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More probability

‡ Initialize standard library files:

In[1]:= Off@General::spell1D;

The next package is needed for the add-on multivariate gaussian

In[2]:= << Statistics`MultinormalDistribution`

Goals

Review the basics of probability distributions and statistics

More on generative modeling: drawing samples

Graphical models for inference

Optimal inference and Task dependence

Probability overview

Random variables, discrete probabilities, probability densities, cumulative distributions

‡ Discrete: random variable X can take on a finite set of discrete values

X = {x(1),...,x(N)]

‚
i=1

N

pi = ‚
i=1

N

pHX = xHiLL = 1

‡ Densities: X takes on continuous values, x, in some range.

Density : pHxL

Analogous to material mass,
we can think of the probability over some small domain of the random variable as " probability mass " :

probHx < X < dx + xL = ‡
X

dX+X

pHxL „ x

probHx < X < dx + xL > pHxL dx

Crudely speaking, however, an object Hevent spaceL always weighs 1 :

‡
-¶

¶

pHxL „ x = 1

Cumulative  distribution:

prob HX < xL = ‡
-¶

x

pHXL „ X

‡ Densities of discrete random variables

The Dirac Delta function, d[•], allows us to use the mathematics of continuous distributions for discrete ones, by defining 
the density as:

p[x]=⁄i=1
N pi d[x - x[i]], where d[x - x[i]] =9

¶
0

for x = x@iD
for x ∫ x@iD

Think of the delta function, d[•], as e wide and 1/e tall, and then let e -> 0, so that:

‡
-¶

¶

dHyL „ y = 1

The density, p[x], is a series of spikes. It is infinitely high only at those points for which x = x[i], and zero elsewhere. But 
"infinity" is scaled so that the local mass or area around each point x[i], is pi .

‡ Joint probabilities

Prob HX AND Y L = pHX, Y L
Joint density : pHx, yL
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Three basic rules of probability

Suppose we know everything there is to know about a set of variables (A,B,C,D,E). What does this mean in terms of 
probability? It means that we know the joint distribution, p(A,B,C,D,E). In other words, for any particular combination of 
values (A=a,B=b, C=c, D=d,E=e), we can calculate, look up in a table, or determine some way or another the number 
p(A=a,B=b, C=c, D=d,E=e).

Deterministic relatinships are special cases. For example, suppose we know that there are only two specific pairs of num-
bers that determine Y as a function of X: {y1 = 2x1,y2=2x2,y3=2x3}, exactly. Then p(x1,y1)= 

‡ Rule 1: Conditional probabilities from joints: The product rule

Probability about an event changes when new information is gained.

Prob(X given Y) = p(X|Y)

pHX » Y L =
pHX, Y L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

pHYL

pHX, YL = pHX » Y L pHY L

The form of the product rule is the same for densities as for probabilities.

‡ Rule 2: Lower dimensional probabilities from joints: The sum rule (marginalization)

pHXL = ‚
i=1

N

pHX, Y HiLL

pHxL = ‡
-¶

¶

pHx, yL „ x

‡ Rule 3: Bayes' rule

From the product rule, and since p[X,Y] = p[Y,X], we have:

pHY » XL =
pHX » YL pHY L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

pHXL
, and using the sum rule, pHY » XL =

pHX » Y L pHY L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
⁄Y pHX, Y L
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‡ Bayes Terminology in inference

Suppose we have some partial data (see half of someone's face), and we want to recall or complete the whole. Or suppose 
that we hear a voice, and from that visualize the face. These are both problems of statistical inference. We've already studied 
how

We typically think of the Y term as a random variable over the hypothesis space (a face), and X as data or a stimulus 
(partiall face, or sound). So for recalling a pattern Y from an input stimulus X, We'd like to have a function that tells us:

p(Y | X) which is called the posterior probability of the hypothesis (face) given the stimulus (partial face or sound).

-- i.e. what you get when you condition the joint by the stimulus data. The posterior is often what we'd like to base our 
decisions on, because it can be proved that picking the hypothesis Y which maximizes the posterior (i.e. maximum a 
posteriori or MAP estimation) minimizes the average probability of error.

p(Y) is the prior probability of the hypothesis (e.g. Given a context, such as your room, some faces are a priori more likely 
than others. For me an image patch stimulating my retina in my kitchen is much more likely to be my wife's than my 
brother's (who lives in another state)).

p(X|Y) is the likelihood of the hypothesis. Note this is a probability of X, but not of Y.(The sum over X is one, but the sum 
over Y isn't necessarily one.)

‡ Independence

Knowledge of one event doesn't change the probability of another event. 

p(X)=p(X|Y)

p(X,Y)=p(X)p(Y)

Density mapping theorem

Suppose we have a change of variables that maps a discrete set of x's uniquely to y's:  X->Y.

‡ Discrete random variables

No change to probability function. The mapping just corresponds to a change of labels, so the probabilities p(X)=p(Y).

‡ Continuous random variables

Form of probability density function does change because we require the probability "mass" to be unchanged: p(x)dx = 
p(y)dy

Suppose, y=f(x)

pY HyL dy = pX HxL dx
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pY (y)=Ÿ dHy - f HxLL f -1HxL pX HxL „ x

over each monotonic part of f.

Convolution  theorem for adding rvs

Let x be distributed as g(x), and y as h(x). Then the probability density for z=x+y is, f(z):

(1)f HzL = ‡ g HsL h Hz - sL „s

Statistics

‡ Expectation & variance

Analogous to center of mass:

Definition of expectation or average:

Average@XD = X
ê

= E@XD = S x@iD p@x@iDD

m = E@XD = ‡ x pHxL dx ~ ‚
i=1

N

xi êN

Some rules:

E[X+Y]=E[X]+E[Y]

E[aX]=aE[X]

E[X+a]=a+E[X]

Definition of variance:

s2 = Var[X] = E[[X-m]^2] = ⁄ j=1
N HHpHxH jLLL HxH jL - mLL2 = ⁄ j=1

N pj Hxj - mLL2

Var@XD = ‡ Hx - mL2 pHxL dx ~ ‚
i=1

N

Hxi - m L2 êN

Standard deviation:

s =
è!!!!!!!!!!!!!!!!
Var@XD

Some rules:

Var@XD = E@X2D - E@XD2

Var@aXD = a2 Var@XD
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‡ Covariance & Correlation

Covariance:

Cov[X,Y] =E[[X - mX ] [Y - mY ] ]

Correlation coefficient:

r@X, YD =
Cov@X, YD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

sX sY

‡ Cross and Autocovariance matrix

Suppose X and Y are vectors: {X1 , X2 , ...} and {Y1 , Y2 , ...}

Cov[Xi ,Yj ] =E[[Xi  - mXi ] [Yj  - mYj ] ] ~ ‚
n=1

N Hxi
n - mXi L Iyj

n - mYj M
T ëN

Autocov[Xi ,Xj ] =E[[Xi  - mXi ] [Xj  - mYj ] ] ~ ⁄n=1
N Hxi

n - mXi L Hxj
n - mXi L

T êN

In other words, the autocovariance matrix can be approximated by the outer product. It is a Hebbian matrix memory of pair-
wise relationships.

‡ Independent random variables

If p(X,Y)=p(X)p(Y), then

E@X YD = E@XD E@YD HuncorrelatedL
Cov@X, YD = r@X, YD = 0
Var@X + YD = Var@XD + Var@YD

If two random variables are uncorrelated, they are not necessarily independent. 

Two random variables are said to be orthogonal if their correlation is zero.

Degree of  belief vs., relative frequency

What is the probability that the Vikings will win the Superbowl in 2002? Assigning a number between 0 and 1 is assigning 
a degree of belief. These probabilities are also called subjective probabilities. "Odds" determine subjective probabilities, 
where the "odds of x to y" means probability = x/(x+y).

What is the probability that a coin will come up heads? In this case, we can do an experiment. Flip the coin n times, and 
count the number of heads, say h[n], and then set the probability, p = h[n]/n -- the relative frequency . Of course, if we did it 
again, we may not get the same estimate of p. One solution often given is:

p = lim
nØ¶

hHnL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

n
A problem with this, is that there is no guarantee that a well - defined limit exists.
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In some domains we can measure statistics, and model probabilities of both inputs and outputs. So the relative frequency 
interpretation seems reasonable. In practice, the dimensions of many problems in perception, cognition, and memory are so 
high, that it is impractical to do this. Once we use the statistical framework to model perception, say of a particular cue 
(say ), then probabilities are more like  "subjective unconscious beliefs".

Principle of insufficient reason

‡ Principle of symmetry

Suppose we have N events, x[1],x[2],x[3],...,x[N] that are all physically identical except for the label. Then assume that 

probHxH1LL = probHxH2LL = probHxH3LL = probHxHNLL =
1

ÅÅÅÅÅÅÅ
N

In other words,if we have no additional information about the events,we should assume that they are uniformly distributed. 
I.e., assume a uniform prior. 

What about the continous case where there is no reason to assume any particular value at all between -¶ and +¶?

Improper priors.

‡ Information theory and Maximum entropy

Information theory provides a powerful extension to the principle of symmetry. Information of event X is:

Information@XD = -log2 HpHXLL

Using the definition of expectation above, we can specify the expectation of information, which is called entropy. Entropy 
of a random variable X with probability distribution p[X] is:

HHXL = AverageHInformation@XDL = -‚
X

pHXL log2 HpHXLL

It can be shown that out of all possible probability distributions, H(X) is biggest for the uniform distribution, p(X)=1/N. 
Maximum entropy is looking like symmetry.

It turns out that a more powerful formulation of the principle of symmetry is maximum entropy. For example, out of all 
possible probability distributions of a random variable with infinity range, but with a specific mean and standard deviation, 
the Gaussian is unique in having the largest entropy. If the range goes from zero to infinity, and we know the mean, the 
maximum entropy distribution is an exponential (Cover and Thomas).

An interesting application of the maximum entropy principle is to learning image textures joint probabilities: p(I[1],...,I[N]), 
where N is very big, but where one has only a relatively small number of measured statistics relative to the number of 
possible images (which is really huge). The measurements underdetermine the dimesionality of the probability space--i.e. 
there are many different probability distributions which give the same statistics. So the principle of symmetry, or insuffi-
cient reason, says to choose the one with the maximum entropy.
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More on generative modeling: Multivariate gaussian, mixtures

Making a univariate (scalar) gaussian random number generator

We'll use the density mapping theorem to turn uniformly distributed random numbers Random[] into gaussian distributed 
random numbers with mean =0 and standard deviation =1.

‡ The Gaussian distribution

In[5]:= Integrate@Exp@-Hx - x0L^2 ê H2* s^2L D, 8x, -Infinity, Infinity<D

Out[5]= IfARe@s2D > 0,
è!!!!!!!
2 p

è!!!!!!
s2 , ‡

-¶

¶

‰
- Hx-x0L2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 s2  „xE

Let x0=0 and s=1:

In[6]:= Plot@Exp@-Hx1^2 L ê 2Dê HSqrt@2 * PiDL, 8x1, -4, 4<D;

-4 -2 2 4

0.1

0.2

0.3

0.4

Plot[PDF[NormalDistribution[0,1],x1],{x1,-4,4}];  gives the same thing using the add-on normal distribution function.

‡ Cumulative gaussian

In[7]:= Clear@cumulgauss, x, x1D;
cumulgauss@x_D :=
Integrate@Exp@-Hx1^2 L ê 2D ê HSqrt@2 * PiDL, 8x1, -Infinity, x<D
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In[9]:= cumulgauss@InfinityD

Out[9]= 1

In[10]:= Plot@cumulgauss@xD, 8x, -4, 4<D;

-4 -2 2 4

0.2

0.4

0.6

0.8

1

In[11]:= lcumulgauss = Table@8x, cumulgauss@xD<, 8x, -4.0, 4.0, .25<D;
ListPlot@lcumulgaussD;

-4 -2 2 4

0.2

0.4

0.6

0.8

1

‡ Make inverse cumulative gaussian table

In[13]:= invlcumulgauss = RotateLeft@lcumulgauss, 81, 1<D;
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In[14]:= ListPlot@invlcumulgaussD;

0.2 0.4 0.6 0.8 1

-4

-2

2

4

‡ Make interpolated function of the inverse cumulative

In[15]:= interinvlcumulgauss = Interpolation@invlcumulgaussD;

In[16]:= Plot@interinvlcumulgauss@xD, 8x, .01, .99<D;

0.2 0.4 0.6 0.8 1

-2

-1

1

2

‡ Draw samples with a standard deviation of Sqrt[10]

In[17]:= Round@10 * interinvlcumulgauss@Random@DDD

Out[17]= -1

‡ Draw a bunch of samples, and plot up histogram

In[18]:= z = Table@Round@10 * interinvlcumulgauss@Random@DDD, 810000<D;
domain = Range@-20, 20D;
Freq = Map@Count@z, #D &, domainD;
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In[21]:= Sqrt@10.D

Out[21]= 3.16228

In[22]:= ListPlot@FreqD;

10 20 30 40

100

200

300

400

<< Statistics`DataSmoothing`
ListPlot@MovingAverage@Freq, 6DD;

5 10 15 20 25 30 35
100

150

200

250

300

350

Lect_23_Probability.nb 11

‡ Plot up cumulative histogram

CumFreq = FoldList@Plus, 0, FreqD;
ListPlot@CumFreqD;

10 20 30 40

2000

4000

6000

8000

Transpose@8domain, Freq, CumFreq<D êê MatrixForm

Multivariate (vector) gaussian distributions

‡ Define multivariate gaussian probability density

An n -variate multivariate gaussian (multinormal) distribution with mean vector m  and covariance matrix S  is denoted 
Nn  Hm, SL . The density is:

(2)p HxL =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H2 pLnê2  Det@SD1ê2

 ExpA-
1
ÅÅÅÅ
2

 Hx - mLT  S-1  Hx - mLE

We define a 2-variate density:

In[25]:= multigaus[x_,m_,cov_]:=
Module[{IC,detCov,norm,p},
IC = Inverse[cov];
detCov = Abs[Det[cov]];
norm = N[Sqrt[(2Pi)^2 detCov]];
p = Exp[-0.5 (x-m).IC.(x-m)]/norm;
Return[p];

];
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‡ Two variable examples

‡ Zero mean, zero correlation

In[26]:= m1 = {0,0};
Cov = {{1,0},{0,1}};
ContourPlot[multigaus[{x1,x2},m1,Cov],{x1,-2,2}, {x2,-2,2}];

-2 -1 0 1 2
-2

-1

0

1

2

‡ Mean = {1,1}, positive correlation

In[29]:= m1 = {1,1};
Cov = {{1,.5},{.5,1}};
ContourPlot[multigaus[{x1,x2},m1,Cov],{x1,0,2},  {x2,0,2}];

0 0.5 1 1.5 2
0

0.5

1

1.5

2
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‡ Mean = {1,1}, positive correlation, small variance

In[32]:= m1 = {1,1};
Cov = 0.2{{1,.5},{.5,1}};
ContourPlot[multigaus[{x1,x2},m1,Cov],{x1,0,2},  {x2,0,2}];

0 0.5 1 1.5 2
0

0.5

1

1.5

2

‡ Mixture of gaussians

a is a mixing parameter

(3)p HxL = ap1  HxL + H1 - aL p2  HxL where 0 § a § 1

a can be interpreted in terms of a prior probability of
choosing which of two distributions a sample will be drawn from.

In[35]:= m1 = {1,.5}; m2 = {-1,-.5};
Cov1 = 0.4*{{1,.6},{.6,1}};
Cov2 = 0.4*{{1,-.6},{-.6,1}};
mix[x_] := 0.5 (multigaus[x,m1,Cov1] + multigaus[x,m2,Cov2]);

14 Lect_23_Probability.nb



In[39]:= ContourPlot[mix[{x1,x2}],{x1,-2,2}, {x2,-2,2}];

-2 -1 0 1 2
-2

-1

0

1

2

‡ Drawing samples from the density--draw from a hat method

‡ We'll simulate the process of filling a hat with slips of paper, where the number of slips

is proportional to the probability the number being in some range (dx1,dx2)

m1 = {0,0};
Cov = {{1,.8},{.8,1}};
dx1 = 0.1;
dx2 = dx1;

Nslips=100;
hat = {};
For[x1=-2,x1<=2,x1=x1+dx1,
For[x2=-2,x2<=2,x2=x2+dx2,
np = Nslips*multigaus[{x1,x2},m1,Cov];
For[i=1,i<np,i=i+1,
hat = Append[hat,{x1,x2}];

];
];

];

hat is a list of pairs of numbers for which the frequency of occurence of pairs is determined by multigauss.

Dimensions@hatD

88698, 2<
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‡ Now let's do a check, where we compile a histogram representing the frequencies of each slip

First, define the "bins" in domain, that we'll use to check for matches:

domain = {};
For[x1=-2,x1<=2,x1=x1+dx1,
For[x2=-2,x2<=2,x2=x2+dx2,

domain = Append[domain,{x1,x2}];
];

];

An alternate way of specifying the domain using Outer[], and Range[]:

domain2 = Flatten[Outer[List,Range[-2,2,dx1],Range[-2,2,dx1]],1];

Now we'll count how many times we find that an element of hat matches a domain element:

Freq = Map[Count[hat,#]&,domain];

width = Sqrt[Dimensions[Freq]]

840<

ListDensityPlot[Partition[Freq,width]];
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0

10

20

30

40

‡ Now draw a sample--simulate pulling a slip from hat

rv:=hat[[Random[Integer,{1,Length[hat]}]]];
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test = Table[hat[[Random[Integer,{1,Length[hat]}]]],{600}];

g1=ListPlot[test];

-2 -1 1

-2

-1

1

Of course, we can't see the frequency of draws in this plot, so let's count up the number of occurences per bin, and plot up 
the results as we did above.

Freq2 = Map[Count[test,#]&,domain];
width = Sqrt[Dimensions[Freq2]];

ListDensityPlot[Partition[Freq2,width]];

0 10 20 30 40
0

10

20

30

40
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Drawing multivariate samples from the density -- use the inverse cumulative distribution

Add-on Mathematica functions for gaussian multivariates & exploring marginals

‡ Define PDF, CDF

In[40]:= m1 = {1,.5};
r=0.4*{{1,.6},{.6,4}};
ndist = MultinormalDistribution[m1, r];

In[43]:= pdf = PDF[ndist, {x1, x2}]

Out[43]= 0.20855 ‰
1ÅÅÅÅ2 H-H-1+x1L H2.74725 H-1+x1L-0.412088 H-0.5+x2LL-H-0.412088 H-1+x1L+0.686813 H-0.5+x2LL H-0.5+x2LL

What is the probability of the distribution in the region x1 < -2 › x2 < 1. 

In[44]:= CDF[ndist, {-2, 1}]

Out[44]= 1.02471 µ 10-6

In[46]:= g1=ContourPlot[PDF[ndist, {x1, x2}],{x1,-2,2}, {x2,-2,2},ContourShading-
>False];

-2 -1 0 1 2
-2

-1

0

1

2
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In[47]:= marginal@x1_D := Integrate@PDF@ndist, 8x1, x2<D, 8x2, -Infinity, Infinity<D ;
g2 = Plot@marginal@x1D, 8x1, -2, 2<D;
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In[49]:= Show@8g1, g2<D;
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2

‡ Drawing samples

As we've used in earlier lectures, drawing samples is done by:

Random@ndistD

8-0.52553, -2.54926<

Mixtures of gaussians

Clear@mixD;
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r1=0.4*{{1,.6},{.6,1}};
r2=0.4*{{1,-.6},{-.6,1}};
m1 = {1,.5}; m2 = {-1,-.5};
ndist1 = MultinormalDistribution[m1, r1];
ndist2 = MultinormalDistribution[m2, r2];

mix[x_] := 0.5 (PDF[ndist1, x] + PDF[ndist2, x]);

ContourPlot[mix[{x1,x2}],{x1,-2,2}, {x2,-2,2}];

-2 -1 0 1 2
-2

-1

0

1

2

‡ Marginals for mixture

(4)marginal@x1_D := Integrate@mix@8x1, x2<D, 8x2, -Infinity, Infinity<D

Clear@marginalD;
marginal@x1_D :=
0.5 * HIntegrate@PDF@ndist1, 8x1, x2<D, 8x2, -Infinity, Infinity<D +
Integrate@PDF@ndist2, 8x1, x2<D, 8x2, -Infinity, Infinity<DL;

Plot@marginal@x1D, 8x1, -2, 2<D;

-2 -1 1 2
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Clear@marginalD;
marginal@x2_D :=
0.5 * HIntegrate@PDF@ndist1, 8x1, x2<D, 8x1, -Infinity, Infinity<D +
Integrate@PDF@ndist2, 8x1, x2<D, 8x1, -Infinity, Infinity<DL;

Plot@marginal@x2D, 8x2, -2, 2<D;

-2 -1 1 2
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0.2

0.3

0.4

Which projection (marginal) is more "interesting"--the one onto x1 or onto x2? 

Exploratory projection pursuit

Graphical Models of dependence

‡ Graphs: causal structure and conditional independence

 The idea is to represent the probabilistic structure of the joint distribution P(S,L,I) by a Bayes net (e.g. Ripley, 1996}, 
which is a graphical model that expresses how variables influence each other.  There are just three basic building blocks: 
converging, diverging, and intermediate nodes.  For example, multiple causal variables causing a given measurement, a 
single variable producing multiple measurements, or a cause indirectly influencing a measurement through an intermediate 
variable.  These types of influence provide a first step towards modeling the joint distribution and the means to compute 
probabilities of the unknown variables given known values.
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Components of the generative structure for data patterns involve converging, diverging,and intermediate nodes. For 
example,these could correspond to:multiple (scene) causes {shape S1, illumination S2 giving rise to the same image measure-
ment, I ; one cause, S influencing more than one image measurement, {color, I1, brightness, I2}; a scene (or other) cause S, 
{object identity, S} influencing an image measurement (image contour) through an intermediate variable L (3D shape) .

The arrows tell us how to factor the joint probability into conditionals. So for the three examples above, we have:

p(S1,S2,I)=p(I|S1,S2)p(S1)p(S2)

p(S,I1,I2)=p(I1|S)p(I2|S)p(S)

p(S,L,I)=p(I|L)p(L|S)p(S)

‡ Primary, secondary variables.

We can interpret the causal structure in terms of conditional probability.

The data measurements (x) are determined by a typically non-linear function (f) of primary signal variables (S_e) and 
confounding secondary variables (S_g).  Knowledge is represented by the joint probability p(x,S_e,S_g).  In general, the 
causal structure of natural data (e.g. image or speech) patterns is more complex and consequently requires elaboration of its 
graphical representation. For pattern inference theory, the task is to make a decision about the signal hypotheses or primary 
signal variables, while discounting the noise or secondary variables.  Thus optimal perceptual decisions are determined by 
p(x,S_e), which is derived by summing over the secondary variables (i.e. marginalizing with respect to the secondary 
variables): ŸS_g

pHx, S_e, S_gL „ S_g.

Influences between variables are represented by conditioning, and a graphical model expresses the conditional independen-
cies between variables.  Two random variables may only become independent, however, once the value of some third 
variable is known.  This is called conditional independence.Recall from above that two random variables are independent if 
and only if their joint probability is equal to the product of their individual probabilities.  Thus, if p(A,B) = p(A)p(B), then 
A and B are independent.  If p(A,B|C) = p(A|C)p(B|C), then A and B are conditionally independent.

When corn prices drop in the summer, hay fever incidence goes up.  However, if the joint on corn price and hay fever is 
conditioned on ``ideal weather for corn and ragweed'', the correlation between corn prices and hay fever drops.  This is 
because corn price and hay fever symptoms are conditionally independent. 

There is a correlation between eating ice cream and drowning. Why? What event should you condition on to make the 
dependence go away?

‡ What is noise? Primary and secondary variables

Noise is whatever you don't care to estimate, but contributes to the data. The secondary variables are noise.

Optimal Inference and task dependence: Fruit example 

(due to James Coughlan; see Yuille, Coughlan, Kersten & Schrater).
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Figure from Yuille, Coughlan, Kersten & Schrater.

The the graph specifies how to decompose the joint probability:

 p[F, C, Is, Ic ] = p[ Ic | C ] p[C | F ] p[Is | F ] p[F ]

The prior model on hypotheses, F & C

More apples (F=1) than tomatoes (F=2), and:

ppF@F_D := If@F ã 1, 9 ê 16, 7 ê 16D;
TableForm@Table@ppF@FD, 8F, 1, 2<D, TableHeadings -> 88"F=a", "F=t"<<D

F=a 9ÅÅÅÅÅ
16

F=t 7ÅÅÅÅÅ
16

The conditional  probability cpCF[C|F]:

cpCF@F_, C_D := Which@F ã 1 && C ã 1, 5 ê 9,
F ã 1 && C ã 2, 4 ê 9, F ã 2 && C ã 1, 6 ê 7, F ã 2 && C ã 2, 1 ê 7D;

TableForm@Table@cpCF@F, CD, 8F, 1, 2<, 8C, 1, 2<D,
TableHeadings -> 88"F=a", "F=t"<, 8"C=r", "C=g"<<D

C=r C=g

F=a 5ÅÅÅ
9

4ÅÅÅ
9

F=t 6ÅÅÅ
7

1ÅÅÅ
7

So the joint is:
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jpFC@F_, C_D := cpCF@F, CD ppF@FD;
TableForm@Table@jpFC@F, CD, 8F, 1, 2<, 8C, 1, 2<D,
TableHeadings -> 88"F=a", "F=t"<, 8"C=r", "C=g"<<D

C=r C=g

F=a 5ÅÅÅÅÅ
16

1ÅÅÅ
4

F=t 3ÅÅÅ
8

1ÅÅÅÅÅ
16

We can marginalize to get the prior probability on color alone is:

ppC@C_D := ‚
F=1

2

jpFC@F, CD

Question: Is fruit identity independent of material color--i.e. is F independent of C?

‡ Answer

No.

TableForm@Table@jpFC@F, CD, 8F, 1, 2<, 8C, 1, 2<D,
TableHeadings -> 88"F=a", "F=t"<, 8"C=r", "C=g"<<D
TableForm@Table@ppF@FD ppC@CD, 8F, 1, 2<, 8C, 1, 2<D,
TableHeadings -> 88"F=a", "F=t"<, 8"C=r", "C=g"<<D

C=r C=g

F=a 5ÅÅÅÅÅ
16

1ÅÅÅ
4

F=t 3ÅÅÅ
8

1ÅÅÅÅÅ
16

C=r C=g

F=a 99ÅÅÅÅÅÅÅ
256

45ÅÅÅÅÅÅÅ
256

F=t 77ÅÅÅÅÅÅÅ
256

35ÅÅÅÅÅÅÅ
256

The generative model: Imaging probabilities

Analogous to collecting histograms for the two switch positions in the SDT experiment, suppose that we have gathered 
some "image statistics" which provides us knowledge of how the image measurements for shape Is, and for color Ic depend 
on the type of fruit F, and material color, C. For simplicity, our measurements are discrete and binary (a more realistic case, 
they would have continuous values), say Is = {am, tm}, and Ic = {rm, gm}.
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P(I_S=am,tm | F=a) = {11/16, 5/16}

P(I_S=am,tm | F=t) = {5/8, 3/8}

P(I_C=rm,gm | C=r) = {9/16, 7/16}

P(I_C=rm,gm | C=g) = {1/2, 1/2}

We use the notation am, tm, rm, gm because the measurements are already suggestive of the likely cause. So there is a 
correlation between apple and apple-like shapes, am; and between red material, and "red" measurements. In general, there 
may not be an obvious correlation like this.

We define a function for the  probability of Ic given C,  cpIcC[Ic | C]:

cpIcC@Ic_, C_D := Which@Ic ã 1 && C ã 1, 9 ê 16,
Ic ã 1 && C ã 2, 7 ê 16, Ic ã 2 && C ã 1, 1 ê 2, Ic ã 2 && C ã 2, 1 ê 2D;
TableForm@Table@cpIcC@Ic, CD, 8Ic, 1, 2<, 8C, 1, 2<D,
TableHeadings -> 88"Ic=rm", "Ic=gm"<, 8"C=r", "C=g"<<D

C=r C=g

Ic=rm 9ÅÅÅÅÅ
16

7ÅÅÅÅÅ
16

Ic=gm 1ÅÅÅ
2

1ÅÅÅ
2

The  probability of Is conditional on F is cpIsF[Is | F]:

cpIsF@Is_, F_D := Which@Is ã 1 && F ã 1, 11 ê 16,
Is ã 1 && F ã 2, 5 ê 8, Is ã 2 && F ã 1, 5 ê 16, Is ã 2 && F ã 2, 3 ê 8D;

TableForm@Table@cpIsF@Is, FD, 8Is, 1, 2<, 8F, 1, 2<D,
TableHeadings -> 88"Is=am", "Is=tm"<, 8"F=a", "F=t"<<D

F=a F=t

Is=am 11ÅÅÅÅÅ
16

5ÅÅÅ
8

Is=tm 5ÅÅÅÅÅ
16

3ÅÅÅ
8

The total joint probability

We now have enough information to put probabilities on the 2x2x2 "universe" of possibilities, i.e. all possible combinations 
of fruit, color, and image measurements. Looking at the graphical model makes it easy to use the product rule to construct 
the total joint, which is:

 p[F, C, Is, Ic ] = p[ Ic | C ] p[C | F ] p[Is | F ] p[F ]:

jpFCIsIc@F_, C_, Is_, Ic_ D := cpIcC@ Ic, C D  cpCF@F, C D  cpIsF@Is, F D  ppF@F D
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Usually, we don't need the probabilities of the image measurements (because once the measurements are made, they are 
fixed and we want to compare the probabilities of the hypotheses. But in our simple case here, once we have the joint, we 
can calculate the probabilities of the image measurements through marginalization p(Is,Ic)=⁄C ⁄F pHF, C, Is, IcL , too:

jpIsIc@Is_, Ic_D := ‚
C=1

2

 ‚
F=1

2

 jpFCIsIc@F, C, Is, Ic D

Three MAP tasks

Suppose that we measure Is=am, and Is = rm. The measurements suggest "red apple", but to find the most probable, we 
need to take into account the priors too. 

‡ Define argmax[] function:

argmax@x_D := Position@x, Max@xDD;

‡ Pick most probable fruit AND color--Answer "red tomato"

Using the total joint, p(F,C | Is, Ic) = pHF,C,Is,IcLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
pHIs,IcL

∂ p(F,C,Is,Ic)

TableForm@jpFCIsIcTable = Table@jpFCIsIc@F, C, 1, 1 D, 8F, 1, 2<, 8C, 1, 2<D,
TableHeadings -> 88"F=a", "F=t"<, 8"C=r", "C=g"<<D
Max@jpFCIsIcTableD
argmax@jpFCIsIcTableD

C=r C=g

F=a 495ÅÅÅÅÅÅÅÅÅ
4096

77ÅÅÅÅÅÅÅÅÅ
1024

F=t 135ÅÅÅÅÅÅÅÅÅ
1024

35ÅÅÅÅÅÅÅÅÅ
2048

135
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
1024

882, 1<<

"Red tomato" is the most probable once we take into account the difference in priors.

Calculating p(F,C | Is, Ic). We didn't actually need p(F,C | Is, Ic), but we can calculate it by conditioning the total joint on 
the probability of the measurments:
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jpFCcIsIc@F_, C_, Is_, Ic_D := jpFCIsIc@F, C, Is, Ic D ê jpIsIc@Is, IcD

TableForm@jpFCcIsIcTable = Table@jpFCcIsIc@F, C, 1, 1 D, 8F, 1, 2<, 8C, 1, 2<D,
TableHeadings -> 88"F=a", "F=t"<, 8"C=r", "C=g"<<D
Max@jpFCcIsIcTableD
argmax@jpFCcIsIcTableD

C=r C=g

F=a 55ÅÅÅÅÅÅÅ
157

308ÅÅÅÅÅÅÅÅÅ
1413

F=t 60ÅÅÅÅÅÅÅ
157

70ÅÅÅÅÅÅÅÅÅ
1413

60
ÅÅÅÅÅÅÅÅÅÅ
157

882, 1<<

‡ Pick most probable color--Answer "red"

In this case, we want maximize the posterior:

p(C | Is, Ic)=⁄F=1
2 pHF, C » Is, IcL

pC@C_, Is_, Ic_D := ‚
F=1

2

 jpFCcIsIc@F, C, Is, Ic D

TableForm@pCTable = Table@pC@C, 1, 1 D, 8C, 1, 2<D,
TableHeadings -> 88"C=r", "C=g"<<D
Max@pCTableD
argmax@pCTableD

C=r 115ÅÅÅÅÅÅÅ
157

C=g 42ÅÅÅÅÅÅÅ
157

115
ÅÅÅÅÅÅÅÅÅÅ
157

881<<

Answer is that the most probable material color is C = r, "red".
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‡ Pick most probable fruit--Answer "apple"

p(F | Is, Ic)

pF@F_, Is_, Ic_D := ‚
C=1

2

 jpFCcIsIc@F, C, Is, Ic D

TableForm@pFTable = Table@pF@F, 1, 1 D, 8F, 1, 2<D,
TableHeadings -> 88"F=a", "F=t"<<D
Max@pFTableD
argmax@pFTableD

F=a 803ÅÅÅÅÅÅÅÅÅ
1413

F=t 610ÅÅÅÅÅÅÅÅÅ
1413

803
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
1413

881<<

The answer is "apple"

‡ Moral of the story: Optimal inference depends on the precise definition of the task

Appendices

<< Graphics`Graphics`
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Using Mathematica lists to manipulate discrete priors, likelihoods, and posteriors

‡ A note on list arithmetic

We haven't done standard matrix/vector operations above to do conditioning. We've take advantage of how  Mathematica 
divides a 2x3 array by a 2-element vector:

M=Array[m,{2,3}]
X = Array[x,{2}]

J
mH1, 1L mH1, 2L mH1, 3L
mH2, 1L mH2, 2L mH2, 3L N

8xH1L, xH2L<

M/X

i

k

jjjjjjj

mH1,1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
xH1L

mH1,2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
xH1L

mH1,3LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
xH1L

mH2,1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
xH2L

mH2,2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
xH2L

mH2,3LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
xH2L

y

{

zzzzzzz

‡ Putting the probabilities back together again to get the joint

Transpose@Transpose@pHxD pxD

i

k

jjjjjjj

1ÅÅÅÅÅÅÅ
12

1ÅÅÅÅÅÅÅ
12

1ÅÅÅÅ
6

1ÅÅÅÅ
3

1ÅÅÅÅ
6

1ÅÅÅÅ
6

y

{

zzzzzzz

pxH pH

i

k

jjjjjjj

1ÅÅÅÅÅÅÅ
12

1ÅÅÅÅÅÅÅ
12

1ÅÅÅÅ
6

1ÅÅÅÅ
3

1ÅÅÅÅ
6

1ÅÅÅÅ
6

y

{

zzzzzzz
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‡ Getting the posterior from the priors and likelihoods:

One reason Bayes' theorem is so useful is that it is often easier to formulate the likelihoods (e.g. from a causal or generative-
model of how the data could have occurred), and the priors (often from heuristics, or in computational vision empirically 
testable models of the external visual world). So let's use Mathematica to derive p(H|x) from p(x|H) and p(H) , (i.e. pHx 
from pxH and pH ).

px2 = Plus üü HpxH pHL

9
5

ÅÅÅÅÅÅÅÅÅ
12

,
1
ÅÅÅÅÅ
4

,
1
ÅÅÅÅÅ
3
=

Transpose@Transpose@HpxH pHLD ê Plus üü HpxH pHLD

i

k

jjjjjjj

1ÅÅÅÅ
5

1ÅÅÅÅ
3

1ÅÅÅÅ
2

4ÅÅÅÅ
5

2ÅÅÅÅ
3

1ÅÅÅÅ
2

y

{

zzzzzzz

‡ Show that this joint probability has a uniform prior (i.e. both priors equal). 

p = 881 ê 8, 1 ê 8, 1 ê 4<, 81 ê 4, 1 ê 8, 1 ê 8<<

99 1
ÅÅÅÅ
8
,

1
ÅÅÅÅ
8
,

1
ÅÅÅÅ
4
=, 9 1

ÅÅÅÅ
4
,

1
ÅÅÅÅ
8
,

1
ÅÅÅÅ
8
==

Marginalization and conditioning: A small dimensional example using list manipulation 

in Mathematica 

‡ A discrete joint probability

All of our knowledge regarding the signal discrimination problem can be described in terms of the joint probability of the 
hypotheses, H and the possible data measurements, x. The probability function assigns a number to all possible 
combinations:

p[H, x]

That is, we are assuming that both the hypotheses and the data are discrete random variables.

30 Lect_23_Probability.nb



H = 9
S1

S2

x e 81, 2, ...<

Let's assume that x can only take on one of three values, 1, 2, or 3. And suppose the joint probability is:

p = 99
1

ÅÅÅÅÅÅÅ
12
,
1

ÅÅÅÅÅÅÅ
12
,
1
ÅÅÅÅ
6
=, 9

1
ÅÅÅÅ
3
,
1
ÅÅÅÅ
6
,
1
ÅÅÅÅ
6
==

i

k

jjjjjjj

1ÅÅÅÅÅÅÅ
12

1ÅÅÅÅÅÅÅ
12

1ÅÅÅÅ
6

1ÅÅÅÅ
3

1ÅÅÅÅ
6

1ÅÅÅÅ
6

y

{

zzzzzzz

TableForm@p, TableHeadings -> 88"H=S1", "H=S2"<, 8"x=1", "x=2", "x=3"<<D

x=1 x=2 x=3

H=S1 1ÅÅÅÅÅ
12

1ÅÅÅÅÅ
12

1ÅÅÅ
6

H=S2 1ÅÅÅ
3

1ÅÅÅ
6

1ÅÅÅ
6

The total probability should sum up to one. Let's test to make sure. We first turn the list of lists into a singel list of scalars 
using Flatten[]. And then we can sum either with Apply[Plus,Flatten[p]].

Plus @@ Flatten[p]

1

We can pull out the first row of p like this:

p@@1DD

9
1
ÄÄÄÄÄÄÄÄÄ
12

,
1
ÄÄÄÄÄÄÄÄÄ
12

,
1
ÄÄÄÄÄ
6
=

Is this the probability of x? No. For a start, the numbers don't sum to one. But we can get it through the two processes of 
marginalization and conditioning.

‡ Marginalizing

What are the probabilities of the data, p(x)? To find out, we use the sum rule to sum over the columns:
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px = Apply@Plus, pD

9 5
ÅÅÅÅÅÅÅ
12

,
1
ÅÅÅÅ
4
,

1
ÅÅÅÅ
3
=

"Summing over "is also called marginalization or "integrating out".  Note that marginalization turns a probability 
function with higher degrees of freedom into one of lower degrees of freedom. 

What are the prior probabilities? p(H)? To find out, we sum over the rows:

pH = Apply@Plus, Transpose@pDD

9 1
ÅÅÅÅ
3
,

2
ÅÅÅÅ
3
=

‡ Conditioning

Now that we have the marginals, we can get use the product rule to obtain the conditional probability through conditioning 
of the joint:

p@ x » HD =
p@H, xD
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
p@HD

In the Exercises, you can see how to use Mathematica to do the division for conditioning. The syntax is simple:

pxH = p ê pH

i

k

jjjjjjj

1ÅÅÅÅ
4

1ÅÅÅÅ
4

1ÅÅÅÅ
2

1ÅÅÅÅ
2

1ÅÅÅÅ
4

1ÅÅÅÅ
4

y

{

zzzzzzz

Note that the probability of x conditional on H sums up to 1 over x, i.e. each row adds up to 1. But, the columns do not. 
p[x|H] is a probability function of x, but a likelihood function of H. The posterior probability is obtained by conditioning 
on x:

p@H » xD =
p@H, xD
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
p@xD

Syntax here is a bit more complicated, because the number of columns of px don't match the number of rows of p. We use 
Transpose[] to exchange the columns and rows of p before dividing, and then use Transpose again to get back the 2x3 form:
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pHx = Transpose@Transpose@pD ê pxD

i

k

jjjjjjj

1ÅÅÅÅ
5

1ÅÅÅÅ
3

1ÅÅÅÅ
2

4ÅÅÅÅ
5

2ÅÅÅÅ
3

1ÅÅÅÅ
2

y

{

zzzzzzz

Plotting the joint

The following BarChart[] graphics function requires in add-in package (<< Graphics`Graphics`), which is specified at the 
top of the notebook. You could also use ListDensityPlot[].

BarChart@p@@1DD, p@@2DDD;

1 2 3

0.05
0.1
0.15
0.2

0.25
0.3

Marginalization and conditioning: An example using Mathematica functions

‡ A discrete joint probability

All of our knowledge regarding the signal discrimination problem can be described in terms of the joint probability of the 
hypotheses, H and the possible data measurements, x. The probability function assigns a number to all possible 
combinations:

p[H, x]

That is, we are assuming that both the hypotheses and the data are discrete random variables.

H = 9
S1

S2

x e 81, 2, ...<

Let's assume that x can only take on one of three values, 1, 2, or 3. And suppose the joint probability is:
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p@H_, x_D := Which@H ã 1 && x ã 1, 1 ê 12, H ã 1 && x ã 2, 1 ê 12, H ã 1 && x ã 3,
1 ê 6, H ã 2 && x ã 1, 1 ê 3, H ã 2 && x ã 2, 1 ê 6, H ã 2 && x ã 3, 1 ê 6D;

TableForm@Table@p@H, xD, 8H, 1, 2<, 8x, 1, 3<D,
TableHeadings -> 88"H=s1", "H=s2"<, 8"X=1", "X=2", "X=3"<<D

X=1 X=2 X=3

H=s1 1ÅÅÅÅÅ
12

1ÅÅÅÅÅ
12

1ÅÅÅ
6

H=s2 1ÅÅÅ
3

1ÅÅÅ
6

1ÅÅÅ
6

The total probability should sum up to one. Let's test to make sure. We first turn the list of lists into a singel list of scalars 
using Flatten[]. And then we can sum either with Apply[Plus,Flatten[p]].

Sum@p@H, xD, 8H, 1, 2<, 8x, 1, 3<D

1

We can pull out the first row of p like this:

Table@p@1, xD, 8x, 1, 3<D

9 1
ÅÅÅÅÅÅÅ
12

,
1

ÅÅÅÅÅÅÅ
12

,
1
ÅÅÅÅ
6
=

Is this the probability of x? No. For a start, the numbers don't sum to one. But we can get it through the two processes of 
marginalization and conditioning.

‡ Marginalizing

What are the probabilities of the data, p(x)? To find out, we use the sum rule to sum over the columns:

px@x_D := Sum@p@H, xD, 8H, 1, 2<D;

Table@px@xD, 8x, 1, 3<D

9
5

ÅÅÅÅÅÅÅÅÅ
12

,
1
ÅÅÅÅÅ
4

,
1
ÅÅÅÅÅ
3
=

"Summing over "is also called marginalization or "integrating out".  Note that marginalization turns a probability 
function with higher degrees of freedom into one of lower degrees of freedom. 
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What are the prior probabilities? p(H)? To find out, we sum over the rows:

pH@H_D := Sum@p@H, xD, 8x, 1, 3<D;

Table@pH@HD, 8H, 1, 2<D

9 1
ÅÅÅÅ
3
,

2
ÅÅÅÅ
3
=

‡ Conditioning

Now that we have the marginals, we can get use the product rule to obtain the conditional probability through conditioning 
of the joint:

p@ x » HD =
p@H, xD
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
p@HD

We use function definition in Mathematica to do the division for conditioning. The syntax is simple:

pxH@H_, x_D := p@H, xD ê pH@HD;

Table@pxH@H, xD, 8H, 1, 2<, 8x, 1, 3<D

i

k

jjjjjjj

1ÅÅÅÅ
4

1ÅÅÅÅ
4

1ÅÅÅÅ
2

1ÅÅÅÅ
2

1ÅÅÅÅ
4

1ÅÅÅÅ
4

y

{

zzzzzzz

Note that the probability of x conditional on H sums up to 1 over x, i.e. each row adds up to 1. But, the columns do not. 
p[x|H] is a probability function of x, but a likelihood function of H. The posterior probability is obtained by conditioning 
on x:

p@H » xD =
p@H, xD
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
p@xD

pHx@H_, x_D := p@H, xD ê px@xD;

Table@pHx @H, xD, 8H, 1, 2<, 8x, 1, 3<D
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i

k

jjjjjjj

1ÅÅÅÅ
5

1ÅÅÅÅ
3

1ÅÅÅÅ
2

4ÅÅÅÅ
5

2ÅÅÅÅ
3

1ÅÅÅÅ
2

y

{

zzzzzzz

Plotting the joint

We use ListDensityPlot[].

ListDensityPlot@Table@p@H, xD, 8H, 1, 2<, 8x, 1, 3<DD;

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2
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Exercises

Exercise: Use density mapping theorem to make random number generator for density 

p(y)
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