ (pmcx[a,#] &/@ data)];
        pa[[a]]=Plus@@ (pmcx[a, #] &/@data) / Length[data];
        \muparameterList[[a,k]]= }[[\mathbf{a}]
        \sigmaparameterList[[a, k]] = \sigma[[a]];
        paparameterList[[a,k]]=pa[[a]]
        ];
];
```

■ Plot the evolution of the mixing parameters
Blue line shows true values from the generative model

```
Show[{Plot[{pa[[1]], pa[[2]]},{x, 0, iter},
    PlotStyle }->\mathrm{ Hue[.5], DisplayFunction }->\mathrm{ Identity],
    MultipleListPlot [paparameterList[[1]], paparameterList[[2]],
    PlotJoined }->\mathrm{ True, DisplayFunction }->\mathrm{ Identity]},
    DisplayFunction }->\mathrm{ $DisplayFunction];
```


■ Plot the evolution of the means

Show [\{Plot[\{ $\mu[[1]], \mu[[2]]\},\{x, 0$, iter $\}$

PlotStyle \rightarrow Hue[.5], DisplayFunction \rightarrow Identity],
MultipleListPlot[μ parameterList[[1]], μ parameterList[[2]],
PlotJoined \rightarrow True, DisplayFunction \rightarrow Identity]\},
DisplayFunction \rightarrow \$DisplayFunction];

- Plot the evolution of the standard deviations

Show [\{Plot $[\{\sigma[[1]], \sigma[[2]]\},\{x, 0$, iter $\}$

> PlotStyle \rightarrow Hue $[.5]$, DisplayFunction \rightarrow Identity],
> MultipleListPlot[oparameterList $[[1]]$, oparameterList [[2]],
> PlotJoined \rightarrow True, DisplayFunction \rightarrow Identity] $\},$

DisplayFunction \rightarrow \$DisplayFunction];

EM: Theory for arbitrary discrete probability distributions

We'd like to generalize the theory, and also make clearer the function of EM in integrating out hidden or secondary variables. The notation s , and h is used for an unknown parameter s (or a set s), that we want to estimate, and another parameter h (or set \{hi\}) that is hidden.)

We'd like to find the value of s that maximizes the likelihood of the data $\{x i\}$, given other intervening variables hi.
The log-likelihood of the observations is given by:

$$
\log p\left(x_{1}, \ldots, x_{N} \mid s\right)=\log \prod_{i=1}^{N+1} p\left(x_{i} \mid s\right)=\sum_{i} \log p\left(x_{i} \mid s\right)=\sum_{i} \log \sum_{h_{i}} p\left(x_{i}, h\right.
$$

To find the maximum of the likelihood, we calculate the derivative of the log-likelihood with respect to s, and then set the derivative equal to zero:

$$
\frac{\partial \log p\left(x_{1}, \ldots, x_{N} \mid s\right)}{\partial s}=\sum_{i} \frac{1}{\sum_{h_{i}} p\left(x_{i}, h_{i} \mid s\right)} \frac{\partial}{\partial s}\left\{\sum _ { h _ { i } } p \left(x_{i}, h_{i}\right.\right.
$$

Where we have used the relation,

$$
\frac{\partial \log \phi(s)}{\partial s}=\frac{1}{\phi(s)} \frac{\partial \phi(s)}{\partial s}
$$

Bringing the summation over $\mathrm{h} _\mathrm{i}$ in front, we have:

$$
\sum_{i} \sum_{h_{i}} \frac{1}{\sum_{h_{i}} p\left(x_{i}, h_{i} \mid s\right)} \frac{\partial}{\partial s} p\left(x_{i}, h_{i} \mid s\right)
$$

Again using the above derivative of a log relation, we have

$$
\sum_{i} \sum_{h_{i}} \frac{p\left(x_{i}, h_{i} \mid s\right)}{\sum_{h_{i}} p\left(x_{i}, h_{i} \mid s\right)} \frac{\partial}{\partial s} \log p\left(x_{i}, h_{i} \mid s\right)
$$

and by Bayes,

$$
\sum_{i} \sum_{h_{i}} p\left(h_{i} \mid x_{i}, s\right) \frac{\partial}{\partial s} \log p\left(x_{i}, h_{i} \mid s\right)=0
$$

- Summary of EM strategy

The EM strategy for solving equation for s involves two steps:

1) Given a guess, s=s_t, calculate

$$
p\left(h_{i} \mid x_{i}, s_{t}\right) \quad(E-s t e p)
$$

2) Solve

$$
\sum_{i} \sum_{h_{i}} p\left(h_{i} \mid x_{i}, s_{t}\right) \frac{\partial}{\partial s} \log p\left(x_{i}, h_{i} \mid s\right)=0 \quad(M-\operatorname{step})
$$

to find the next $\mathrm{s}_{_}\{\mathrm{t}+1\}$. Then iterate back to the E -step until convergence. Although the EM algorithm does converge, it doesn't necessarily converge to the maximum likelihood estimate.

Expectation Maximization -- Segmentation simulation

We've studied the problem of interpolation given missing data. We motivated the problem by the visual phenomenon of surface completion. Another aspect of surface perception is our ability to take noisy data (e.g. depth cues), and not only interpolate the data, but also decide which of several surfaces the data belong using stereo data (Madarasmi et al., 1993; Kersten \& Madarasmi, 1995) or optic flow. A number of ways have been proposed to deal with this problem, but the technique of most general application is expectation-maximization--a general statistical technique developed in the 1970's that appears in various forms in many algorithms, including belief propagation. The algorithm has been applied to the surface estimation problem, e.g. from optic flow (Jepson, 1993; Weiss, 1997). We go to Weiss again for a nice simple demo Consider Generative Model 1.

Generative models

Two lines with slopes and intercepts (a1,b1) and (a2,b2).

```
ndist = NormalDistribution [0, 1];
```

- Generative model 1

```
y1[x_]:= - 2*x + 40 + Random[ndist]
y2[x_] := 3*x + 1 + Random[ndist];
data = Table[{x, If[Abs[x-3]< 1.5, y1[x], y2[x]]},{x, 0, 6,.1}];
{x, y} = Transpose[data];
```

■ Generative model 2

```
y1[x_] := - 2 * x + 15;
y2[x_]:= 3*x + 1;
data = Table[{x, If[Random[] < .5, y1[x], y2[x]]},{x, 0, 6,.1}];
{x,y} = Transpose[data];
```


gdata $=$ ListPlot [data];

Which data belong together? We'll assume that we know there are two linear models, but we don't know their parameters-i.e. we don't know their slopes and intercepts

EM algorithm

■ Initialize parameters to random values

$$
\sigma=.1
$$

$\{a 1, b 1, a 2, b 2\}=$ Table [10 * Random [], \{4\}];

■ E-step

Compute residuals $\mathrm{r} 1, \mathrm{r} 2$, the error in the predicted and actual y values under each of the two models

```
r1 = a1 * x + b1 - y;
r2 = a2 * x + b2-y;
```

Using the residuals, compute weights. We'll assign these weights to data in the M-step later.

```
```

w1 = Exp[-r1^2/\sigma]/(Exp[-r1^2/\sigma] + Exp[-r2^2/\sigma]);

```
```

w1 = Exp[-r1^2/\sigma]/(Exp[-r1^2/\sigma] + Exp[-r2^2/\sigma]);
w1 = Exp[-r\mp@subsup{1}{}{\wedge}2/\sigma]/(Exp[-r\mp@subsup{1}{}{\wedge}2/\sigma]+\operatorname{Exp}[-r\mp@subsup{2}{}{\wedge}2/\sigma]);

```
```

w1 = Exp[-r\mp@subsup{1}{}{\wedge}2/\sigma]/(Exp[-r\mp@subsup{1}{}{\wedge}2/\sigma]+\operatorname{Exp}[-r\mp@subsup{2}{}{\wedge}2/\sigma]);

```
```


Exercises

Run EM with Generative Model 2. Increase the additive noise. How does attribution accuracy change? ("attribution" means assigning a point to its correct line)
$\mathrm{N}=5$ Multivariate gaussians, only data known: Implement EM to estimate means, variance, and mixing probabilities

■ Generating samples from a Gaussian Mixture Distribution

Clear[ndist];

ndist $\left[\mu_{-}, \Sigma_{-}\right]:=$MultinormalDistribution $[\mu, \Sigma]$;

```
r=.05;
\sigma=.3;
\mu= Table[3 *N[{Cos[2Pi i], Sin[2Pi i]}],{i, 0, 2Pi, Pi/4}];
\Sigma = Table[{{\sigma, r}, {r, \sigma}}, {i, 0, 2 Pi, Pi/4}];
Det[{{\sigma,r},{r,\sigma}}]
```

0.0875

The generator: randomindex := Random[Integer, $\{1,5\}$]; would give uniformly distributed mix labels.
The following gives mixing mix probabilities of $1 / 7,1 / 7,3 / 7,1 / 7$ and $1 / 7$ for subdistributions $1,2,3,4,5$ respectively

```
randomindex :={1, 2, 3, 3, 3, 4, 5}[[Random[Integer, {1, 7}]]]
```

Thus our stochastic generative process can be written:

Random [ndist $[\mu[[t=$ randomindex] $], \Sigma[t]]]]$

```
{0.432208, -3.03454}
```

```
scatterdata = Table[Random[ndist[\mu[[t= randomindex ]], \Sigma[[t]]]],{i, 1, 500}]
```

ListPlot[scatterdata, AspectRatio \rightarrow Automatic];

■ Implement EM to estimate means, variance, and mixing probabilities

$$
\begin{gathered}
p\left(a \mid x_{i}, \mu_{a, t}\right)=\frac{p\left(x_{i} \mid a, \mu_{a, t}\right) p(a)}{\sum_{a} p\left(x_{i} \mid a, \mu_{a, t}\right) p(a)} \\
\mu_{a, t+1}=\frac{\sum_{i} x_{i} p\left(a \mid x_{i}, \mu_{a, t}\right)}{\sum_{i} p\left(a \mid x_{i}, \mu_{a, t}\right)} . \\
C_{a}(t+1)=\frac{\sum_{i}\left(x_{i}-\mu_{a}\right)\left(x_{i}-\mu_{a}\right)^{T} p_{t}\left(a \mid x_{i}\right)}{\sum_{i} p_{t}\left(a \mid x_{i}\right)}
\end{gathered}
$$

$$
p_{t+1}\left(a \mid x_{i},\right)=p_{t}\left(a \mid x_{i}, \mu_{a}(t), C_{a}(t), p_{t}(a)\right)
$$

References

Dempster, A. P., Laird, N. M., \& Rubin, D. B. (1977). Maximum Likelihood from Incomplete Data via the EM Algorithm. J. Roy. Stat. Soc., B39, 1-38

Frey, B. J. (1998). Graphical Models for Machine Learning and Digital Communication. Cambridge, Massachusetts: MIT Press.

Gershenfeld, N. A. (1999). The nature of mathematical modeling. Cambridge ; New York: Cambridge University Press.
Jepson, A., \& Black, M. J. (1993). Mixture models for optical flow computation. Paper presented at the Proc. IEEE Conf. Comput. Vsion Pattern Recog., New York
Kersten, D., \& Madarasmi, S. (1995). The Visual Perception of Surfaces, their Properties, and Relationships. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 19, 373-389.

Madarasmi, S., Kersten, D., \& Pong, T.-C. (1993). The computation of stereo disparity for transparent and for opaque surfaces. In C. L. Giles \& S. J. Hanson \& J. D. Cowan (Eds.), Advances in Neural Information Processing Systems 5. San Mateo, CA: Morgan Kaufmann Publishers.

Weiss, Y. (1997). Smoothness in Layers: Motion segmentation using nonparametric mixture estimation. Paper presented at the Proceedings of IEEE conference on Computer Vision and Pattern Recognition.
Yuille, A., Coughlan J., Kersten D.(1998) (pdf)
© 2000, 2001 Daniel Kersten, Computational Vision Lab, Department of Psychology, University of Minnesota.
(http://vision.psych.umn.edu/www/kersten-lab/kersten-lab.html)

