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Introduction

Last time

‡ Turning linear networks into classifiers with a hard threshold

‡ Perceptrons, perceptron learning rule

Today

‡ Discriminant functions: Linear part of a Perceptron-unit is a  linear discriminant

‡ Linear regression & brain-style learning

Discriminant functions

Let's build our geometric intuitions of what a simple perceptron unit does by viewing it from a more formal point of view. 
Perceptron learning is an example of nonparametric statistical learning, because it doesn't require knowledge of the underly-
ing probability distributions generating the data (such distributions are characterized by a relatively small number of 

"parameters", such as the mean and variance of a Gaussian distribution). Of course, how well it does will depend on the 
generative structure of the data. Much of the material below is covered in Duda and Hart (1978).

Linear discriminant functions: Two category case

A discriminant function, g(x) divides input space into two category regions depending on whether g(x)>0 or g(x)<0. (We've 
switched notation, x=f). The linear case corresponds to the simple perceptron unit we studied earlier:

(1)g HxL = w.x + w0

where w is the weight vector and w0 is the threshold (sometimes called bias, although this "bias" has nothing to do with 
statistical "bias"). 

Discriminant functions can be generalized, for example to quadratic decision surfaces: 

(2)
g HxL = w0 + ‚

i=1

wi  xi + ‚
i=1

‚
j=1

wij  xi  xj

We've seen how g(x)=0 defines a decision surface which in the linear case is  a hyperplane. Suppose x1  and  x2 are points 
sitting on the hyperplane, then their difference is a vector lying in the hyperplane

(3)
w.x1 + w0 = w.x2 + w0
w.Hx1 - x2L = 0

so the weight vector w is normal to any vector lying in the hyperplane. Thus w determines how the plane is oriented. The 
normal vector w points into the region for which g(x)>0, and -w points into the region for which g(x)<0.

Let x be a point on the hyperplane. If we project x onto the normalized weight vector x.w/|w|, we have the normal distance 
of the hyperplane from the origin equal to:

(4)w.x ê » w » = -w0 ê » w »

Thus, the threshold determines the position of the hyperplane.

One can also show that the normal distance of x to the hyperplane is given by:

(5)g HxL ê » w »

So we've seen that: 1) disriminant function divides the input space by a hyperplane decision surface; 2) The orientation of 
the surface is determined by the weight vector w; 3) the location is determined by the threshold w0 ; 4) the discriminant 
function gives a measure of how far in input vector is from the hyperplane.
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Multiple classes

Suppose there are c classes. There are a number of ways to define multiple class discriminant rules.  One way that avoids 
undefined regions is:

(6)gi  HxL = wi.x + wi0, i = 1, ..., c

(7)Assign x to the ith class if : gi  HxL > gj  HxL for all j ∫ i.
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It can be shown that this classifier partitions the input space into simply connected convex regions. This means that if you 
connect any two feature vectors belonging to the same class by a line, all points on the line are in the same class. Thus this 
linear classifier won't be able to handle problems for which there are disconnected clusters of features that all belong to the 
same class. Also, from a probabilistic perspective, if the underlying generative probability model for a given class has 
multiple modes, this linear classifier won't do a good job either.

Preview: Fisher's linear "discriminant"

Later, when we consider the problem of dimensionality reduction, we will take another look at hyperplanes. But here the 
idea will be to find hyperplanes onto which we can project our input data, and from there divide up the hyperplane into 
decision regions. The idea is that the original input space may be impractically huge, but if we can find a subspace 
(hyperplane) that preserves the distinctions between categories as well as possible, we can make our decisions in smaller 
space. We will derive the Fisher linear "discriminant". 

This is closely related to the psychology idea of finding "distinctive" features. E.g. consider bird identification. If I want to 
discriminate cardinals from other birds in my backyard, I can make use of the fact that (males) cardinals may be the only 
birds that are red. So even tho' the image of a bird can have lots of dimensions, if I project the image on to the "red" axis, I 
can do fairly well with just one number. How about male vs. female human faces?

Regression, PseudoInverse, and Widrow-Hoff learning

Introduction

We have been studying a linear matrix model of memory based on the storage of connection weights that follow a particular 
Hebbian rule. We have studied the "psychology" of some operations of linear algebra and have seen some interesting 
parallels to human memory, such as interference and pattern reconstruction.

We've learned that linear networks can be configured to be supervised or unsupervised learning devices. But linear map-
pings are severely limited in what they can compute. The simple perceptron unit added a threshold. The network then makes 
discrete decisions. The kinds of classifications, however, are still limited by the linearity of the decision surface, i.e. by the 
fact that it is a hyperplane. More complex networks can be built by adding layers, but then we have another problem: how 
can we learn the weights in this more complicated setting?

In this section, we return to the study of linear models of memory. However, we are going to view memory from the point 
of view of statistical regression. The idea is to treat memory as an attempt to fit past input/output associations into a model 
that can be used both for recall and for generalization. For the problem of regression in statistics, given a set of vector inputs 

{xi}, and a set of corresponding vector outputs {yi}, one tries to find a transformation W that will map x->y as closely as 

possible over the data available. For this we need a model for W, and a measure of goodness of fit. We will assume below a 
linear model for W, so for the discrete case, W is a matrix. Our measure of goodness of fit will be the sum of the squared 
differences between predicted output and actual output. In this linear case, this is least squares regression.
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We will return to strictly linear networks (no threshold) in order to introduce techniques (gradient descent learning in the 
context of finding the weights of a linear matrix transformation) and concepts that will generalize to non-linear networks. 
Gradient descent will lead us to the Widrow-Hoff learning rule. By treating the linear case first, we will be able to see how 
the Widrow-Hoff learning rule relates to classic problems of statistical regression. This, in turn, will provide the introduc-
tion to the generalization of this rule to multiple layer networks with smooth non-linear squashing functions--the error back-
propagation algorithm.

More terminology

Consider supervised learning. We have a "training set" {fi,ti} representing inputs fi, and target outputs ti. The training set 

in some sense "samples" the larger space of possible input/output pairs {f,t}.   We would like to learn a general mapping: T: 
f -> g in such a way that T is a good fit to the training data (i.e. g is close to t), and generalizes well to novel inputs. The set 
of target data is the feedback for the"teacher". The feedback can say whether the mapping is correct or not. Or the feedback 
can provide information as to how far off the map T's prediction of f (i.e. T[f]) is from t. After training, one can require that 
T always maps members of the training set to exactly the target members, and generalizes appropriately for other inputs. 
This means that the learning should be consistent. Interpolation is between data points on a graph is an example of consis-
tent learning. An example would be drawing lines connecting data points on a graph.  Or, we may require that the  T maps 
the original members of the training set to outputs g, that are close to the original targets t.  Linear regression is a an exam-
ple of approximation learning.  The linear associator was our first example of supervised learning. Approximation doesn't 
necessarily exactly fit the data points, but should just come close. We are going to study approximation.

Least squares regression - linear models

The idea behind least squares regression is given a set of N training pairs {xi,yi}, where i runs from 1 to N, we would like to 

find a function that given an input x, the function approximates well the output y. If the function reproduces the association 
between input and output that it has seen before, this is like "remembering". But in addition, regression generalizes. So 
novel input values get mapped to predicted outputs based on past "experience". We've already seen how linear heteroassocia-
tive learning does this.
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An example of linear regression

A fundamental assumption behind any learning system is that there is an underlying structure to the data--the relationship 
between associative pairs is not arbitrary.  When trying to understand how a relationship can be learned between a set of 
two patterns, it is important to have some understanding of the structure of the relationship. For example, one shouldn't try 
to fit a straight line to data when there is evidence to indicate that the underlying process is quadratic. We will study this 
more when we learn about the "bias/variance dilemma". So let us assume that the data have an underlying structure that we 
are going to try to discover or approximate using W. 

We will study a simple "toy" problem that has the following very specific generative structure. The inputs are randomly 
located points on a 2D plane, and the outputs are heights above these points. The outputs lie approximately on a planar 
surface that runs through the origin and whose orientation is characterized by two parameters, a and b.

It may seem like overkill, but we are going to estimate W for the same set of data in 4 (yes, 4!) different ways. The first two 
are drawn from standard linear algebra (a least squares solution using transpose and inverse, and the second using the 
pseudoinverse).  The third introduces the method of "gradient descent" which we will use later in a number of contexts. The 
fourth method is the most relevant to neural network theory--we estimate W using a biologically plausible learning rule (the 
Widrow-Hoff rule).

‡ Generative model: Synthetic training pairs

Let x1 and x2 be the (scalar) inputs, and z be the (scalar) output:

(8)

8x1, x2< Ø z,

and assuming the mapping is a plane through the origin and additive noise

z = a x1 + b x2 + noise

We will want to learn a and b from the training pairs: {{x1,x2},z}.

rsurface[a_,b_] :=
N[Table[{x1=1 Random[],x2= 1 Random[],

a x1 + b x2 + .5 Random[] - 0.25},{60}],2];

data = rsurface[2,3];

Show[Graphics3D[Map[Point,data]]];
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Outdata = Table[{data[[i,3]]},{i,1,Length[data]}];
Indata = Table[{data[[i,1]],data[[i,2]]},{i,1,Length[data]}];

‡ Least squares regression to find W

So let's assume we want to find a matrix W that will come close to reproducing values y, given inputs x. Of  course, because 
we generated the data, we know the underlying structure and what the matrix W should be. It should be a 1x2 matrix = 
{{2,3}}. But let's assume we are ignorant, and want to discover the weights from Outdata and Indata.

In least squares regression, we try to find the values of the matrix that will minimize e(W). 

e(W) = yi − Wxi

 2

i=1

N

∑
Most of the time our error function will be over a very high dimensional space. However, it is useful to get an intuition for 
the problem in a low dimensional space. We can actually get a picture of the total error, e(W), for our synthetic data as a 
function of the weight parameters w1 and w2:

eW[w1_,w2_] := 
Sum[(
Outdata[[i]]-{w1,w2}.Indata[[i]]).(Outdata[[i]]-{w1,w2}.Indata[[i]]),

{i,Length[Indata]}]
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g=Plot3D[eW[w1,w2], {w1,0,4},{w2,0,6},
ViewPoint->{1.780, -2.861, 0.312}];
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Note that because our input data are 2-element vectors, and our output or target values are 1-D, the matrix W is not square--
it has 1 row and 2 columns. So we represent W above as a vector.

The minimum appears to be near {2,3}. It is easier to see whether there is a minimum or not using ContourPlot[].

ContourPlot[eW[w1,w2], {w1,0,4},{w2,0,6},Contours->16,
ContourShading->False];
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Note: ForMathematica, on a Macintosh, you can get coordinates from a plot by: 1) Selecting the plot; 2) Hold down the 
Apple key () while moving the mouse over the plot. The lower left corner shows the coordinates. You can even 
(temporarily) mark points on the graph. If you go to the Edit menu, and Copy. These coordinates are copied to the Clip-
board. Then go to a cell in your notebook and Paste. Here is a guess for the minimum:

{1.999798, 3.100128}
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We can find the exact location of the minimum by finding W for which the gradient of e is zero. Although there are a lot of 
indices to worry about, the result can be written very concisely in terms of vector outerproducts, inversion, and matrix 
multiplication:

Let's try it on our data

sumX = Sum[Outer[Times,Indata[[i]],Indata[[i]]], 
{i,Length[Indata]}];

sumYX = Sum[Outer[Times,Outdata[[i]], Indata[[i]]], 
{i,Length[Indata]}];

W = sumYX.Inverse[sumX]

{{1.93658, 3.04565}}

The values for W come close to what we would expect from the structure of our data, a plane with parameters {2,3}.

‡ Pseudoinverse to find W

There is another way of solving the linear least squares regression that uses the pseudoinverse of matrix. 

Define X* to be the pseudoinverse  (sometimes called the generalized inverse) of the matrix X:

or as:
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Let's take all of the input vectors x, and arrange them as columns in a matrix X:

Now do the same for the y's:

And what is the matrix that maps the x's to the y's with least squared error? It is X*Y:

Inverse[Transpose[Indata].Indata].Transpose[Indata].Outdata

{{1.8492}, {3.0852}}

For a square matrix X, the inverse of X is chosen so that XX-1 is equal to the identity matrix, I. The pseudoinverse, X*, of a 

rectangular matrix X is chosen so that XX* is close to the identity matrix in the sense that the sum of the squares of all of 
the entries of XX*-I is least. The PseudoInverse[] function is built into Mathematica.  

PseudoInverse[Indata].Outdata

{{1.93658}, {3.04565}}

It can be shown that PseudoInverse[X].X is the identity matrix. We won't prove it here, but we can verify that it is the case 
with our data:

Chop[PseudoInverse[Indata].Indata]//MatrixForm

1.   0

0    1.

Question: What are the dimensions of the above PseudoInverse?
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‡ Gradient descent

Let's go back to the original global error function that we used above for standard linear least squares regression. There we 
found the minimum by setting the error to zero, and then solving for the weights. 

There is another way of finding the minimum of the error function that is more general in the sense that it can be used when 
the error function is much more complicated, and there is no linear solution. 

The idea is to start off at some location, W0 in weight space (which is just a guess), and iteratively move towards the 

minimum by always taking a step downhill. The downhill direction is given by the gradient of the error function.

From the expression for the gradient which we wrote earlier in terms of outer products, we can obtain an expression for 
DW, with h taking the place of Dt:
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eWgradient[wg_] := 
Sum[Outer[Times,Outdata[[i]], Indata[[i]]], 

{i,Length[Indata]}]-
wg.Sum[Outer[Times,Indata[[i]],Indata[[i]]], 

{i,Length[Indata]}];

i=0; wg={{0,0}}; eta = .05; wglist = {};
T[wg_] := wg + eta eWgradient[wg];

w1 = Nest[T,wg,20]

{{1.93909, 3.04261}}

‡ "Brain-style" learning: Iterative Widrow-Hoff learning to estimate W

So far so good. But there are a couple of problems. First, suppose we are interested in brain-style computation. Based on 
what we think we know about neurons, how could the brain compute transposes, do matrix inversion and multiplication? 
Further we don't seem to gather information on a whole set of training pairs, and then suddenly build a memory matrix. We 
learn incrementally, trial by trial. The second problem is purely computational. What if the dimensionality of the vectors is 
really big? It is computationally expensive to invert large matrices. The above gradient descent procedure avoids the 
problem of inverting large matrices, but it involved computing a global error term over all the training pairs. We would like 
a method which would learn the regression map without having to store all the training pairs with the accompanying 
computation of a global error term. Instead, we'd like to compute an error term incrementally, trial-by-trial.

Can we find W in such a way so as to be biologically plausible, and  avoid having to invert a large matrix? The basic idea 
behind Widrow-Hoff learning is to update W iteratively with each new training pair. Let's start off with an arbitrary W, find 
out which direction we would have to go in weight space to reduce the discrepancy between what W tells us x should map 
to and what it actually is, namely y.

12 Lect_11_RegressWid.nb



Let's try out this update rule on our synthetic training pairs.

<<Graphics`MultipleListPlot`

ww1 = {{0,0}}; ww1list = {}; ww2list = {};

i=0;eta = 5;
While[i<Length[data],

++i;
in = {data[[i,1]],data[[i,2]]} ; out = {data[[i,3]]};
ww1 = ww1 + (eta/i) Outer[Times,(out - ww1.in),in];
ww1list = Append[ww1list,ww1[[1,1]]];
ww2list = Append[ww2list,ww1[[1,2]]];

];
ww1

{{2.02737, 2.92272}}

You may have to run through the above loop several times before reaching stable convergence. We can plot up the two 
weights as a function of the iteration number to see how the Widrow-Hoff rule for weight modification eventually leads to 
two stable weights:
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MultipleListPlot[ww1list, ww2list, PlotRange->{-6,16}, 
AxesOrigin->{0,0},PlotJoined->True];
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‡ Memory recall

We've seen several ways of finding the weights of a matrix that will approximately reproduce an output, given an input it 
has seen before. Let's try it out.

So in order to "recall" a response, from an input Indata[[6]], we run it through the "network" memory matrix w1:

w1.Indata[[22]]

{3.27156}

And we can check to see how well it recalls:

Outdata[[22]]

{3.5}

One property of the regression model of memory is that it also generalizes. For example, {11,15} wasn't in the training set, 
but the expected output is:

w1.{11,15}

{65.5427}

14 Lect_11_RegressWid.nb



The network has "learned" a surface: z = 1.9x + 3.07y  through the points specified in the training set. The main point is that 
the linear associator will try to fit a plane (or hyperplane) through the data. If the data do not fit that model, then the mem-
ory and generalization will not be good.

An obvious generalization is to fit hypersurfaces, rather than hyperplanes. And that is the direction we will head. But first 
let us look at linear regression from a point of view that you may not have thought of before.

Underconstrained problems and redundancy

This example is very similar to the preceding example, except that we are going to try to learn 2D responses from 1D 
stimuli. At first this doesn't seem to make sense, because the mapping from 1D to 2D in general would be expected to be 
underconstrained by the data. But let's try it with some synthetic data whose generation process we'll keep hidden for now.

‡ Synthetic data -- don't look

data = r3Dline[2,3];

Indata = Table[{data[[i,1]]},{i,1,Length[data]}];
Outdata = Table[{data[[i,2]],data[[i,3]]},{i,1,Length[data]}];

So the input data is a list of 1D scalars, and the output data a list of 2D vectors. Let's apply the Widrow-Hoff algorithm to 
learn the relationship between the input stimuli, Indata, and the output responses, Outdata.

‡ Iterative Widrow-Hoff learning

i=0; w1 = {{0},{0}}; w1list = {}; w2list = {}; eta = 0.4;
Dimensions[w1]

{2, 1}
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While[i<Length[data],
++i;
out = {data[[i,2]],data[[i,3]]} ; in = {data[[i,1]]};
w1 = w1 + eta Outer[Times,(out - w1.in),in];
w1list = Append[w1list,w1[[1]][[1]]];
w2list = Append[w2list,w1[[2]][[1]]];

];
w1

{{1.98848}, {2.99641}}

MultipleListPlot[w1list, w2list, PlotRange->{0,6}, 
AxesOrigin->{0,0},PlotJoined->True];
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‡ Pseudoinverse solution

We can calculate the memory matrix using the PseudoInverse in this case too:

matmem = Transpose[PseudoInverse[Indata].Outdata]

{{2.}, {3.05258}}

‡ Recall

Let's check out a few values to see how well the memory matrix can recall a 2 dimensional output, given a one dimensional 
input.
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matmem.Indata[[5]]
matmem.Indata[[13]]
matmem.Indata[[28]]

{1.91066, 2.91622}

{1.81768, 2.7743}

{1.40065, 2.13779}

Outdata[[5]]
Outdata[[13]]
Outdata[[28]]

{1.9, 3.}

{1.8, 2.5}

{1.4, 1.9}

‡ Revealing the underlying structure

So why does it work to learn to predict a 2D value from a 1D input? The reason, of course, is that the underlying structure 
of the output data is very redundant or highly constrained, and in fact lies close to a straight line in 3-space.

Show[Graphics3D[Map[Point,data]]];

Here is the generative model for our synthetic data:
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x1 -> {x2,z}, and where assuming the form is a straightline through the origin with some additive noise, the output {x2,z}is 
given by:

{x2, z} = {a x1, b x1 + noise} 

We learned the parameters {a,b} from training pairs of inputs and outputs: {x1, {{x2, z}}}

r3Dline[a_,b_] := N[Table[{x1=1 Random[], a x1,
b x1 + .5 Random[] - 0.25},{30}],2];

data = r3Dline[2,3];

It produced the coordinates of a noisy line in 3-space.
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