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"Energy" and attractor networks
Graded response Hopfield net

Graded response Hopfield network

‡ The model of the basic neural element

Hopfield's 1982 paper was strongly criticized for having an unrealistic model of the neuron. In 1984, he published another 
influential paper with an improved neural model. The model was intended to capture the fact that neural firing rate can be 
considered a continuously valued response (recall that frequency of firing can vary from 0 to 500 Hz or so). Earlier we 
derived an expression for the rate of firing for the "leaky integrate-and-fire" model of the neuron. Hopfield adopted the basic 
elements of this model, together with the assumption of a non-linear sigmoidal output, represented below by an operational 
amplifier with non-linear transfer function g(). An operational amplifier (or "op amp") has a very high input impedance so it 
essentially draws no current. 

Below is the electrical circuit corresponding to the model of a single neuron. The unit's input is the  sum of currents (input 

voltages weighted by conductances Tij, corresponding to synaptic weights). Ii is a bias input current (which is often set to 

zero depending on the problem). There is a capacitance Ci and membrane resistance Ri--that characterizes the leakiness of 

the neural membrane. 

‡ The basic neural circuit

Now imagine that we connect up N of these model neurons to each other to form a completely connected network. Like the 

earlier discrete model, neurons are not connected to themselves, and the conductances are symmetric. In other words, the 

weight matrix has a zero diagonal (Tii=0), and is symmetric (Tij=Tji).  (We follow Hopfield, and  let the output range 

between -1 and 1 for the graded response net, rather than 0 and 1as for the discrete net in the previous lecture.)

The update rule is given by a set of differential equations over the network. The equations are determined by the three basic 

laws of electricity: Kirchoff's rule (sum of currents at a junction has to be zero), Ohm's law (I=V/R), and that the current 
across a capacitor is proportional to the rate of change of voltage (I=Cdu/dt). Resistance is the reciprocal of conductance 

(T=1/R). As we did earlier with the integrate-and-fire model, we write an expression representing the requirement that the 

total current into the op amp be zero. With a little rearrangement, we have:

The first equation is really just a slightly elaborated version of the "leaky integrate and fire" equation we studied in Lecture 
3. We now note that the "current in" (s in lecture 3) is the sum of the currents from all the inputs.

‡ Proof of convergence

Now here is where Hopfield's main contribution lies. All parameters (Ci,Tij,Ri,Ii,g) are fixed, and we want to know how the 

state vector Vi changes with time. We could imagine that the state vector could have almost any trajectory, and wander 

arbitrarily around state space--but it doesn't. In fact, just as for the discrete case, the continuous Hopfield network converges 

to stable attractors. Suppose that at some time t, we know Vi(t) for all units (i=1 to N).  Then Hopfield proved that the state 

vector will migrate to points in state space  whose values are constant: Vi ->Vi
s . In other words, to state space points where 

dVi/dt =0. This is a steady-state solution to the above equaltions. This is an important result because it says that the network 

can be used to store memories. 

To prove this, Hopfield defined an energy function as:

The form of the sigmoidal non-linearity, g(), was taken to be an inverse tangent function (see below). If we take the deriva-
tive of E with respect to time, then for symmetric T, we have (applying the chain rule for differentiation of composite 
functions):
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Substituting the expression from the first equation for the expression between the brackets, we obtain:

And now replace dui/dt by taking the derivative of the inverse g function (again using the chain rule):

Below, there is an exercise in which you can show that the derivative of the inverse g function is always positive. 

And because capacitance and (dVi/dt)^2 are also positive,  the right hand side of the equation can never be positive--energy 

never increases. Further, we can see that stable points, i.e. where dE/dt is zero, correspond to attractors in state space. 
Mathematically, we have:

So E is a Liapunov function for the system of differential equations describing the neural system whose neurons have 
graded responses.

Simulation of a 2 neuron Hopfield network

‡ Definitions

We will let the resistances and capacitances all be one, and the current input Ii be zero. Define the sigmoid function, g[] and 

its inverse, inverseg[]:
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In[19]:= a1 := (2/Pi); b1 := Pi 1.4 / 2;
g[x_] := N[a1 ArcTan[b1 x]]; 
inverseg[x_] := N[(1/b1) Tan[x/a1]];

Although it is straightforward to compute the inverse of g by hand,  do it using the Solve[] function in Mathematica::

In[22]:= Solve[a ArcTan[b y]==x,y]

Out[22]= 99y Ø
Tan@ xÅÅÅ

a
D

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
b

==

In[23]:= Plot[g[x],{x,-Pi,Pi}];
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Note how increasing b1 makes the sigmoid more like a step or threshold function:

In[24]:= Plot[N[a1 ArcTan[5 b1 x]], {x, -Pi, Pi}];
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This is useful, because as b1 gets large, the we'd expect the continuous  net  to behave like  the discrete (two-state) net.
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In[25]:= Plot[inverseg[x], {x, -.9, .9}];
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Exercise

Calculate the derivative of the inverse of g[]. Plot it out to demonstrate that it is never zero. Because it is never zero, the rate 
of change of E must always be less than or equal to zero.

‡ Initialization of starting values

The initialization section sets the starting output values of the two neurons.

V = {0.2, -0.5}, and the internal values u = inverseg[V], the step size, dt=0.3, and the 2x2 weight matrix, Tm such that the 
synaptic weights between neurons are both 1. The synaptic weight between each neuron and itself is zero.

In[26]:= dt = 0.01;
Tm = {{0,1},{1,0}};
V = {0.2,-0.5};
u = inverseg[V];
result = {};

‡ Main Program illustrating descent with discrete updates

Note that because the dynamics of the graded response Hopfield net is expressed in terms of differential equations, the 

updating is actually continuous (rather than asynchronous and discrete). In order to do a digital computer simulation, we 
will approximate the dynamics with discrete updates of the neurons' activities.

The following function computes the output (just up to the non-linearity) of the ith neuron for the network with a list of 

neural values uu, and a weight matrix Tm. 

In[31]:= Hopfield[uu_,i_] := uu[[i]] + 
dt ((Tm.g[uu])[[i]] - uu[[i]]);

This follows from the above update equations with the capacitances (Ci) and resistances (Ri) set to 1. 
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Let's accumulate some results for a series of 80 iterations. Then we will plot the pairs of activities of the two neurons over 
the 80 iterations. The next line randomly samples the two neurons for asynchronous updating.

In[32]:= result = 
Table[{k=Random[Integer,{1,2}],u[[k ]] = 
Hopfield[u,k],u}, {800}];

In[33]:= result = Transpose@resultD@@3DD;

To visualize the trajectory of the state vector, we can use ListPlot:

In[34]:= gresults = ListPlot[g[result],
PlotJoined->False,AxesOrigin->{0,0},
PlotRange->{{-1,1},{-1,1}},FrameLabel->{"Neuron  1","Neuron 2"},
Frame->True, AspectRatio->1,RotateLabel->False,PlotLabel->"State  

Space",
Ticks->None, PlotStyle->{RGBColor[0,0,1]}];

We can visualize the time evolution by color coding state vector points according to Hue[time], where H starts off red, and 
becomes "cooler" with time, ending up as violet (the familiar rainbow sequence: ROYGBIV).

In[35]:= gcolortraj = GraphicsAi
k
jjj9HueA

#1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Length@g@resultDD

E,

Point@8g@resultD@@#1DD@@1DD, g@resultD@@#1DD@@2DD<D= &y
{
zzz êü

Range@1, Length@g@resultDDD, AspectRatio Ø AutomaticE;

6 Lect_19_HopfieldCont.nb



In[36]:= Show@gcolortraj, AxesOrigin Ø 80, 0<, Axes Ø True,
PlotRange Ø 88-1, 1<, 8-1, 1<<, FrameLabel Ø 8"Neuron 1", "Neuron 2"<,
Frame Ø True, AspectRatio Ø 1, RotateLabel Ø False,
PlotLabel Ø "State Space", Ticks Ø None, Background Ø GrayLevel@0.2DD;

-0.75-0.5-0.25 0 0.250.50.75 1
Neuron 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Neuron 2

State Space

‡ Energy landscape

Now make a contour plot of the energy landscape. We will need the integral of the inverse of the g function, call it inig[]. 
We use the Integrate[] function to find it. Then define energy[x_,y_] and use ContourPlot[] to map out the energy 
function.

In[37]:= Integrate[(1/b) Tan[x1/a],x1]/.x1->x

Out[37]= -
a Log@Cos@ xÅÅÅ

a
DD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
b

Change the above output  to input form:
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In[38]:=             x
  a Log[Cos[-]]
            a
-(-------------)  ------------  
        b

Out[38]= -
a Log@Cos@ xÅÅÅ

a
DD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
b

In[39]:= inig[x_] := -N[(a1*Log[Cos[x/a1]])/b1];
Plot[inig[x], {x, -1, 1}];
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We write a function for the above expression for energy:

In[41]:= energy[Vv_] := -0.5 (Tm.Vv).Vv +
Sum[inig[Vv][[i]], {i,Length[Vv]}];

And then define a contour plot of the energy over state space:

In[42]:= gcontour = ContourPlot[energy[{x,y}],{x,-1,1},
{y,-1,1},AxesOrigin->{0,0}, ContourShading->False,
PlotRange->{-.1,.8}, Contours->32,
PlotPoints->30,FrameLabel->{"Neuron 2","Neuron 2"},
Frame->True, AspectRatio->1,RotateLabel->False,PlotLabel->"Energy  over 

State Space",
DisplayFunction->Identity];

Now let's superimpose the trajectory of the state vector on the energy contour plot:
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In[43]:= Show[gresults, gcontour,
DisplayFunction-> $DisplayFunction];
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‡ Color plot of energy landscape

In[44]:= genergy = DensityPlot[energy[{x,y}],{x,-.9,.9},{y,-.9,.9},PlotRange->All,
Mesh->False,PlotPoints->60,ColorFunction->Hue,DisplayFunctionØIdentity];
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In[45]:= Show[genergy,gresults, 
DisplayFunction-> $DisplayFunction];
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Autoassociative memory example

Sculpting the energy for memory recall using a Hebbian learning rule. TIP example.

‡ The stimuli

We will store the letters P, I, and T in a 25x25 element weight matrix. For maximum separation, we will put them near the 
corners of a hypercube.

In[46]:= ListDensityPlot@Pmatrix = 880, 1, 0, 0, 0<,
80, 1, 1, 1, 0<, 80, 1, 0, 1, 0<, 80, 1, 0, 1, 0<, 80, 1, 1, 1, 0<<D;
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In[47]:= ListDensityPlot@Imatrix = 880, 0, 1, 0, 0<,
80, 0, 1, 0, 0<, 80, 0, 1, 0, 0<, 80, 0, 1, 0, 0<, 80, 0, 1, 0, 0<<D;
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In[48]:= ListDensityPlot@Tmatrix = 880, 0, 0, 1, 0<,
80, 0, 0, 1, 0<, 80, 0, 0, 1, 0<, 80, 0, 1, 1, 1<, 80, 0, 0, 0, 0<<D;
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In[49]:= width = Length[Pmatrix];
one = Table[1, {i,width}, {j,width}];
Pv = Flatten[2 Pmatrix - one];
Iv = Flatten[2 Imatrix -one];
Tv = Flatten[2 Tmatrix - one];

Note that the patterns are not normal, or orthogonal:

In[54]:= {Tv.Iv,Tv.Pv,Pv.Iv, Tv.Tv, Iv.Iv, Pv.Pv}

Out[54]= 87, 3, 1, 25, 25, 25<

‡ Learning

Make sure that you've defined the sigmoidal non-linearity and its inverse above. The items will be stored in the connection 
weight matrix using the outer product form of the Hebbian learning rule:

In[55]:= Weights = 
Outer[Times,Tv,Tv] + Outer[Times,Iv,Iv] +
Outer[Times,Pv,Pv];

Note that in order to satisfy the requirements for the convergence theorem, we should enforce the diagonal elements to be 

zero. (Is this necessary for the network to converge?)
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In[56]:= For@i = 1, i <= Length@WeightsD, i++, Weights@@i, iDD = 0D;

Hopfield graded response neurons applied to reconstructing the letters T,I,P. The non-

linear network makes decisions

In this section, we will compare the Hopfield network's response to the linear associator. First, we will show that the 
Hopfield net has sensible hallucinations--a random input can produce interpretable stable states. Further, remember a major 
problem with the linear associator is that it doesn't make proper discrete decisions when the input is a superposition of 
learned patterns. The Hopfield net makes a decision.

‡ Sensible hallucinations to a noisy input

We will set up a version of the graded response Hopfield net with synchronous updating. (In a homework exercise, you will 
compare asynchronous and synchronous updating.)

In[57]:= dt = 0.03;
Hopfield[uu_] := uu + dt (Weights.g[uu] - uu);

Let's first perform a kind of "Rorschach blob test" on our network (but without the usual symmetry to the input pattern). We 
will give as input uncorrelated uniformly distributed noise and find out what the network sees:

In[59]:= forgettingT = Table[2 Random[] - 1,{i,1,Length[Tv]}];
ListDensityPlot[Partition[forgettingT,width]];
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In[61]:= rememberingT = Nest[Hopfield,forgettingT,30];
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In[62]:= ListDensityPlot[Partition[g[rememberingT],width],
PlotRange->{-1,1}];
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In this case, the random input produces sensible output−−the network saw the letter P. 

Do    you    think    you    will    always    get    P    as    the    network's    hallucination????

‡ Comparison with linear associator

What is the linear associator output for this input? We will follow the linear output with the squashing function, to push the 
results towards the hypercube corners:

In[81]:= ListDensityPlot[Partition[g[Weights.forgettingT],
width], PlotRange->{-1,1}];
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The noisy input didn't give a meaningful output this time. You can try other noise samples.  Because of superposition it will 
not, on average, give the meaningful discrete memories that the Hopfield net does. However, sometimes the linear matrix 
memory will produce meaningful outputs and sometimes the Hopfield net will produce nonsense depending on how the 
energy landscape has been sculpted. If the "pits" are arranged badly, one can introduce valleys in the energy landscape that 
will produce spurious results.

‡ Response to superimposed inputs

Let us look at the problem of superposition by providing an input which is  a linear combination of the learned patterns. 
Let's take a weighted sum, and then start the state vector fairly close to the origin of the hypercube:
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In[64]:= forgettingT = .1 (0.2 Tv - 0.15 Iv - 0.3 Pv);
ListDensityPlot[Partition[forgettingT,width]];
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Now let's see what the Hopfield algorithm produces. We will start with a smaller step size. It sometimes takes a little care to 
make sure the descent begins with small enough steps. If the steps are too big, the network can converge to the same 
answers one sees with the linear associator followed by the non-linear sigmoid.

In[82]:= dt = 0.01;
Hopfield[uu_] := uu + dt (Weights.g[uu] - uu);
rememberingT = Nest[Hopfield,forgettingT,30];

In[85]:= ListDensityPlot[Partition[g[rememberingT],width],
PlotRange->{-1,1}];
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‡ Comparison with linear associator

The linear associator followed by the squashing function gives:

In[86]:= ListDensityPlot[Partition[g[Weights.forgettingT],
width], PlotRange->{-1,1}];
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For the two-state Hopfield network with Hebbian storage rule, the stored vectors are stable states of the system. For the 
graded response network, the stable states are near the stored vectors. If one tries to store the items near the corners of the 
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hypercube they are well separated, and the recall rule tends to drive the state vector into these corners, so the recalled item is 
close to what was stored. 

‡ Using the formula for energy

The energy function can be expressed in terms of the integral of the inverse of g, and the product of the weight matrix times 
the state vector, times the state vector again:

In[87]:= inig[x_] := -N[(a1*Log[Cos[x/a1]])/b1];
energy[Vv_] := -0.5 ((Weights.Vv).Vv) +

Sum[inig[Vv][[i]], {i,Length[Vv]}];

In[89]:= energy[.99 Pv]
energy[g[forgettingT]]
energy[g[rememberingT]]

Out[89]= -244.367

Out[90]= -0.528994

Out[91]= -219.84

One of the virtues of knowing the energy or Liapunov function for a dynamical system, is being able to check  how well 
you are doing. We might expect that if we ran the algorithm a little bit longer, we could move the state vector to an even 
lower energy state if -219 was not the minimum. The fact that the energy of .99 Pv is -244 suggests that we are not to the 
minimum yet.

dt = 0.01;
Hopfield[uu_] := uu + dt (Weights.g[uu] - uu);
rememberingT = Nest[Hopfield,forgettingT,600];

In[111]:= energy[g[rememberingT]]

Out[111]= -244.693
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