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Introduction

Unsupervised learning--what does it mean to learn without a teacher?

Statistical view:

Learning as probability density estimation. From a relatively small number of samples (human faces), what can we conclude 
about the probabilistic structure of the whole ensemble (of human faces)?

Straightforward with a single random variable: mean, standard deviation, histogram

Less straightforward with vector random variable: vector means, autocovariance, higher-order statistics, histogram

Less straightforward because of the problem of getting enough samples to fill all the bins.

But for natural patterns, it is typically the case that even tho' the data maybe n-dimensional vectors, the ensemble lives in  a 
much smaller space. How can we find that space? 

Once found, what is it good for?

Unsupervised learning, self-organization,  and data compression

In an earlier lecture, we saw an example of the increased computational power of a multi-layer network. The reason for the 
increased power is that the hidden units discover effective ways of representing contingencies in the training data set. For 
example, a solution to the XOR problem in effect discovers how to do AND as well as OR relations, and piece these 
together.

One of the problems with multi-layer nets is understanding exactly what they have discovered and are representing in the 
hidden layers. It is perhaps easiest to begin tackling this problem by setting up a network to do autoassociation.

Let's turn the supervised 3-layer backprop network into an unsupervised learning algorithm simply by setting the output 
equal to the input. Then we are seeking weights that achieve the goal that the outputs come as close as possible to matching 
the inputs, in a least squares sense. If we have a smaller number of hidden units than input or output units, we can ask: What 
has the network discovered about the input ensemble that is captured with the smaller dimensionality of the hidden unit 
layer? 

A theoretical result (Baldi and Hornik, 1988) showed that for the linear case this kind of network is closely related to a 
standard statistical technique called "Principal Components Analysis", (PCA) that dates back to 1933  (Hotelling, H. (1933). 
Analysis of a complex of statistical variables into principal components. J. Educ. Psych., 24, 417-441,498-520). The idea is 
that the variability in a data set consisting of n-dimensional vectors may concentrate along certain axes or subspaces of 
dimension m<n. Principal components analysis is one standard technique for finding the dimensions that capture the most 
variation. Suppose there are n input units, and m hidden units. Baldi and Hornik showed that the hidden units were finding 
the m-dimensional sub-space that capture the most variance. This is not exactly principal components analysis, but it is 
closely related.

In this notebook you will learn about PCA, and then see how it can be done by neural-like systems that use local hebbian 
learning, and avoid error back-propagation.

In order to understand PCA, let's start with the following simple two neuron system. This is the simplest system for which 
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correlational structure can be analyzed. The rationale is that the two neuron system will give us insight into the problem of 
finding structure in data sets with really high dimensionality, such as images or speech.

Modeling the input: Statistical model of the correlations of a 2D input 

ensemble

‡ The generative model

Recall that the idea behind generative modeling is to understand the structure of the data coming into the network. This 
gives us a better idea of what the network is ideal for, and where it should have problems. Our goal is first create data that 
has a particular correlational structure, and then to see how a neural network can discover the structure.

Consider a "two-neuron" system whose inputs are correlated. The random variable, rv, is a 2D vector representing the input. 
The scatter plot for this vector has a slope of Tan[theta] = 0.41. The variances along the axes are:

 bigstd^2 = 4^2 =16 and smallstd^2 = .252 =.0625.  

gprincipalaxes is a graph of the principal axes which we will use for later comparison with simulations. Continu-
ousDistributions.m is a Mathematica  package that you have seen before and that provides routines for sampling 
from a Gaussian (or Normal) distribution, rather than the standard uniform distribution that Random[] provides.

We define ndist so that Random[ndist] returns numbers whose average is zero, and whose standard deviation is 1. Variance 
is equal to standard deviation squared. If we multiple Random[ndist] by bigstd, we get random numbers with variance 
bigstd^2. And similarly for smallstd. rv is the projection of these numbers onto the x and y axes.

ndist = NormalDistribution[0,1];theta = Pi/8;
bigstd = 4.0; smallstd = 0.25;
alpha = N[Cos[theta]]; beta = N[Sin[theta]];
rv := 
{bigstd x1 alpha + smallstd y1 beta, bigstd x1 beta -
smallstd y1 alpha} /.

{x1-> Random[ndist],y1-> Random[ndist]};

gprincipalaxes = Plot[{x (beta/alpha),
x (-1/(beta/alpha))}, {x,-4,4},
PlotRange->{{-4,4},{-4,4}},
PlotStyle->{RGBColor[1,0,0]},
AspectRatio->1,DisplayFunction->Identity];

x1 and y1 are said to be correlated. (Later we'll see how to use the package <<Statistics`MultinormalDistribution` to 
simplify synthesis of n-dimensional random numbers.) Let's view a scatterplot of samples from these two correlated Gauss-
ian random variables.
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npoints = 200;
rvsamples = Table[rv,{n,1,npoints}];

g1 = ListPlot[rvsamples,PlotRange->{{-4,4},{-4,4}},
AspectRatio->1, DisplayFunction->Identity];

Show[g1,gprincipalaxes,
DisplayFunction-> $DisplayFunction];
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Principal Components Analysis (PCA) using standard statistical methods

In the previous section, we developed a model for synthetic data--so we know the statistical structure. Usually, we don't 
have a good model of the statistical structure of an ensemble, but want to discover something about it. It is usually too hard 
to find a complete model of the underlying distribution, but we can still analyze the data to find means, variances and so 
forth. When dealing with a high-dimensional ensemble, sometimes most of the variation is occuring in some subspace. In 
the example above, most of the variation is occuring in the 1D subspace defined by a line of slope theta. How could we 
have discovered that only from the data--i.e. without having the model before us? We could graph it and look. But what if 
the dimensionality of the space is really big?

PCA provides the method. PCA seeks out a new coordinate system that is just a rotation of the original that does two very 
interesting things: 1) The data when projected onto the new rotated coordinates they are no longer correlated--in fact the 
autocovariance matrix (see  below) is diagonal; 2) The new coordinates can be ordered so that the main or "principal 
component" has the most variance, the next has the second most, and so forth. How is this done? It turns out that the 
eigenvectors of the autocovariance matrix are the principal components, and the eigenvalues  are the variances of the data 
when projected onto the new axes.

What good is PCA for a data set?  If the variance of some of the projections is near zero, one can in fact dispense with these 
components and achieve a good approximate coding of the data with just the remaining coordinates. We are going to see 
that in the 2D example, we can get an economical coding of the data with just one number, rather than two.
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‡ Calculate the autocovariance matrix

Let E[•] stand for the expected or average of a random variable, •. Suppose we want a measure of the covariation of two 
random variables, x and y. One way is to first subtract off the mean from both giving: x1=x-E[x], and y1 = y-E[y]. Then we 
find the average of the product E[x1 y1]. This is called covariance. If x1 and y1 tend to go up together (a high value of x1 
predicts a high value of y1, etc..), then the product will tend to be big on average--they are correlated. (If x=y, then this is 
just the standard definition of variance.)

Suppose we have a vector (like rv, of dimension 2 or perhaps higher) whose elements are random variables. We can define 
a cross-covariance analogous to covariance. But all we need now is a measure of how the various elements of covary with 
each other. The autocovariance matrix of a of vector random variable, x,  can be defined by first subtracting off the mean 

vector, and then averaging over all the outer-products with itself: E[  [x-E[x]][x-E[x]]T  ]. (Note this could be done using 

the auto-associative memory rule--i.e. just add up all the outer products, and then normalize by the number of learning 
pairs.) The diagonal values of the autocovariance matrix correspond to the variances of each element. The off-diagonals are 
the covariances for each pair of elements. Because of the symmetry of the outer-product (multiplication commutes), the 
autocovariance matrix is symmetric.

Let's compute the autocovariance matrix for  rv.  The calculations are simpler because the average value of rv is zero. As 
we would expect, the matrix is symmetric:

autolist = Table[
Outer[Times,rvsamples[[i]],rvsamples[[i]]],

{i,Length[rvsamples]}];
MatrixForm[auto=

Sum[autolist[[i]],
{i,Length[autolist]}]/Length[autolist]]

Clear[autolist];

J
13.0038 5.38557

5.38557 2.30744
N

The variances of the two inputs (the diagonal elements) are due to the projections onto the horizontal and vertical axis of the 
generating random variable.  

(Sidenote: The autocorrelation matrix is defined to be the expected or average value of the outer product without subtracting 
off the means.)

‡ Calculate the principal components (eigenvectors of the autocovariance matrix)

Now we will calculate the eigenvectors of the autocovariance matrix
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MatrixForm[eigauto = Eigenvectors[auto]]

J
0.923212 0.384291

-0.384291 0.923212
N

Remember that the eigenvectors of a symmetric matrix are orthogonal. You can check that these are.

Let's graph the principal axes corresponding to the eigenvectors of the autocovariance matrix together with the scatterplot 
we plotted earlier. One axis is defined by: y=eigauto[[1,2]]/eigauto[[1,1]] x, and the other axis by: y= 
eigauto[[2,2]]/eigauto[[2,1]] x.

gPCA = Plot[{eigauto[[1,2]]/eigauto[[1,1]] x,
eigauto[[2,2]]/eigauto[[2,1]] x},

{x,-4,4}, AspectRatio->1,
DisplayFunction->Identity,
PlotStyle->{RGBColor[.2,0,1]}];

Show[g1,gPCA,DisplayFunction->$DisplayFunction];
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You can see that PCA has discovered  important structure in the input ensemble as shown by the blue lines.
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Try changing npoints=5. Then plot the true principal axes with gPCA, using show[g1,g-

PCA,gprincipalaxes,DisplayFunctionÆ$DisplayFunction].  Do gPCA and gprincipalaxes match? Why not?

‡ Calculating the variances (eigenvalues)

The eigenvalues give the ratio of the variances of the projections of the random variables rv[[1]], and rv[[2]] along the 
principal axes:

eigvalues = Eigenvalues[auto]

815.2456, 0.0656766<

Let's project the data onto the principal axes and calculate the autocovariance matrix in the  new coordinate system. The 
projected values are given by: eigauto.rvsamples.

We'll see that the new coordinates for this data set have zero correlation.

autolist = Table[
Outer[Times,eigauto.rvsamples[[i]],
eigauto.rvsamples[[i]]],{i,Length[rvsamples]}];

MatrixForm[Chop[
Sum[autolist[[i]],

{i,Length[autolist]}]/Length[autolist]]]
Clear[autolist];

J
15.2456 0

0 0.0656766
N

Note that the off-diagonal elements (the terms that measure the covariation of the transformed random variables) are zero. 
Further, the diagonal elements are estimates of the population variances along the principal axes. The should be approxi-
mately equal to the population variances specified by the generative model: i.e. the bigstd^2, and smallstd^2 from our 
synthetic data process.

How can we do PCA using brain-style computation?
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Principal Components Analysis (PCA) with neural networks

Neural network model using Hebb together with Oja's rule for extracting the dominant 

principal component

‡ Introduction to Oja's network: weight normalization

Consider the following linear neural network. The input and output values are represented by vectors x, and y respectively. 
The connection weights are represented by matrix Q. 

We will combine the outer product form of Hebb's rule, together with Oja's modification. Without Oja's rule, the Hebb rule 
does not place a limit on the size of the weights.

Oja's rule automatically tends to normalize the weights so that their squared sum is finite. In fact:

Show, when the weights are no longer changing, that:
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‡ Implementing Oja's network

Oja's rule constrains the sum of the squares of the weights to approach 1. We will set the intial values of the weight matrix 
to random values between 0 and 1.

npoints = 400;    p1 = {}; αααα = 0.01;
size = 2;
Q = Table[Random[], {size}, {size}];

Note that a space or * in Mathematica  between two expressions does an element by element multiplication. We use this 
notation as economical way of writing Oja's rule. An example is:

MatrixForm[{{a,b},{c,d}} {x,y}]

J
0.141917 a 0.28388 b

0.241387 c 0.241387 d
N

Note that this different from standard matrix/vector multiplication.

For each random input rv, we compute the output y= Q.x, and the weights Q get adjusted on-line by Oja's rule. Unlike 
computing eigenvectors, we don't have to store all npoints of the random vectors to compute an autocovariance matrix.

For[i=1,i<=npoints,i++,
x = rv; y = Q.x;
Q = Q + αααα (Outer[Times,y,x] - Q y y);

(*p1 keeps track of the evolution of the weights
in terms of the slopes of the rotated coordinates*)

If[Mod[i,5]==0,
p1 = Join[p1,{{Q[[1,2]]/Q[[1,1]],
Q[[2,2]]/Q[[2,1]] }}]];

];

The slopes of the rotated coordinates are given by the elements of p1. The last computed values are:

Q@@1, 2DD ê Q@@1, 1DD
Q@@2, 2DD ê Q@@2, 1DD

‡ Graph the evolution of the network: slopes of the projection axes

Let's plot the slopes of projection axes as a function of iterations. We've sampled every 5th value, using Mod[i,5], and 
stored it in p1. These values should approach the slope of the scatter plot,  Tan[theta].
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gg1=Plot[ Tan[theta],{x,0,Length[p1]}, AxesOrigin->{0,.3},
 DisplayFunction->Identity,

PlotStyle->{RGBColor[1,0,0]}];

gg2=ListPlot[Map[#[[2]]&,p1], AxesOrigin->{0,0},
PlotJoined->True, DisplayFunction->Identity,
PlotStyle->{RGBColor[0,.5,0]}];

gg3=ListPlot[Map[#[[1]]&,p1], AxesOrigin->{0,0},
PlotJoined->True, DisplayFunction->Identity,
PlotStyle->{RGBColor[0,0,1]}];

Show[gg1,gg2,gg3,DisplayFunction->$DisplayFunction];
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There is some random fluctuation in the weights. We can obtain more stability by having a time constant over which the 
Hebbian term and the variance of y are averaged.

‡ Graph the slope of the slope of the projection axes (ratio of network weights) together with the data

We can see how well the coordinate transformation fits the principal axes of a sample scatter plot: 

gnetwork = Plot[
{s p1[[Length[p1]]][[1]], s p1[[Length[p1]]][[2]]}, 
{s, -4, 4}, PlotRange->{{-4,4},{-4,4}},
AspectRatio->1,PlotStyle->{RGBColor[0,.8,0]},
DisplayFunction->Identity];
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Show[gnetwork,g1,DisplayFunction->$DisplayFunction];
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You can verify that the network does a good job of extracting the principal component.  Recall that the slope for the popula-
tion distribution is Tan[theta]:

N[Tan[theta]]

0.414214

It doesn't take long for the green and blue lines to converge to identical values.

The only problem with this network is that having two output neurons is redundant--they both pull out the same principal 
component--the dominant axis. The slopes for both are:

p1[[Length[p1]]]

{0.443491, 0.443491}

This isn't surprising because the network was symmetrical--both output neurons saw the same inputs and updated their 
weights using the same rule. How can this be fixed to pick out the other principal components? Some kind of asymmetry 
has to be introduced. 
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A generalization of Oja's rule for extracting all of the principal components (Sanger, 

1989)

‡ Introduction to Sanger's network for PCA

The problem with Oja's network is that it extracts just the main principal component. Our example had two outputs, but the 
network is symmetric, and both outputs were the same--the projection of the input onto the main principal axes. Sanger 
proposed a modification to the Oja network that can extract all of the principal components.

We will use the same network as in the above example. However, the normalization part of learning rule will be asymmet-
ric. The generalization of Oja's term to update weights q,  is given by:

‡ Implementing the Sanger network

The above learning rule can be evaluated in Mathematica  as: LT Outer[Times,y,y]).Q, where LT is a lower triangular 
matrix. The entries above the diagonal are all zero, and the entries below and including the diagonal are one. You can verify 
the Sanger weight update formula with the following expressions:

Clear[Q,q,y,yy];
n = 2; 
LT = Table[If[i>=j,1,0],{i,n},{j,n}];
Q = Array[q,{n,n}];
yy = Array[y,{n}];
(LT Outer[Times,yy,yy]).Q//MatrixForm

i
k
jjj

q@1, 1D y@1D2 q@1, 2D y@1D2

q@1, 1D y@1D y@2D + q@2, 1D y@2D2 q@1, 2D y@1D y@2D + q@2, 2D y@2D2
y
{
zzz

OK, let's try Sanger's network out on our synthetic data.

npoints = 2000;
p1 = {}; αααα = 0.01;
size = 2;
LT = Table[If[i>=j,1,0],{i,size},{j,size}];
Q = Table[.3 Random[], {size}, {size}];
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For[i=1,i<=npoints,i++,
x = rv; y = Q.x;
deltaQ = (Outer[Times,y,x] - (LT Outer[Times,y,y]).Q);
Q = Q + αααα deltaQ;
If[Mod[i,10]==0,

p1 = Join[p1,{{Q[[1,2]]/Q[[1,1]], Q[[2,2]]/Q[[2,1]] }}]];

];

You may have to adjust the learning constant. It can take 1000's of iterations to converge, so don't give up 

easily. So run the above cell, graph the result using the input cell below. Then go back up and evaluate the 

cell above again. Check graphically below, and so forth until you see convergence.

‡ Graph the evolution of the network weights in terms of the slope

From the model of our synthetic data, the two slopes should be: 

Tan[theta] and -1/Tan[theta]. Let's take a look at the slopes of the transformed coordinates in the list p1:

gh1=Plot[-1/Tan[theta],{x,0,Length[p1]},DisplayFunction->Identity,
PlotStyle->{RGBColor[1,.5,0]}];

gh2=Plot[Tan[theta],{x,0,Length[p1]}, DisplayFunction->Identity,
PlotStyle->{RGBColor[1,0,1]}];

gh3=ListPlot[Map[#[[2]]&,p1], 
PlotJoined->True, DisplayFunction->Identity,
PlotStyle->{RGBColor[0,.5,0]}];

gh4=ListPlot[Map[#[[1]]&,p1],
PlotJoined->True, DisplayFunction->Identity,
PlotStyle->{RGBColor[0,0,1]}];

Show[gh1,gh2,gh3,gh4, DisplayFunction->$DisplayFunction];
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p1[[Length[p1]]]

80.438048, -2.49561<

Compare your results with the slopes of gprincipalaxes:

Hbeta ê alphaL
H-1 ê Hbeta ê alphaLL

0.414214

-2.41421

Note that the number of iterations is plotted in multiples determined by the Mod[] function above.

‡ Graph the transformed axes of the Sanger network and compare them to those from the underlying 

distribution

Let's plot up the transformation axes of the Sanger network (gnetwork2),  and compare them with the axes from the 
population distribution (gprincipalaxes), the calculated principal component axes (gPCA):

gnetwork2 = Plot[
{s p1[[Length[p1]]][[1]], s p1[[Length[p1]]][[2]]}, 

{s, -1, 2}, PlotRange->{{-4,4},{-4,4}},PlotStyle->{RGBColor[1,0,0]},
AspectRatio->1, DisplayFunction->Identity];

Show[gnetwork2, gprincipalaxes,gPCA,
DisplayFunction->$DisplayFunction];
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Contingent Adaptation: McCollough effect

Celeste McCollough (1965).

Make stimulus

In[56]:= width = 128; freq=8;
grating[x_,y_,xfreq_,yfreq_] := Sign[Cos[(2. Pi)*(xfreq*x + yfreq*y)]];

‡ Vertical red adapting grating

In[58]:= xfreq = freq; theta = Pi ê 2;
yfreq = xfreq ê Tan@thetaD;

gvertred = DensityPlot@grating@x, y, xfreq, yfreqD, 8x, 0, 1<,
8y, 0, 1<, PlotPoints Ø width, Mesh Ø False, Frame Ø False,
ColorFunction Ø HRGBColor@#, 0, 0D &L, DisplayFunction Ø IdentityD;

‡ Horizontal green adapting grating

In[61]:= xfreq = 0; theta = 0;
yfreq = freq;

ghorizgreen = DensityPlot@grating@x, y, xfreq, yfreqD, 8x, 0, 1<,
8y, 0, 1<, PlotPoints Ø width, Mesh Ø False, Frame Ø False,
ColorFunction Ø HRGBColor@0, #, 0D &L, DisplayFunction Ø IdentityD;

‡ Horizontal gray test grating

In[64]:= xfreq = 0;
yfreq = freq;

ghorizgray = DensityPlot@grating@x, y, xfreq, yfreqD, 8x, 0, 1<,
8y, 0, 1<, PlotPoints Ø width, Mesh Ø False, Frame Ø False,
ColorFunction Ø HRGBColor@#, #, #D &L, DisplayFunction Ø IdentityD;
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‡ Vertical gray test grating

In[67]:= xfreq = freq;
yfreq = 0;

gvertgray = DensityPlot@grating@x, y, xfreq, yfreqD, 8x, 0, 1<,
8y, 0, 1<, PlotPoints Ø width, Mesh Ø False, Frame Ø False,
ColorFunction Ø HRGBColor@#, #, #D &L, DisplayFunction Ø IdentityD;

Test: Try it

1. First look at the two black and white gratings on the right. They should look black and white, and the white should have 
relatively little tinges of color.

2. Now look at the left vertical red grating, then the right horizontal green, then back at the left and so forth for 2-4 minutes. 
(You can use Pause[] for timing in seconds). 

3. Then when adapted, look at the black and white test gratings again. The white bars of horizontal B&W should look 
pinkish, and the vertical bars greenish. 

In[75]:= Show@GraphicsArray@88gvertred, ghorizgreen, ghorizgray, gvertgray<<,
DisplayFunction Ø $DisplayFunction , GraphicsSpacing Ø 8.01, .01<DD;

In[51]:= Pause@120D
"done"

Out[52]= done
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‡ Or display to a new notebook:

In[76]:= displayToNotebook@graphic_, opts___D :=
Hnb = NotebookCreate@WindowSize Ø 8350, 350<, WindowFrame Ø "Palette"D;
NotebookWrite@nb, Cell@GraphicsData@"PostScript", DisplayString@graphicDD,

"Graphics", DisplayFunction Ø $DisplayFunction, optsDD; graphicL
opts1 = Sequence êü 8Frame Ø False, Mesh Ø False,

DisplayFunction Ø $DisplayFunction<

In[78]:= displayToNotebook@
GraphicsArray@8gvertred, ghorizgreen, ghorizgray, gvertgray<D, opts1D;

Is there a functional explanation for what is going on? Is there a neural network 

explanation?

Barlow suggested that the adaptation is the result of the visual system adjusting to new statistical dependencies between 
features. It isn't just that neurons are "getting tired". Specifically, he suggested that perceptual systems adjust their representa-
tions of features to be independent or uncorrelated with each other (technically, independence is a stronger condition). This 
is a problem of neural self-organization, perceptual learning based on experience. Next we'll look at several neural networks 
that re-organize to decrease the correlations between their firing. One network may provide an explanation for McCulloch's 
color-contingent affter-effect.

Non-orthogonal decorrelation

‡ Foldiak's  scheme combining Hebbian and anti-Hebbian learning

Rigid rotations aren't the only possible transformations that decorrelate the inputs. Further, one might want a new coordinate 
system that shares the variance equally--after all, we do not have strong evidence that neurons vary greatly in their ability to 
code the range of variation. This section looks at a network due to Peter Foldiak.

Foldiak and Barlow devised a neural network that combined a Hebbian learning rule on the forward connections with anti-
Hebbian learning on the inhibitory connections between the output units.  Oja's rule was used to normalize the weights. It 
can be shown that decorrelated output values are steady-state solutions for the weight changes. 

One of the reasons for interest in this kind of model are the potential relations with the physiology. Inhibitory links are well-
known, and evidence for anti-Hebbian learning is something to be looked for empirically.
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Independence and decorrelation

Two random variables, x, y are uncorrelated if E(xy)=E(x)E(y) (i.e. the covariance is zero). They are independent if p(x,y) = 
p(x)p(y). For a multivariate Gaussian density, these two are equivalent. But in general, independence is the stronger condi-
tion, in that independence implies no correlation (but the converse is not true). Suppose  a neural network recodes the input 
(x,y) into outputs (x',y'). The above networks "decorrelated" the inputs--E(x'y') = E(x')E(y')=0. If the inputs are not Gaussian 
random variables, is there a way to find an independent representation? There has been recent discussion of the utility of 
both decorrelated and statistically independent representations. We don't have time to go into the details, but the interested 
student should take a look at Barlow (1990), Bell and Sejnowski (1995), and Olshausen and Field (1996). As an application, 
Olshausen and Field (1996) showed that the pattern of simple cell receptive field weights in visual cortex can be obtained 
by seeking a coordinate transformation of image space that  decorrelates the output values using two simple constraints: 1) 
keep the discrepancy between the image data and its linear reconstruction (as a weighted sum of receptive fields) small, and, 
2) keep the overall activity level (e.g. total variance) small. The result is a sparse code for images.
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