
Introduction to Neural Networks
U. Minn. Psy 5038

"Energy" and attractor networks
Graded response Hopfield net

Graded response Hopfield network

‡ The model of the basic neural element

Hopfield's 1982 paper was strongly criticized for having an unrealistic model of the neuron. In 1984, he published another
influential paper with an improved neural model. The model was intended to capture the fact that neural firing rate can be
considered a continuously valued response (recall that frequency of firing can vary from 0 to 500 Hz or so). Earlier we
derived an expression for the rate of firing for the "leaky integrate-and-fire" model of the neuron. Hopfield adopted the basic
elements of this model, together with the assumption of a non-linear sigmoidal output, represented below by an operational
amplifier with non-linear transfer function g(). An operational amplifier (or "op amp") has a very high input impedance so it
essentially draws no current.

Below is the electrical circuit corresponding to the model of a single neuron. The unit's input is the sum of currents (input

voltages weighted by conductances Tij, corresponding to synaptic weights). Ii is a bias input current (which is often set to

zero depending on the problem). There is a capacitance Ci and membrane resistance Ri--that characterizes the leakiness of

the neural membrane.

‡ The basic neural circuit

Now imagine that we connect up N of these model neurons to each other to form a completely connected network. Like the

earlier discrete model, neurons are not connected to themselves, and the conductances are symmetric. In other words, the

weight matrix has a zero diagonal (Tii=0), and is symmetric (Tij=Tji). (We follow Hopfield, and let the output range

between -1 and 1 for the graded response net, rather than 0 and 1as for the discrete net in the previous lecture.)

The update rule is given by a set of differential equations over the network. The equations are determined by the three basic

laws of electricity: Kirchoff's rule (sum of currents at a junction has to be zero), Ohm's law (I=V/R), and that the current
across a capacitor is proportional to the rate of change of voltage (I=Cdu/dt). Resistance is the reciprocal of conductance

(T=1/R). As we did earlier with the integrate-and-fire model, we write an expression representing the requirement that the

total current into the op amp be zero. With a little rearrangement, we have:

The first equation is really just a slightly elaborated version of the "leaky integrate and fire" equation we studied in Lecture
3. We now note that the "current in" (s in lecture 3) is the sum of the currents from all the inputs.

‡ Proof of convergence

Now here is where Hopfield's main contribution lies. All parameters (Ci,Tij,Ri,Ii,g) are fixed, and we want to know how the

state vector Vi changes with time. We could imagine that the state vector could have almost any trajectory, and wander

arbitrarily around state space--but it doesn't. In fact, just as for the discrete case, the continuous Hopfield network converges

to stable attractors. Suppose that at some time t, we know Vi(t) for all units (i=1 to N). Then Hopfield proved that the state

vector will migrate to points in state space whose values are constant: Vi ->Vi
s . In other words, to state space points where

dVi/dt =0. This is a steady-state solution to the above equaltions. This is an important result because it says that the network

can be used to store memories.

To prove this, Hopfield defined an energy function as:

The form of the sigmoidal non-linearity, g(), was taken to be an inverse tangent function (see below). If we take the deriva-
tive of E with respect to time, then for symmetric T, we have (applying the chain rule for differentiation of composite
functions):

2 Lect_19_HopfieldCont.nb

Substituting the expression from the first equation for the expression between the brackets, we obtain:

And now replace dui/dt by taking the derivative of the inverse g function (again using the chain rule):

Below, there is an exercise in which you can show that the derivative of the inverse g function is always positive.

And because capacitance and (dVi/dt)^2 are also positive, the right hand side of the equation can never be positive--energy

never increases. Further, we can see that stable points, i.e. where dE/dt is zero, correspond to attractors in state space.
Mathematically, we have:

So E is a Liapunov function for the system of differential equations describing the neural system whose neurons have
graded responses.

Simulation of a 2 neuron Hopfield network

‡ Definitions

We will let the resistances and capacitances all be one, and the current input Ii be zero. Define the sigmoid function, g[] and

its inverse, inverseg[]:

Lect_19_HopfieldCont.nb 3

In[19]:= a1 := (2/Pi); b1 := Pi 1.4 / 2;
g[x_] := N[a1 ArcTan[b1 x]];
inverseg[x_] := N[(1/b1) Tan[x/a1]];

Although it is straightforward to compute the inverse of g by hand, do it using the Solve[] function in Mathematica::

In[22]:= Solve[a ArcTan[b y]==x,y]

Out[22]= 99y Ø
Tan@ xÅÅÅ

a
D

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
b

==

In[23]:= Plot[g[x],{x,-Pi,Pi}];

-3 -2 -1 1 2 3

-0.75

-0.5

-0.25

0.25

0.5

0.75

Note how increasing b1 makes the sigmoid more like a step or threshold function:

In[24]:= Plot[N[a1 ArcTan[5 b1 x]], {x, -Pi, Pi}];

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

This is useful, because as b1 gets large, the we'd expect the continuous net to behave like the discrete (two-state) net.

4 Lect_19_HopfieldCont.nb

In[25]:= Plot[inverseg[x], {x, -.9, .9}];

-0.75-0.5-0.25 0.25 0.5 0.75

-3

-2

-1

1

2

3

Exercise

Calculate the derivative of the inverse of g[]. Plot it out to demonstrate that it is never zero. Because it is never zero, the rate
of change of E must always be less than or equal to zero.

‡ Initialization of starting values

The initialization section sets the starting output values of the two neurons.

V = {0.2, -0.5}, and the internal values u = inverseg[V], the step size, dt=0.3, and the 2x2 weight matrix, Tm such that the
synaptic weights between neurons are both 1. The synaptic weight between each neuron and itself is zero.

In[26]:= dt = 0.01;
Tm = {{0,1},{1,0}};
V = {0.2,-0.5};
u = inverseg[V];
result = {};

‡ Main Program illustrating descent with discrete updates

Note that because the dynamics of the graded response Hopfield net is expressed in terms of differential equations, the

updating is actually continuous (rather than asynchronous and discrete). In order to do a digital computer simulation, we
will approximate the dynamics with discrete updates of the neurons' activities.

The following function computes the output (just up to the non-linearity) of the ith neuron for the network with a list of

neural values uu, and a weight matrix Tm.

In[31]:= Hopfield[uu_,i_] := uu[[i]] +
dt ((Tm.g[uu])[[i]] - uu[[i]]);

This follows from the above update equations with the capacitances (Ci) and resistances (Ri) set to 1.

Lect_19_HopfieldCont.nb 5

Let's accumulate some results for a series of 80 iterations. Then we will plot the pairs of activities of the two neurons over
the 80 iterations. The next line randomly samples the two neurons for asynchronous updating.

In[32]:= result =
Table[{k=Random[Integer,{1,2}],u[[k]] =
Hopfield[u,k],u}, {800}];

In[33]:= result = Transpose@resultD@@3DD;

To visualize the trajectory of the state vector, we can use ListPlot:

In[34]:= gresults = ListPlot[g[result],
PlotJoined->False,AxesOrigin->{0,0},
PlotRange->{{-1,1},{-1,1}},FrameLabel->{"Neuron 1","Neuron 2"},
Frame->True, AspectRatio->1,RotateLabel->False,PlotLabel->"State

Space",
Ticks->None, PlotStyle->{RGBColor[0,0,1]}];

We can visualize the time evolution by color coding state vector points according to Hue[time], where H starts off red, and
becomes "cooler" with time, ending up as violet (the familiar rainbow sequence: ROYGBIV).

In[35]:= gcolortraj = GraphicsAi
k
jjj9HueA

#1
ÅÅ
Length@g@resultDD

E,

Point@8g@resultD@@#1DD@@1DD, g@resultD@@#1DD@@2DD<D= &y
{
zzz êü

Range@1, Length@g@resultDDD, AspectRatio Ø AutomaticE;

6 Lect_19_HopfieldCont.nb

In[36]:= Show@gcolortraj, AxesOrigin Ø 80, 0<, Axes Ø True,
PlotRange Ø 88-1, 1<, 8-1, 1<<, FrameLabel Ø 8"Neuron 1", "Neuron 2"<,
Frame Ø True, AspectRatio Ø 1, RotateLabel Ø False,
PlotLabel Ø "State Space", Ticks Ø None, Background Ø GrayLevel@0.2DD;

-0.75-0.5-0.25 0 0.250.50.75 1
Neuron 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Neuron 2

State Space

‡ Energy landscape

Now make a contour plot of the energy landscape. We will need the integral of the inverse of the g function, call it inig[].
We use the Integrate[] function to find it. Then define energy[x_,y_] and use ContourPlot[] to map out the energy
function.

In[37]:= Integrate[(1/b) Tan[x1/a],x1]/.x1->x

Out[37]= -
a Log@Cos@ xÅÅÅ

a
DD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
b

Change the above output to input form:

Lect_19_HopfieldCont.nb 7

In[38]:= x
 a Log[Cos[-]]
 a
-(-------------) ------------
 b

Out[38]= -
a Log@Cos@ xÅÅÅ

a
DD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
b

In[39]:= inig[x_] := -N[(a1*Log[Cos[x/a1]])/b1];
Plot[inig[x], {x, -1, 1}];

-1 -0.5 0.5 1

0.5

1

1.5

2

2.5

We write a function for the above expression for energy:

In[41]:= energy[Vv_] := -0.5 (Tm.Vv).Vv +
Sum[inig[Vv][[i]], {i,Length[Vv]}];

And then define a contour plot of the energy over state space:

In[42]:= gcontour = ContourPlot[energy[{x,y}],{x,-1,1},
{y,-1,1},AxesOrigin->{0,0}, ContourShading->False,
PlotRange->{-.1,.8}, Contours->32,
PlotPoints->30,FrameLabel->{"Neuron 2","Neuron 2"},
Frame->True, AspectRatio->1,RotateLabel->False,PlotLabel->"Energy over

State Space",
DisplayFunction->Identity];

Now let's superimpose the trajectory of the state vector on the energy contour plot:

8 Lect_19_HopfieldCont.nb

In[43]:= Show[gresults, gcontour,
DisplayFunction-> $DisplayFunction];

-0.75-0.5-0.25 0 0.25 0.5 0.75 1
Neuron 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Neuron 2

State Space

‡ Color plot of energy landscape

In[44]:= genergy = DensityPlot[energy[{x,y}],{x,-.9,.9},{y,-.9,.9},PlotRange->All,
Mesh->False,PlotPoints->60,ColorFunction->Hue,DisplayFunctionØIdentity];

Lect_19_HopfieldCont.nb 9

In[45]:= Show[genergy,gresults,
DisplayFunction-> $DisplayFunction];

-0.75-0.5-0.250 0.250.50.75

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

Autoassociative memory example

Sculpting the energy for memory recall using a Hebbian learning rule. TIP example.

‡ The stimuli

We will store the letters P, I, and T in a 25x25 element weight matrix. For maximum separation, we will put them near the
corners of a hypercube.

In[46]:= ListDensityPlot@Pmatrix = 880, 1, 0, 0, 0<,
80, 1, 1, 1, 0<, 80, 1, 0, 1, 0<, 80, 1, 0, 1, 0<, 80, 1, 1, 1, 0<<D;

0 1 2 3 4 50

1

2

3

4

5

10 Lect_19_HopfieldCont.nb

In[47]:= ListDensityPlot@Imatrix = 880, 0, 1, 0, 0<,
80, 0, 1, 0, 0<, 80, 0, 1, 0, 0<, 80, 0, 1, 0, 0<, 80, 0, 1, 0, 0<<D;

0 1 2 3 4 50

1

2

3

4

5

In[48]:= ListDensityPlot@Tmatrix = 880, 0, 0, 1, 0<,
80, 0, 0, 1, 0<, 80, 0, 0, 1, 0<, 80, 0, 1, 1, 1<, 80, 0, 0, 0, 0<<D;

0 1 2 3 4 50

1

2

3

4

5

In[49]:= width = Length[Pmatrix];
one = Table[1, {i,width}, {j,width}];
Pv = Flatten[2 Pmatrix - one];
Iv = Flatten[2 Imatrix -one];
Tv = Flatten[2 Tmatrix - one];

Note that the patterns are not normal, or orthogonal:

In[54]:= {Tv.Iv,Tv.Pv,Pv.Iv, Tv.Tv, Iv.Iv, Pv.Pv}

Out[54]= 87, 3, 1, 25, 25, 25<

‡ Learning

Make sure that you've defined the sigmoidal non-linearity and its inverse above. The items will be stored in the connection
weight matrix using the outer product form of the Hebbian learning rule:

In[55]:= Weights =
Outer[Times,Tv,Tv] + Outer[Times,Iv,Iv] +
Outer[Times,Pv,Pv];

Note that in order to satisfy the requirements for the convergence theorem, we should enforce the diagonal elements to be

zero. (Is this necessary for the network to converge?)

Lect_19_HopfieldCont.nb 11

In[56]:= For@i = 1, i <= Length@WeightsD, i++, Weights@@i, iDD = 0D;

Hopfield graded response neurons applied to reconstructing the letters T,I,P. The non-

linear network makes decisions

In this section, we will compare the Hopfield network's response to the linear associator. First, we will show that the
Hopfield net has sensible hallucinations--a random input can produce interpretable stable states. Further, remember a major
problem with the linear associator is that it doesn't make proper discrete decisions when the input is a superposition of
learned patterns. The Hopfield net makes a decision.

‡ Sensible hallucinations to a noisy input

We will set up a version of the graded response Hopfield net with synchronous updating. (In a homework exercise, you will
compare asynchronous and synchronous updating.)

In[57]:= dt = 0.03;
Hopfield[uu_] := uu + dt (Weights.g[uu] - uu);

Let's first perform a kind of "Rorschach blob test" on our network (but without the usual symmetry to the input pattern). We
will give as input uncorrelated uniformly distributed noise and find out what the network sees:

In[59]:= forgettingT = Table[2 Random[] - 1,{i,1,Length[Tv]}];
ListDensityPlot[Partition[forgettingT,width]];

0 1 2 3 4 50
1
2
3
4
5

In[61]:= rememberingT = Nest[Hopfield,forgettingT,30];

12 Lect_19_HopfieldCont.nb

In[62]:= ListDensityPlot[Partition[g[rememberingT],width],
PlotRange->{-1,1}];

0 1 2 3 4 50
1
2
3
4
5

In this case, the random input produces sensible output−−the network saw the letter P.

Do you think you will always get P as the network's hallucination????

‡ Comparison with linear associator

What is the linear associator output for this input? We will follow the linear output with the squashing function, to push the
results towards the hypercube corners:

In[81]:= ListDensityPlot[Partition[g[Weights.forgettingT],
width], PlotRange->{-1,1}];

0 1 2 3 4 50
1
2
3
4
5

The noisy input didn't give a meaningful output this time. You can try other noise samples. Because of superposition it will
not, on average, give the meaningful discrete memories that the Hopfield net does. However, sometimes the linear matrix
memory will produce meaningful outputs and sometimes the Hopfield net will produce nonsense depending on how the
energy landscape has been sculpted. If the "pits" are arranged badly, one can introduce valleys in the energy landscape that
will produce spurious results.

‡ Response to superimposed inputs

Let us look at the problem of superposition by providing an input which is a linear combination of the learned patterns.
Let's take a weighted sum, and then start the state vector fairly close to the origin of the hypercube:

Lect_19_HopfieldCont.nb 13

In[64]:= forgettingT = .1 (0.2 Tv - 0.15 Iv - 0.3 Pv);
ListDensityPlot[Partition[forgettingT,width]];

0 1 2 3 4 50
1
2
3
4
5

Now let's see what the Hopfield algorithm produces. We will start with a smaller step size. It sometimes takes a little care to
make sure the descent begins with small enough steps. If the steps are too big, the network can converge to the same
answers one sees with the linear associator followed by the non-linear sigmoid.

In[82]:= dt = 0.01;
Hopfield[uu_] := uu + dt (Weights.g[uu] - uu);
rememberingT = Nest[Hopfield,forgettingT,30];

In[85]:= ListDensityPlot[Partition[g[rememberingT],width],
PlotRange->{-1,1}];

0 1 2 3 4 50
1
2
3
4
5

‡ Comparison with linear associator

The linear associator followed by the squashing function gives:

In[86]:= ListDensityPlot[Partition[g[Weights.forgettingT],
width], PlotRange->{-1,1}];

0 1 2 3 4 50
1
2
3
4
5

For the two-state Hopfield network with Hebbian storage rule, the stored vectors are stable states of the system. For the
graded response network, the stable states are near the stored vectors. If one tries to store the items near the corners of the

14 Lect_19_HopfieldCont.nb

hypercube they are well separated, and the recall rule tends to drive the state vector into these corners, so the recalled item is
close to what was stored.

‡ Using the formula for energy

The energy function can be expressed in terms of the integral of the inverse of g, and the product of the weight matrix times
the state vector, times the state vector again:

In[87]:= inig[x_] := -N[(a1*Log[Cos[x/a1]])/b1];
energy[Vv_] := -0.5 ((Weights.Vv).Vv) +

Sum[inig[Vv][[i]], {i,Length[Vv]}];

In[89]:= energy[.99 Pv]
energy[g[forgettingT]]
energy[g[rememberingT]]

Out[89]= -244.367

Out[90]= -0.528994

Out[91]= -219.84

One of the virtues of knowing the energy or Liapunov function for a dynamical system, is being able to check how well
you are doing. We might expect that if we ran the algorithm a little bit longer, we could move the state vector to an even
lower energy state if -219 was not the minimum. The fact that the energy of .99 Pv is -244 suggests that we are not to the
minimum yet.

dt = 0.01;
Hopfield[uu_] := uu + dt (Weights.g[uu] - uu);
rememberingT = Nest[Hopfield,forgettingT,600];

In[111]:= energy[g[rememberingT]]

Out[111]= -244.693

Lect_19_HopfieldCont.nb 15

References

Bartlett, M. S., & Sejnowski, T. J. (1998). Learning viewpoint-invariant face representations from visual experience in an
attractor network. Network, 9(3), 399-417.

Chengxiang, Z., Dasgupta, C., & Singh, M. P. (2000). Retrieval properties of a Hopfield model with random asymmetric
interactions. Neural Comput, 12(4), 865-880.

Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the theory of neural computation (Santa Fe Institute Studies in
the Sciences of Complexity ed. Vol. Lecture Notes Volume 1). Reading, MA: Addison-Wesley Publishing Company.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proc Natl
Acad Sci U S A, 79(8), 2554-2558.

Computational properties of use of biological organisms or to the construction of computers can emerge as collective properties of
systems having a large number of simple equivalent components (or neurons). The physical meaning of content-addressable memory is
described by an appropriate phase space flow of the state of a system. A model of such a system is given, based on aspects of neurobiol-
ogy but readily adapted to integrated circuits. The collective properties of this model produce a content-addressable memory which
correctly yields an entire memory from any subpart of sufficient size. The algorithm for the time evolution of the state of the system is
based on asynchronous parallel processing. Additional emergent collective properties include some capacity for generalization, familiarity
recognition, categorization, error correction, and time sequence retention. The collective properties are only weakly sensitive to details of
the modeling or the failure of individual devices.

Hopfield, J. J. (1984). Neurons with graded response have collective computational properties like those of two-state
neurons. Proc. Natl. Acad. Sci. USA, 81, 3088-3092.

A model for a large network of "neurons" with a graded response (or sigmoid input-output relation) is studied. This deterministic system
has collective properties in very close correspondence with the earlier stochastic model based on McCulloch - Pitts neurons. The content-
addressable memory and other emergent collective properties of the original model also are present in the graded response model. The
idea that such collective properties are used in biological systems is given added credence by the continued presence of such properties
for more nearly biological "neurons." Collective analog electrical circuits of the kind described will certainly function. The collective
states of the two models have a simple correspondence. The original model will continue to be useful for simulations, because its connec-
tion to graded response systems is established. Equations that include the effect of action potentials in the graded response system are also
developed.

Hopfield, J. J. (1994). Neurons, Dynamics and Computation. Physics Today, February.

Hentschel, H. G. E., & Barlow, H. B. (1991). Minimum entropy coding with Hopfield networks. Network, 2, 135-148.

Mead, C. (1989). Analog VLSI and Neural Systems. Reading, Massachusetts: Addison-Wesley.

Saul, L. K., & Jordan, M. I. (2000). Attractor dynamics in feedforward neural networks. Neural Comput, 12(6), 1313-1335.

© 1998, 2001 Daniel Kersten, Computational Vision Lab, Department of Psychology, University of Minnesota.

16 Lect_19_HopfieldCont.nb

