Introduction to Neural Networks
U. Minn. Psy 5038

Gaussian generative models and inference

m Initialize standard library files:

In[1]:= Off [General::spelll];

In[2]:= << Statistics MultinormalDistribution™
<< Statistics DataManipulation™

In[4]:= << Graphics Graphics™

I Generative modeling: Drawing univariate samples

Consider the gaussian distribution. The density is proportional to:
In[221]:= Exp[-(x-x0) "2/ (2%x0"2)]

_ (x-x0)2
Out[221]= e 202

But to make sure that the total probabilty (area) is one, we can derive the normalizing constant by finding the area under the
curve:

Integrate[Exp[- (x-%x0) "2/ (2%x0"2)], {x, -Infinity, Infinity}]

w (x-x0)2
If[Re[oz]>0,\/2ﬂ Vo2, e 202 dlx]

-

And the standard normal distribution is given by letting x0=0 and o=1:

Lect_24_ProbabilityGauss.nb

Plot[Exp[-(x1"2) /2] / (Sqrt[2*Pi]), {x1, -4, 4}];

Ry -2 2 4
Plot[PDF[NormalDistribution[0,1],x1],{x1,-4,4}]; gives the same thing using the add-on normal distribution function.

If we have a formula like that above that specifies a probability distribution,how can we draw samples from it?

Just for Gaussian. Use Central Limit Theorem

If all we want to do is make a Gaussian random number generator from a uniformly distributed generator, one method
doesn't even use the above formula. Instead we can use a theorem that we encountered earlier: the Central Limit Theorem.
Just add a bunch of uniform random variables together and:

In[89]:= nusamples = 10;
zl = Table[Sum[Random[], {i, nusamples}] - nusamples /2, {1000}];
binsize = .1;
midpoints = Table[i + binsize /2, {i, -3, 3 -binsize, binsize}];
freq = BinCounts [zl, {-3, 3, binsize}];
BarChart [Transpose[{freq, midpoints}], BarLabels - None];

Looks bell-shaped. And as nusamples->co, the distribution does approach the Gaussian.

Lect_24_ProbabilityGauss.nb

Use Density Mapping theorem. More general.
But what if we don't want a Gaussian generator, but some other kind of random number? We can use the density mapping
theorem which can be applied to arbitrary distributions, including gaussian.

We'll use the density mapping theorem to turn uniformly distributed random numbers Random[] into gaussian distributed
random numbers with mean =0 and standard deviation =1.

Py (¥) Oy = px (X) Ox
pr (¥) 2L =y (x)

SupposePy (Y) =1 (over the unit interval, but zero elsewhere). Then

% =px (x), and integrating :

y<X>:Jpx(X')le':P<X> (1)

Thus if we sample from the uniform distribution to get y, x should be distributed according to Px (X) . To do this, we
need a mapping from y->x. This is given by the inverse cumulative distribution, i.e. P~'(y).

A quick way to implement this for the Gaussian case is to useMathematica's built-in function to get the inverse cumulative

normal. InverseErf[] is the inverse of:

2
erf (z) = 2 J et’ dt
0

In[95]:= z[p_] := -Sqrt[2] InverseErf[l - 2p];
Plot[z[y], {y, O, 1}]1;

4 0.6 0.8 1
-2

-4

Lect_24_ProbabilityGauss.nb

In[36]:= binsize = .1;
midpoints = Table[i + binsize /2, {i, -3, 3 - binsize, binsize}];
zl = Table[z[Random[]], {5000}];
freq = BinCounts [z1, {-3, 3, binsize}];
BarChart [Transpose [{freq, midpoints}], BarLabels - None] ;

Example of look-up-table method that is fast and works for almost any distribution.

Illustrate with the Gaussian case for a third time

m Cumulative gaussian

To illustrate the basic common principles, we'll start from scratch (rather than using the add-on function CDF[]).

In[104]:= Clear [cumulgauss, x, x1];
cumulgauss[x_] :=
Integrate [Exp[- (x172) /2] / (Sqrt[2+Pi]), {x1, -Infinity, x}]

In[106]:= cumulgauss [Infinity]

out[106]= | 1

Lect_24_ProbabilityGauss.nb

In[107]:= Plot [cumulgauss [x], {x, -4, 4}];

In[108]:= lcumulgauss = Table[{x, cumulgauss[x]}, {x, -4.0, 4.0, .25}];
ListPlot [lcumulgauss];

B Make inverse cumulative gaussian table

In[112]:= | invlcumulgauss = RotateLeft [lcumulgauss, {1, 1}];

In[113]:= | ListPlot [invlcumulgauss];

4

Lect_24_ProbabilityGauss.nb

m Make interpolated function of the inverse cumulative

If we pick Random(], this gives us a point on the x-axis, but it will almost certainly fall between the cracks. So we interpola-
tion between the discrete points to get a continous function:

In[114]:= | interinvlcumulgauss = Interpolation[invlcumulgauss];

In[115]:= | Plot [interinvlcumulgauss [x], {x, .01, .99}];

0.2 02 0.6 0.8 1
-1

-2

m Draw a bunch of samples, and plot up histogram

Now we are ready to draw 10,000 samples.

In[121]:= binsize = .1;
midpoints = Table[i + binsize /2, {i, -3, 3 - binsize, binsize}];
zl = Table[interinvlcumulgauss [Random[]], {10000}];
freq = BinCounts [z1, {-3, 3, binsize}];
BarChart [Transpose [{freq, midpoints}], BarLabels - None] ;

Lect_24_ProbabilityGauss.nb

m Plot up cumulative histogram

In[130]:= CumFreq = FoldList [Plus, 0, freq];
ListPlot [CumFreq];

10000
8000
6000
4000
2000

10 20 30 40 50 60

m A non-Gaussian example: The von Mises distribution, with Matlab code

(courtesy, Paul Schrater)

function pofx = vonMisespdf(x,mu,sigma)

% For -pi <= x <= pi

% force x-mu within -pi to pi

y = angle(exp(i*(x-mu)));

kappa = 1/(sigma)”2;

%kappa = sigma;

pofx = exp(kappa*cos(y))/(2*pi*besseli(0,kappa));
function vonrand = vonMisesrand(nrand,mu,sigma)
% inverse cumulative method, executed by table lookup with
% linear interpolation

% build sampled cdf

x = (-pi:2*pi/(2e3):pi);

pofx = vonMisespdf(x,0,sigma);

cofx = cumsum(pofx/sum(pofx));

u =rand(1,nrand);

vonrand = interp1(cofx,x,u)+mu;

Lect_24_ProbabilityGauss.nb

I Generative modeling: Multivariate gaussian, mixtures

Gaussian multivariate distributions

m Define multivariate gaussian probability density

An n-variate multivariate gaussian (multinormal) distribution with mean vector ¢ and covariance matrix X is denoted

N, (u, Z). The density is:

1 1
P (x) = o7 Bxp[- 5 (x-)t 2t (x|

(2 1)™/2 Det [2]

We define a 2-variate density:

multigaus[x_,m_,cov_]:=
Module[{IC,detCov,norm,p},
IC = Inverse[cov];
detCov = Abs[Det[cov]];
norm = N[Sqrt[(2Pi)"2 detCov]];
p = Exp[-0.5 (x-m).IC.(x-m)]/norm;
Return[p];

(2)

Lect_24_ProbabilityGauss.nb 9 10 Lect_24_ProbabilityGauss.nb

m Two variable examples m Mean = {1,1}, positive correlation, small variance
ml = {1,1};
W Zero mean, zero correlation Cov = 0.2{{1,.5},{.5,1}};

ContourPlot[multigaus[{x1,x2},ml,Cov],{x1,0,2}, {x2,0,2}];

ml = {0,0};
Cov = {{1,0},{0,1}};
ContourPlot[multigaus[{x1,x2},ml,Cov],{x1,-2,2}, {x2,-2,2}];

W Mixture of gaussians

-2 -1 0 1 2

« is a mixing parameter
m Mean = {1,1}, positive correlation p (x) =ap; (x) + (l-a)p, (x) whereO=a=1 (3)

o can be interpreted in terms of a prior probability of

ml = {1,1}; choosing which of two distributions a sample will be drawn from.
Cov = {{1,.5},{.5,1}};
ContourPlot[multigaus[{x1l,x2},ml,Cov],{x1,0,2}, {x2,0,2}];

Starting with p(x,a) use the sum and product rules to derive the above mixture density where

X p(a=a;) = @, and p(a = a;)=(1-a).
1.5
ml = {1,.5}; m2 = {-1,-.5};
Covl = 0.4*{{1,.6},{.6,1}};
Cov2 = 0.4*{{1,-.6},{-.6,1}};
mix[x_] := 0.5 (multigaus[x,ml,Covl] + multigaus[x,m2,Cov2]);
0.5
N
0 0.5 1 1.5 2

N

[

o

Lect_24_ProbabilityGauss.nb 1 12 Lect_24_ProbabilityGauss.nb

ContourPlot[mix[{x1,x2}],{x1,-2,2}, {x2,-2,2}];
m Now let's do a check, where we compile a histogram representing the frequencies of each slip

First, define the "bins" in domain, that we'll use to check for matches:

domain = {};
For[x1l=-2,x1<=2,x1=x1+dx1l,
For[x2=-2,x2<=2,x2=x2+dx2,
domain = Append[domain, {x1,x2}];

An alternate way of specifying the domain using Outer[], and Range[]:

domain2 = Flatten[Outer[List,Range[-2,2,dx1l],Range[-2,2,dx1]],1];

. . Now we'll count how many times we find that an element of hat matches a domain element:
m Drawing samples from the density--draw from a hat method

Freq = Map[Count[hat,#]&,domain];

m We'll simulate the process of filling a hat with slips of paper, where the number of slips

is proportional to the probability the number being in some range (dx1,dx2) width = Sqrt[Dimensions[Freq]]
ml = {0,0}; {40}
Cov = {{1,.8},{.8,1}};
dxl = 0.1;
dx2 = dx1;

ListDensityPlot[Partition[Freq,width]];

Nslips=100;
hat = {};
For[x1=-2,x1<=2,x1=x1+dx1,
For[x2=-2,x2<=2,x2=x2+dx2,
np = Nslips*multigaus[{x1l,x2},ml,Cov];
For[i=1,i<np,i=i+1,
hat = Append[hat, {x1,x2}];

40

30

1; 20

10
hat is a list of pairs of numbers for which the frequency of occurence of pairs is determined by multigauss.

Dimensions [hat]

(8698, 2}

m Now draw a sample--simulate pulling a slip from hat

rv:=hat[[Random[Integer, {1,Length[hat]}]]];

Lect_24_ProbabilityGauss.nb 13 14 Lect_24_ProbabilityGauss.nb

I test = Table[hat[[Random[Integer,{1l,Length[hat]}]]],{600}];
m Define PDF, CDF

ml = {1,.5};
r=0.4*{{1,.6},{.6,4}};
ndist = MultinormalDistribution[ml, r];

I gl=ListPlot[test];

pdf = PDF[ndist, {x1, x2}]

-2
0.20855 ei (- (-1+x1) (2.74725 (-1+x1)-0.412088 (-0.5+%2))-(-0.412088 (-1+x1)+0.686813 (-0.5+%2)) (-0.5+x2))
What is the probability of the distribution in the region x; < -2 \x; < 1.
-2
Of course, we can't see the frequency of draws in this plot, so let's count up the number of occurences per bin, and plot up CDF[ndist, {-2, 1}]

the results as we did above.

1.02471x10°
Freq2

width

Map[Count[test, #]&,domain];
Sqrt[Dimensions[Freq2]];

gl=ContourPlot[PDF[ndist, {x1, x2}],{x1,-2,2}, {x2,-2,2},ContourShading-

q q o q >False];
ListDensityPlot[Partition[Freq2,width]]; 1i
40 \
1
30
H 0
i
20 th -1
=
10 ST 6 1 2
0 marginal [x1_] := Integrate[PDF[ndist, {x1, x2}], {x2, -Infinity, Infinity}] ;
0 10 20 30 40

g2 = Plot [marginal [x1], {x1, -2, 2}];

Drawing multivariate samples from the density -- use the inverse cumulative distribution 0.6
0.5
0.4
0.3
. Lo . . . 0.2
Gaussian multivariate mixtures & exploring marginals
0/1
This time we'll use that Add-on Mathematica functions for multivariate gaussians.

Lect_24_ProbabilityGauss.nb

Show[{gl, g2}];

2 \
1
0
-1
-2
-2 -1 0 1 2

m Drawing samples

As we've used in earlier lectures, drawing samples is done by:

| Random [ndist]

| {-0.52553, -2.54926}

m Mixtures of gaussians

Clear[mix];

r1=0.4*{{1,.6},{.6,1}};
r2=0.4*{{1,-.6},{-.6,1}};

ml = {1,.5}; m2 = {-1,-.5};

ndistl = MultinormalDistribution[ml, rl];
ndist2 = MultinormalDistribution[m2, r2];

mix[x_] := 0.5 (PDF[ndistl, x] + PDF[ndist2, x]);

Lect_24_ProbabilityGauss.nb

ContourPlot[mix[{x1,x2}],{x1,-2,2}, {x2,-2,2}];

m Marginals for mixture

marginal [x1_] := Integrate[mix[{x1l, x2}], {x2, -Infinity, Infinity}]
Clear [marginal];

marginal [x1_] :=

0.5 x (Integrate [PDF [ndistl, {x1, x2}], {x2, -Infinity, Infinity}] +
Integrate [PDF [ndist2, {x1, x2}], {x2, -Infinity, Infinity}]);

Plot[marginal [x1], {x1, -2, 2}];

Clear[marginal];
marginal [x2_] :=
0.5 * (Integrate [PDF [ndistl, {x1, x2}], {x1, -Infinity, Infinity}] +
Integrate [PDF [ndist2, {x1, x2}], {x1, -Infinity, Infinity}]);

(4)

Lect_24_ProbabilityGauss.nb 17

Plot [marginal [x2], {x2, -2, 2}];

Side comments & where we'll see this again

m Projection pursuit

Which projection (marginal) is more "interesting"--the one onto x1 or onto x2?

Exploratory projection pursuit. (e.g. Intrator, 1993).

m Inference: Learning parameters of mixture distributions

Return later to the inference problem: Given data, estimate the mixing parameters, means and covariances. EM algorithm.

I Bayesian learning of univariate Gaussian mean: MAP

m Suppose we know the data comes from a Gaussian generative process, but we don't know the mean?

From a statistical point of view, one form of learning is "density estimation" from histogram measurements. In high dimen-
sions this is hard, unless we have a low-dimensional parametric model for the density--i.e. the density is modeled in terms
of a few parameters. So for example. The 1D Gaussian could be approximated by a huge list of numbers--one for each bin,
each number is an estimate of the probabily of the random variable being in that bin. But because it is Gaussian, we can be
more efficient by representing the density in terms of just two numbers (mean and variance), and a formula.

In this context, learning becomes parameter estimation.

Suppose we have a set of samples that come from a Gaussian distribution with known variance ¢% , but unknown mean .

18 Lect_24_ProbabilityGauss.nb

X; = noise, wherenoise~N[u, o], or equivalently
X; = U + noise, where noise~N[0, O]

ndistO0 = NormalDistribution[u, o];

Although we don't know the mean, we assume a Gaussian prior on the mean:
u~N[u0, o0] (6)

Le. we assume we know the mean's mean and variance. But we are willing to change our estimate of the mean given new
data--i.e. given the posterior.

In[211]:= ndistyu = NormalDistribution [0, o0];
PDF [ndistu, u]

_ (u-u0)?
e 2002

V27 o0

Out[212]=

Suppose the generative model N[., o] produces three i.i.d. (independent, identically distributed) samples x; ,x,,x3. What is
the MAP estimate of 12 ? Which values of 1 make the posterior biggest? We use Bayes rule:
P (X1, X2, X3 | 1) P (K)

X1, X2, X3) = 7
P (K| X1, X2, X3) b (%1, %2, %3) (7)

p (x; | 1) is givenby :

In[165]:= | PDF[ndist0, x;]
(-p+xp)?
e 202
Out[165]=
V2o

Lect_24_ProbabilityGauss.nb 19

m Calculating the MAP estimate of mean

In[213]:= g = PDF [ndist0, x;] * PDF [ndist0, x,] * PDF [ndist0, x3] * PDF [ndistu, u];
t =Log[g];
t = PowerExpand[t]
t=D[t, u]

Solve[-t == 0, u]

_ 2
Out[215]= 7% ~Log[4] - 2Log[n] - 3Log[o] -
(-p+%1)2 (- +%2)? (- +x%3)?
reglew] = 2 o2 B 2 02 N 2 o2

K- uo L THEXL U Xy Ut Xy

out[216]=
1216] 002 o? o? o?
10 X1 X2 =3
ppligie> i) i
out[217]= {{n->—=2 £ z o1}
=+
o2 002

In general, one can update from n samples in batch mode:

M‘0+1 n

s Xj
{{“_) Uozloi 11:1 l}} (8)
o2 002

For the multi-variate case, see Duda and Hart.

I Graphical Models of dependence

m Graphs: causal structure and conditional independence

The idea is to represent the probabilistic structure of the joint distribution P(S,L.I) by a Bayes net (e.g. Ripley, 1996},
which is a graphical model that expresses how variables influence each other. There are just three basic building blocks:
converging, diverging, and intermediate nodes. For example, multiple causal variables causing a given measurement, a
single variable producing multiple measurements, or a cause indirectly influencing a measurement through an intermediate
variable. These types of influence provide a first step towards modeling the joint distribution and the means to compute
probabilities of the unknown variables given known values.

20 Lect_24_ProbabilityGauss.nb

I I I |

Components of the generative structure for data patterns involve converging, diverging,and intermediate nodes. For

example these could correspond to:multiple (scene) causes {shape S1, illumination S2 giving rise to the same image measure
ment, I ; one cause, S influencing more than one image measurement, {color, I1, brightness, 12}; a scene (or other) cause S,
{object identity, S} influencing an image measurement (image contour) through an intermediate variable L (3D shape) .

The arrows tell us how to factor the joint probability into conditionals. So for the three examples above, we have:
p(S1,52.1)=p(1IS1,S2)p(S1)p(S2)

p(S.I1.12)=p1IS)p(12IS)p(S)

p(S.LD=p(IIL)p(LIS)p(S)

m Primary, secondary variables.

We can interpret the causal structure in terms of conditional probability.

The data measurements (x) are determined by a typically non-linear function (¢) of primary signal variables (S_e) and
confounding secondary variables (S_g). Knowledge is represented by the joint probability p(x,S_e.S_g). In general, the
causal structure of natural data (e.g. image or speech) patterns is more complex and consequently requires elaboration of its
graphical representation. For pattern inference theory, the task is to make a decision about the signal hypotheses or primary
signal variables, while discounting the noise or secondary variables. Thus optimal perceptual decisions are determined by
p(x,S_e), which is derived by summing over the secondary variables (i.e. marginalizing with respect to the secondary
variables): fs gp(x, S_e,S_g)dS_g.

Influences between variables are represented by conditioning, and a graphical model expresses the conditional independen-
cies between variables. Two random variables may only become independent, however, once the value of some third
variable is known. This is called conditional independence.Recall from above that two random variables are independent if
and only if their joint probability is equal to the product of their individual probabilities. Thus, if p(A,B) = p(A)p(B), then
A and B are independent. If p(A,BIC) = p(AIC)p(BIC), then A and B are conditionally independent.

When corn prices drop in the summer, hay fever incidence goes up. However, if the joint on corn price and hay fever is
conditioned on ““ideal weather for corn and ragweed", the correlation between corn prices and hay fever drops. This is
because corn price and hay fever symptoms are conditionally independent.

There is a correlation between eating ice cream and drowning. Why? What event should you condition on to make the
dependence go away?

m What is noise? Primary and secondary variables

Noise is whatever you don't care to estimate, but contributes to the data. The secondary variables are noise.

Lect_24_ProbabilityGauss.nb

21

I Optimal Inference and task dependence: Fruit example
(due to James Coughlan; in Yuille, Coughlan, Kersten & Schrater).

F

C

Fruit = apple or tomato | ——= | Color = red or green

Figure from Yuille, Coughlan, Kersten & Schrater.

The the graph specifies how to decompose the joint probability

plF,C,Is,Ic]=p[IcIC]p[CIF]plIs | F]p[F]

The prior model on hypotheses, F & C

More apples (F=1) than tomatoes (F=2), and:

PPF[F_] :=If[F =1, 9/16, 7/16];

TableForm[Table[ppF[F], {F, 1, 2}], TableHeadings -> {{"F=a",

The conditional probability cpCF[CIF]:

"F=t"}}]

22

Lect_24_ProbabilityGauss.nb

CpCF[F_, C_] :=Which[F=1&& C =1,5/9,

F==1&&&C ==2,4/9,F==22&&C =1,6/7,F=2%&&C =2,1/7];
TableForm[Table[cpCF[F, C], {F, 1, 2}, {C, 1, 2}],
TableHeadings -> {{"F=a",

"F=t"}, {"C=r", "C=g"}}]

Q
)
R
Q
1l
«Q

iy

A
P
<l- ofe

So the joint is:

JPFC[F_, C_] := cpCF[F, C] ppF[F];

TableForm[Table[jpFC[F, C], {F, 1, 2}, {C, 1, 2}],
TableHeadings -> {{"F=a",

"F=t"}), ("C=r", "C=g"}}]

Q

=r C:g
= S L
=a 16 4
F= 3 1
8 16

We can marginalize to get the prior probability on color alone is:

2
PPCIC_] :=) jpFC[F, C]

F=1

Question: Is fruit identity independent of material color--i.e. is F independent of C?

m Answer

No.

Lect_24_ProbabilityGauss.nb

TableForm[Table[jpFC[F, C], {F, 1, 2}, {C, 1, 2}1,

TableHeadings -> {{"F=a", "F=t"}, {"C=r", "C=g"}}]
TableForm[Table[ppF [F] ppC[C], {F, 1, 2}, {C, 1, 2}],
TableHeadings -> {{"F=a", "F=t"}, {"C=r", "C=g"}}]

C=r C=g
F-a 5 S
16 4
_ 3 L
=i 8 16
C=r C=g
F-a 99 45
256 256
F-t 77 35
- 256 256

The generative model: Imaging probabilities

Analogous to collecting histograms for the two switch positions in the SDT experiment, suppose that we have gathered
some "image statistics" which provides us knowledge of how the image measurements for shape Is, and for color Ic depend
on the type of fruit F, and material color, C. For simplicity, our measurements are discrete and binary (a more realistic case,
they would have continuous values), say Is = {am, tm}, and Ic = {rm, gm}.

P(_S=am,tm | F=a) = {11/16, 5/16}

P(I_S=am,tm | F=t) = {5/8, 3/8}

P(I_C=rm,gm | C=r) = {9/16,7/16}

PA_C=rm,gm | C=g) = {1/2, 1/2}

We use the notation am, tm, rm, gm because the measurements are already suggestive of the likely cause. So there is a

correlation between apple and apple-like shapes, am; and between red material, and "red" measurements. In general, there
may not be an obvious correlation like this.

‘We define a function for the probability of Ic given C, ¢pIcC[Ic | C]:

cpIcC[Ic_, C_] :=Which[Ic==1&& C ==1, 9/16,

Ic==1&& C ==2,7/16, Ic==2 & C =1,1/2, Ic==2 & C =2, 1/2];
TableForm[Table[cpIcC[Ic, C], {Ic, 1, 2}, {C, 1, 2}],
TableHeadings -> {{"Ic=rm", "Ic=gm"}, {"C=r", "C=g"}}]

C=i C=g
- 9 Z
Ic=rm 6 T6
- 1 L
Ic=gm 5 2

23

24 Lect_24_ProbabilityGauss.nb

The probability of Is conditional on F is cpIsF[Is | F]:

cpIsF[Is_, F_] :=Which[Is==1 && F ==1, 11/16,

Is==1& F ==2,5/8,Is==2 & F =1,5/16, Is==2 & F =2, 3/8];
TableForm[Table[cpIsF[Is, F], {Is, 1, 2}, {F, 1, 2}],
TableHeadings -> {{"Is=am", "Is=tm"}, {"F=a", "F=t"}}]

17=F1

"'!1
1
o+

Is=am i
16
Is=tm B

®|w ®|u

16

The total joint probability

‘We now have enough information to put probabilities on the 2x2x2 "universe" of possibilities, i.e. all possible combinations
of fruit, color, and image measurements. Looking at the graphical model makes it easy to use the product rule to construct
the total joint, which is:

pIF,C,Is,Ic]=p[IcIC]p[CIF]plIs| F]pIF I
jpFCIsIc[F_, C_, Is_, Ic_] := cplcC[Ic, C] cpCF[F, C] cpIsF[Is, F] ppF[F]

Usually, we don't need the probabilities of the image measurements (because once the measurements are made, they are
fixed and we want to compare the probabilities of the hypotheses. But in our simple case here, once we have the joint, we
can calculate the probabilities of the image measurements through marginalization p(Is Ic)=3.. 3 p(F, C, Is, Ic), too:

2 2
jpIsIc[Is_, Ic_] :=Z Z jpFCISIc[F, C, Is, Ic]
Cc=1 F=1

Three MAP tasks

Suppose that we measure Is=am, and Is = rm. The measurements suggest "red apple", but to find the most probable, we
need to take into account the priors too.

m Define argmax[] function:

argmax[x_] := Position[x, Max[x]];

Lect_24_ProbabilityGauss.nb 25 26 Lect_24_ProbabilityGauss.nb

m Pick most probable fruit AND color--Answer "red tomato" m Pick most probable color--Answer "red"

Using the total joint, p(F,C | Is, Ic) = 219 o (R C Is Ic)

In this case, we want maximize the posterior:
pisc)
p(ClIs,Ic)=X2_, p(F, C|Is,Ic)
TableForm[jpFCIsIcTable = Table[jpFCIsIc[F, C, 1, 1], {F, 1, 2}, {C, 1, 2}],
TableHeadings -> {{"F=a", "F=t"}, {"C=r", "C=g"}}] 2
Max [jpFCIsIcTable] pCIC_, Is_, Ic_] := Z jpFCcIsIc[F, C, Is, Ic]
argmax [jpFCIsIcTable] F=1
C=r C=g
195 - TableForm[pCTable = Table[pC[C, 1, 1], {C, 1, 2}],
5=8 2096 1024 TableHeadings -> {{"C=r", "C=g"}}]
F-t 135 35 Max [pCTable]
1024 2048 argmax [pCTable]
135
- 115
1024 S5 157
42
C=9 157
{{2, 1}}
115

"Red tomato" is the most probable once we take into account the difference in priors. 157
Calculating p(F,C | Is, Ic). We didn't actually need p(F,C | Is, Ic), but we can calculate it by conditioning the total joint on
the probability of the measurments: {{1}}

jpFCcIsIc[F_, C_, Is_, Ic_] := jpFCIsIc[F, C, Is, Ic]/jpIsIc[Is, Ic] Answer is that the most probable material color is C =r, "red".

TableForm[jpFCcIsIcTable = Table[jpFCcIsIc[F, ¢, 1, 1], {F, 1, 2}, {C, 1, 2}],
TableHeadings -> {{"F=a", "F=t"}, {"C=r", "C=g"}}]
Max [jpFCcIsIcTable]

m Pick most probable fruit--Answer "apple"

p(F11s,Ic)
argmax [jpFCcIsIcTable]
2
PF[F_, Is_, Ic_] :=Z jpFCcIsIC[F, C, Is, Ic]

=z =g - - a c=1
F-a 55 308
- 157 1413
IP= — —

157 1413
60
157

{{2, 1}}

Lect_24_ProbabilityGauss.nb

TableForm[pFTable = Table[pF[F, 1, 1], {F, 1, 2}],
TableHeadings -> {{"F=a", "F=t"}}]

Max [pFTable]

argmax [pFTable]

1413

610
F=
E 1413

803
1413

{{1}}

The answer is "apple"

m Moral of the story: Optimal inference depends on the precise definition of the task

27 28

I M/X

m2,1) m22)
*(2) x(2)

m(.1) m(1.2)
[x(1) x(1

m(13)
x(1)
m23)
*(2)

|

m Putting the probabilities back together again to get the joint

I Appendices

Using Mathematica lists to manipulate discrete priors, likelihoods, and posteriors

H A note on list arithmetic

We haven't done standard matrix/vector operations above to do conditioning. We've take advantage of how Mathematica
divides a 2x3 array by a 2-element vector:

M=Array[m, {2,3}]
X = Array[x,{2}]

m(1,1) m(1,2) m(1,3)
(m(2,l) m(2,2) m(2,3))

{x(1), x(2)}

/_.._.\
wl= 5=
N ;|_
o= o=
S

,_.....\
vl 5=
N ;|_
o= o=
—_

Transpose [Transpose [pHx] px]

m Getting the posterior from the priors and likelihoods:

Lect_24_ProbabilityGauss.nb

One reason Bayes' theorem is so useful is that it is often easier to formulate the likelihoods (e.g. from a causal or generative-
model of how the data could have occurred), and the priors (often from heuristics, or in computational vision empirically
testable models of the external visual world). So let's use Mathematica to derive p(HIx) from p(xIH) and p(H) , (i.e. pHx

from pxH and pH).

,__ﬁ
PYES
R= o=
—

Wl W=

px2 = Plus @@ (pxH pH)

Transpose [Transpose [(pxH pH)] / Plus @@ (pxH pH)]

Lect_24_ProbabilityGauss.nb 29 30 Lect_24_ProbabilityGauss.nb

m Show that this joint probability has a uniform prior (i.e. both priors equal).

p={{1/8,1/8,1/4}, {1/4,1/8, 1/8}}

Marginalization and conditioning: A small dimensional example using list manipulation
in Mathematica

| A discrete joint probability

All of our knowledge regarding the signal discrimination problem can be described in terms of the joint probability of the
hypotheses, H and the possible data measurements, x. The probability function assigns a number to all possible
combinations:

p[H, x]

That is, we are assuming that both the hypotheses and the data are discrete random variables.

S1

B={g,

xe{l,2, ...}

Let's assume that x can only take on one of three values, 1,2, or 3. And suppose the joint probability is:

101 1. 1 1 1
p={{z bz 5

—
wl- 5=
al- 5|-
o= o=
_

TableForm[p, TableHeadings -> {{"H=S1", "H=S2"}, {"x=1", "x=2", "x=3"}}]

i
o

x=2

0
w

[~

H=S1

-
©

1
12
H=S2 =S

W~
o
al= o=

The total probability should sum up to one. Let's test to make sure. We first turn the list of lists into a singel list of scalars
using Flatten[]. And then we can sum either with Apply[Plus,Flatten[p]].

Plus @@ Flatten[p]

We can pull out the first row of p like this:

pl[1]]
{1 1 1
1212 6

Is this the probability of x? No. For a start, the numbers don't sum to one. But we can get it through the two processes of
marginalization and conditioning.

m Marginalizing
What are the probabilities of the data, p(x)? To find out, we use the sum rule to sum over the columns:

px = Apply[Plus, p]

5 1 1
{77 3}

"Summing over "is also called marginalization or "integrating out". Note that marginalization turns a probability
function with higher degrees of freedom into one of lower degrees of freedom.

‘What are the prior probabilities? p(H)? To find out, we sum over the rows:

Lect_24_ProbabilityGauss.nb

31 32 Lect_24_ProbabilityGauss.nb
pH = Apply[Plus, Transpose[p]] BarChart[p[[1]], p[[2]]];
(£, 2 0.3
373 0.25
0.2
0.15
0.1
m Conditioning 0.05
. . .. - I 1 2 3
Now that we have the marginals, we can get use the product rule to obtain the conditional probability through conditioning
of the joint:
Hl= plH, x]
plx|H] = pIH] Marginalization and conditioning: An example using Mathematica functions

In the Exercises, you can see how to use Mathematica to do the division for conditioning. The syntax is simple:
B A discrete joint probability

BEHESSDIApH All of our knowledge regarding the signal discrimination problem can be described in terms of the joint probability of the
hypotheses, H and the possible data measurements, x. The probability function assigns a number to all possible
111 combinations:
4 4 2
[L1] p[H, x]
2 4 4

That is, we are assuming that both the hypotheses and the data are discrete random variables.
Note that the probability of x conditional on H sums up to 1 over X, i.e. each row adds up to 1. But, the columns do not.

pIxIH] is a probability function of x, but a likelihood function of H. The posterior probability is obtained by conditioning H= { s1
on x: s2
1,2, ...}
plH, x] xe {1, 2,
plH|x = ——
plx]

Let's assume that x can only take on one of three values, 1,2, or 3. And suppose the joint probability is:
Syntax here is a bit more complicated, because the number of columns of px don't match the number of rows of p. We use
Transpose[] to exchange the columns and rows of p before dividing, and then use Transpose again to get back the 2x3 form: P[H_, x_] :=Which[H=1 && x =1, 1/12, H==1 && x =2, 1/12, H==1 && x =
1/6, H==2 & x ==1,1/3,H==2 & x ==2,1/6, H==2 & x ==3, 1/6];

’
| pHx = Transpose [Transpose[p] / px]

TableForm[Table[p[H, x], {H, 1, 2}, {x, 1, 3}],

[]‘ 1 TableHeadings -> {{"H=s1", "H=s2"}, {"X=1", "X=2", "X=3"}}]
5 3 2]
4 2 1
5 3 2 X=1 X=2 X=3
_ 1 1 1
. . . H751 E E ?
Plotting the joint H=s2 L ES 1
3 6 6

The following BarChart[] graphics function requires in add-in package (<< Graphics® Graphics®), which is specified at the

top of the notebook. You could also use ListDensityPlot[]. The total probability should sum up to one. Let's test to make sure. We first turn the list of lists into a singel list of scalars

using Flatten[]. And then we can sum either with Apply[Plus,Flatten[p]].

Lect_24_ProbabilityGauss.nb 33 34 Lect_24_ProbabilityGauss.nb

Sum[p[H, x], {H, 1, 2}, {x, 1, 3}] m Conditioning
1toni

1 Now that we have the marginals, we can get use the product rule to obtain the conditional probability through conditioning
of the joint:

‘We can pull out the first row of p like this:

plH, x]
plx|H] = ———
Table[p[1l, x], {x, 1, 3}] plH]
1 1 0 We use function definition in Mathematica to do the division for conditioning. The syntax is simple:
gz &}

PxH[H_, x_] :=p[H, x] /pH[H];

Is this the probability of x? No. For a start, the numbers don't sum to one. But we can get it through the two processes of
marginalization and conditioning.
Table[pxH[H, x], {H, 1, 2}, {x, 1, 3}]

m Marginalizing

L 11
4 4 2
What are the probabilities of the data, p(x)? To find out, we use the sum rule to sum over the columns: % % %
px[x_] :=Sum[p[H, x], {H, 1, 2}]; Note that the probability of x conditional on H sums up to 1 over X, i.e. each row adds up to 1. But, the columns do not.
pIxIH] is a probability function of x, but a likelihood function of H. The posterior probability is obtained by conditioning
on x:
Table[px[x], {x, 1, 3}]
plH, x]
s 1 pLH ¥ = ——
{_ — _} plx]
12’43
"Summing over "is also called marginalization or "integrating out". Note that marginalization turns a probability PHx[H_, x_] :=p[H, x] /px[x];
function with higher degrees of freedom into one of lower degrees of freedom.
. RS N . .
What are the prior probabilities? p(H)? To find out, we sum over the rows: Table[pHx [H, x], {(H, 1, 2}, {x, 1, 3}]
PH[H_] :=Sum[p[H, x], {x, 1, 3}]; Lo
5 3 2
4 2 1
Table[pH[H], {H, 1, 2}] S
Plotting the joint
1 2
{73}
We use ListDensityPlot[].

Lect_24_ProbabilityGauss.nb 35

ListDensityPlot [Table[p[H, x], {H, 1, 2}, {x, 1, 3}1];

0 0.5 1 1.5 2 2.5 3

I References

Applebaum, D. (1996). Probability and Information . Cambridge, UK: Cambridge University Press.
Cover, T.M., & Joy, A. T. (1991). Elements of Information Theory. New York: John Wiley & Sons, Inc.
Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene_analysis . New York.: John Wiley & Sons.

Intrator, N. Combining Exploratory Projection Pursuit and Projection Pursuit Regression. Neural Computation (5):443-
455, 1993. http://www .physics.brown.edu/users/faculty/intrator/papers/epp-ppr.ps.gz

Kersten, D. and P.W. Schrater (2000), Pattern Inference Theory: A Probabilistic Approach to Vision, in Perception and the
Physical World, R. Mausfeld and D. Heyer, Editors. , John Wiley & Sons, Ltd.: Chichester. (pdf)

Ripley, B. D. (1996). Pattern Recognition and Neural Networks. Cambridge, UK: Cambridge University Press.
Yuille, A., Coughlan J., Kersten D.(1998) (pdf)

© 2000, 2001 Daniel Kersten, Computational Vision Lab, Department of Psychology, University of Minnesota.

