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B
y definition, linear m

odels have several lim
itations on the class of functions they can com

pute--outputs have to be linear 
functions of the inputs. H

ow
ever, as w

e have pointed out earlier, linear m
odels provide an excellent foundation on w

hich to 
build. O

n this foundation, non-linear m
odels have m

oved in several directions.

C
onsider a single unit w

ith output y, and inputs fi . O
ne w

ay is to "augm
ent" the richness of the input patterns w

ith higher-
order term

s to form
 polynom

ial m
appings, or non-linear regression, as in  a T

aylor series (Poggio, 1979):

2
Lect_10_P

erceptron.nb



T
he linear L

ateral inhibition equations can be generalized using products  of input and output term
s --"shunting" inhibition 

(G
rossberg).

A
 straightforw

ard generalization of the generic connectionist m
odel is to divide the neural output by the squared responses 

of neighboring units. T
his is a steady-state m

odel w
hich has been very successful in accounting for a range of neurophysio-

logical receptive field properties in vision (H
eeger et al., 1996).

B
ut the sim

plest thing w
e can do at this point is to use the generic connectionist neuron w

ith its second stage point-w
ise non-

linearity. R
ecall that this is an inner product follow

ed by a non-linear sigm
oid. O

nce a non-linearity such as a sigm
oid 

introduced, it m
akes sense to add m

ore than additional layers of neurons. M
uch of the m

odeling of hum
an visual pattern 

discrim
ination has used just these "rules-of-the-gam

e", w
ith additional com

plexities (such as H
eeger's norm

alization term
 

above) added only as needed.

A
 central challenge in the above and all m

ethods w
hich seek general m

appings, is to develop techniques to learn the 
w

eights, w
hile at the sam

e tim
e avoiding over-fitting (i.e. using too m

any w
eights). W

e'll talk m
ore about this problem

 later.

T
hese m

odifications produce sm
ooth functions. If w

e w
ant to classify rather than regress, w

e need som
ething abrupt. 

G
enerally, w

e add a sigm
oidal squashing function. A

s the slope of the sigm
oid increases, w

e approach a sim
ple step non-

linearity. T
he neuron then m

akes discrete (binary) decisions. R
ecall the M

cC
ulloch-Pitts m

odel of the 1940's. L
et us look at 

the Perceptron, an early exam
ple of a netw

ork built on such threshold logic units.
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n

Supervised learning: T
raining set {fi ,gi }

R
egression:  Find a function f: f->g, i.e. w

here g takes on continuous values.

C
lassification: Find a function f:f->

{0,1,2,...,n}, i.e. w
here gi  takes on discrete values or labels.

L
inear netw

orks can be configured to be supervised or unsupervised learning devices. B
ut linear m

appings are severely 
lim

ited in w
hat they can com

pute. T
he specific problem

 that w
e focus on in this lecture is that continuous linear m

appings 
don't m

ake discrete decisions.

L
et's take a look at the binary classification problem

 

f
: f ->

 {0,1}

P
attern

 classificatio
n

O
ne often runs into situations in w

hich w
e have input patterns w

ith enorm
ous dim

ensionality, and w
hose elem

ents are 
perhaps continuous valued. W

hat w
e w

ould like to do is classify all m
em

bers of a certain type. Suppose that f is a representa-
tion of one of the follow

ing 10 input patterns,

{a, A
, a

, a, A
, b, B

, b
, b, B

 }
a pattern classifier should m

ake a decision about f as to w
hether it m

eans "a" or "b", regardless of the font type, face or size. 
In other w

ords, w
e require a m

apping T
 such that:

T
: f ->

 {"a","b"}

A
s m

entioned above, one of the sim
plest w

ays of extending the linear neuron com
puting elem

ent is to include a step 
threshold function in the tradition of M

cC
ulloch &

 Pitts--the earliest com
putational m

odel of the neuron. T
his is special case 

of the generic connectionist neuron m
odel. W

ith the step threshold, recall that the units are called T
hreshold L

ogic U
nits 

(T
L

U
):T

L
U

: f ->
 {-1,1}

s
t
e
p
[
x
_
,
 
q
_
]
 
:
=
 
I
f
[
x
<
q
,
-
1
,
1
]
;

T
he T

L
U

 neuron's output can be m
odeled sim

ply as: step[w
.f,q];
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O
ur goal w

ill be to find the w
eight and threshold param

eters for w
hich the T

L
U

 does a correct classification.

So the T
L

U
 has tw

o classes of param
eters to learn, w

eight param
eters and a threshold q. If w

e can put the threshold degree 
of freedom

 into the w
eights, then the m

ath is sim
pler--w

e'll only have to w
orry about learning w

eights. T
o see this, w

e 
assum

e the threshold to be fixed at zero, and then augm
ent the inputs w

ith one m
ore input that is alw

ays on. H
ere is a tw

o 
input T

L
U

, in w
hich w

e augm
ent it w

ith a third input that is alw
ays 1 and w

hose w
eight is -q:

R
e
m
o
v
e
[
w
,
f
,
w
a
u
g
,
f
a
u
g
,
q
,
w
1
,
w
2
,
f
1
,
f
2
]
;

w
 
=
 
{
w
1
,
w
2
}
;

f
 
=
 
{
f
1
,
f
2
}
;

w
a
u
g
 
=
 
{
w
1
,
w
2
,
-
q
}
;

f
a
u
g
 
=
 
{
f
1
,
f
2
,
1
}
;

R
e
d
u
c
e
[
w
.
f
=
=
q
]

R
e
d
u
c
e
[
w
a
u
g
.
f
a
u
g
=
=
0
]

q
=
=
f
1
w
1
+
f
2
w
2

q
=
=
f
1
w
1
+
f
2
w
2

So the 3-input augm
ented unit com

putes the sam
e inner product as 2-input unit w

ith arbitrary threshold. T
his is a standard 

trick that is used often to sim
plify calculations and theory (e.g. H

opfield netw
ork).
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 (R
o

sen
b

latt, 1958)

T
he original perceptron m

odels w
ere fairly sophisticated. T

here w
ere several layers of T

L
U

s and w
eights. In one early 

m
odel (A

nderson, page 217), there w
as:

1. A
n input layer or retina  of sensory units

2. A
ssociator  units w

ith lateral connections and

3. R
esponse units, also w

ith lateral connections, and feedback to the A
ssociator units.

L
ateral connections betw

een  response units functioned as a "w
inner-take-all" m

echanism
 to produce outputs in w

hich only 
one response unit w

as on. (So w
as the output a distributed code of the desired response?)

T
he Perceptron in fact is a cartoon of the  anatom

y betw
een the retina (if it consisted only of receptors, w

hich it does not), 
the lateral geniculate nucleus of the thalam

us (if it had lateral connections, w
hich if does have, are not a prom

inent feature) 
and the visual cortex (w

hich in fact does send feedback to the lateral geniculate nucleus, and does have lateral inhibitory 
connections). B

ut w
ith feedback from

 response to associator units, and the lateral connections, Perceptrons of this sort are 
too com

plex to analyze. It is difficult to to draw
 general theoretical conclusions about w

hat they can com
pute and w

hat they 
can learn. In a curious parallel, and long standing m

ystery in visual physiology, is the function of the feedback from
 cortex 

to thalam
us. In order to m

ake the Perceptron theoretically tractable, w
e w

ill take a look at a sim
plified perceptron w

hich has 
just one layer of w

eights. T
here is no  feedback and there are no lateral connections betw

een units in the sam
e layer. In  a 

nutshell, there is one set of neural T
L

U
 elem

ents that receive inputs and send their outputs. 

W
hat can this sim

plified perceptron do? 

T
o sim

plify further, let's look at a single T
L

U
 w

ith just tw
o variable inputs, but three adjustable w

eights.

R
ecall p

erfo
rm

an
ce

 an
d

 L
in

ear sep
arab

ility

‡
A

 tw
o-input sim

plified
 perceptron

A
ssum

e w
e have som

e generative process that is providing data {
f k}, w

here each f kis a tw
o-dim

ensional vector. So the 
data set can be represented in a scatter plot. B

ut any particular input can belong to one of tw
o categories, say -1 or 1: f k-

>
{-1,1}. 

For a specific set of w
eights, the threshold defines a decision line separating one category from

 another. For a 3 input T
L

U
, 

this decision line becom
es a decision surface separating classes. If w

e solve w
aug.faug==0 for f2 sym

bolically, w
e have an 

expression for this boundary separating points {f1,f2}

6
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w
a
u
g
 
=
 
{
w
1
,
w
2
,
w
3
}
;
 
(
*
w
3
 
=
 
-
q
*
)

f
a
u
g
 
=
 
{
f
1
,
f
2
,
1
}
;

S
o
l
v
e
[
w
a
u
g
.
f
a
u
g
=
=
0
,
{
f
2
}
]

99
f
2
Ø

-
f
1
w
1
-
w
3

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
w
2

==

W
e can see that f2 is a linear function of f1 for fixed w

eight values.

‡
D

efine equation
 for the decision line of a tw

o-input sim
plified perceptron

L
et's w

rite a function for the decision line:

w
1
 
=
 
0
.
5
;
 
w
2
 
=
 
0
.
8
;
 
q
 
=
 
0
.
5
5
;

w
a
u
g
 
=
 
{
w
1
,
w
2
,
-
q
}
;

d
e
c
i
s
i
o
n
l
i
n
e
[
f
1
_
,
q
_
]
:
=
 
-
(
(
-
q
 
+
 
f
1
*
w
1
)
/
w
2
)

‡
Sim

ulate data and
 netw

ork response for a tw
o-input sim

plified
 perceptron

N
ow

 w
e generate som

e random
 input data and run it through the T

L
U

. B
ecause w

e've put the threshold variable into the 
w

eights, w
e re-define step[ ] to have a fixed threshold of zero:

R
e
m
o
v
e
@
s
t
e
p
D
;

s
t
e
p
@
x
_
D
:
=
I
f
@
x
>
0
,
1
,
-
1
D
;

a
b
o
v
e
t
h
r
e
s
h
o
l
d
 
=
 
T
a
b
l
e
[
{
x
=
R
a
n
d
o
m
[
]
,
y
=
R
a
n
d
o
m
[
]
,

s
t
e
p
[
w
a
u
g
.
{
x
,
y
,
1
}
]
}
,
{
i
,
1
,
2
0
}
]
;

W
e've m

ade an array of 3-elem
ent vectors, in w

hich each vector is: {x,y,T
L

U
aug[{x,y}]}. T

L
U

aug is our augm
ented T

L
U

 
w

ith the third input set to 1, and w
eight q.

Q
uestion: W

hy did w
e use T

able[{x=R
andom

[],y=R
andom

[], step[w
aug.{x,y,1}]},{i,1,20}], rather than 

 T
able[{R

andom
[],R

andom
[], step[w

aug.{R
andom

[],R
andom

[],1}]},{i,1,20}] above?

‡
V

iew
 the data and the responses

L
et's read in the add-on graphics package to use the special plot function called L

abeledL
istP

lot[]: and plot the outputs and 
decision line in red.
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P
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S
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g
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D
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p
l
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F
u
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c
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i
o
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D
i
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p
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T
he red line separates inputs w

hose inner product w
ith the w

eights exceeds a threshold of q  from
 those that do not exceed it 

for the 2-input plus  q-threshold interpretation. O
r for the 3-input plus zero threshold interpretation, the line separates points 

based on w
here the inner product w

ith the (three) w
eights>

0 .

‡
Sim

plified
 perceptron

 (T
L

U
 netw

ork): N
-dim

ensional inputs

 For a three dim
ensional input T

L
U

, this decision surface is a plane:

w
1
 
=
 
0
.
5
;
 
w
2
 
=
 
0
.
8
;
 
w
3
 
=
 
0
.
2
;
 
q
 
=
 
0
.
4
;

w
 
=
 
{
w
1
,
w
2
,
w
3
,
-
q
}
;

f
 
=
 
{
f
1
,
f
2
,
f
3
,
1
}
;

S
o
l
v
e
[
w
.
f
=
=
0
,
{
f
3
}
]

88
f
3
Ø
5
.
H
0
.
4
-
0
.
5
f
1
-
0
.
8
f
2L<<
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P
l
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D
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-
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*
(
-
0
.
4
 
+
 
0
.
5
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f
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.
8
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E
xercise: F

ind the algebraic expression
 for the decision plane

For an n-dim
ensional input T

L
U

, this decision surface is a hyperplane w
ith all the m

em
bers of one category falling on one 

side, and all the m
em

bers of the other category falling on the other side. T
he hyperplane provides an intuition for the T

L
U

's 
lim

ited classification capability. For exam
ple, w

hat if the features corresponding to the letter "a" fell inside of a circle or 
radius 1, and the features for "b" fell outside this circle?

P
ercep

tro
n

 learn
in

g
 ru

le

A
 classic perceptron learning rule (that can be proved to converge) is as follow

s:

R
e
m
o
v
e
@
w
,
f
,
c
,
w
1
,
w
2
,
q
D
;

w
=
8
w
1
,
w
2
,
-
q
<
;
f
=
8
f
1
,
f
2
,
1
<
;
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If th
e classificatio

n
 is co

rrect, d
o

n
't ch

an
g

e th
e w

eig
h

ts:

n
e
x
t
W
 
=
 
w
;

If th
e classificatio

n
 is in

co
rrect...

‡
..and

 the correct answ
er w

as  +1

Suppose the classification is incorrect A
N

D
 the response should have been +

1. Instead the output w
as -1 because the inner 

product w
as less than zero. W

e change the w
eights to im

prove the chances of getting a positive output next tim
e that input 

occurs by adding a positive fraction (c) of the  input to the w
eights:

n
e
x
t
w
 
=
 
w
 
+
 
c
 
f
;

N
ote that the new

 w
eights increase the likelihood of m

aking a correct decision because the inner product is bigger than it 
w

as, and thus closer to exceeding the zero threshold:

S
i
m
p
l
i
f
y
[
n
e
x
t
w
.
f
 
-
 
w
.
f
]

c
H
1
+
f
1
2
+
f
2
2L

In general, n
e
x
t
w
.
f
 
>
 
w
.
f
,
 

because 
n
e
x
t
w
.
f
 
-
 
w
.
f
 
=
 
c
 
f
.
f
,
 

and c
 
f
.
f
 
>
=
 
0
.

‡
..and

 the correct answ
er w

as  -1

If the classification is incorrect A
N

D
 the response should have been -1, w

e should change the w
eights by subtracting a 

fraction (c) of the incorrect input from
 the w

eights. T
he new

 w
eights decrease the likelihood of m

aking a correct decision 
because the inner product is less, and thus closer to falling below

 threshold. So next tim
e this input w

ould be m
ore likely to 

produce a -1 output.

n
e
x
t
w
 
=
 
w
 
-
 
c
 
f
;

S
i
m
p
l
i
f
y
[
n
e
x
t
w
.
f
 
-
 
w
.
f
]

-
c
H
1
+
f
1
2
+
f
2
2L
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N
ote that the inner product nextw

.f m
ust now

 be sm
aller than before (n

e
x
t
w
.
f
 
<
 
w
.
f

),  because

 nextw
.f - w

.f <
 0 

 (since n
e
x
t
w
.
f
 
-
 
w
.
f
 
=
 
-
c
 
f
.
f

,  and  c
 
f
.
f
 
>
=
 
0
,
 

as before).

P
ercep

tro
n

 C
o

n
verg

en
ce

 T
h

eo
rem

 (A
n

d
erso

n
, p

 222)

If you are interested in understanding the proof of convergence, take a look at page 222 of the textbook.

D
em

o
n

stratio
n

 o
f p

ercep
tro

n
 classificatio

n
 (P

ro
b

lem
 S

et 3)

In the problem
 set you are going to w

rite a program
 that uses a Perceptron style threshold logic unit (T

L
U

) that learns to 
classify tw

o-dim
ensional vectors into "a" or "b" types. T

he unit w
ill have three inputs: {1,x,y},  w

here x and y are the 
coordinates of the data to be classified. T

he first com
ponent, 1 is there because w

e use the above "trick" used to incorporate 
the threshold into the w

eight vector. So three w
eights w

ill have to be learned: {w
1,w

2,w
3}, w

here the first can be thought of 
as the negative of the threshold.  It m

ay help to know
 som

ething m
ore about C

onditionals in M
athem

atica.

‡
Sidenote: M

ore on conditionals

Y
ou have seen how

 to generate threshold functions using rules. B
ut you can also use conditional statem

ents. For exam
ple 

the follow
ing function returns x w

hen Sin[2 Pi x] <
 0.5, and returns -1 otherw

ise:

p
e
t
[
x
_
]
 
:
=
 
I
f
[
S
i
n
[
2
 
P
i
 
x
]
 
<
0
.
5
,
 
x
,
-
1
]
;

O
ne can define a function over three regions using W

hich[]. W
hich[test1, value1, test2,value2,...] evaluates each test in 

turn, giving the value of the first one that is T
rue:

t
e
p
[
x
_
]
 
:
=
 
W
h
i
c
h
[
-
1
<
=
x
<
1
,
1
,

 
1
<
=
x
<
2
,
 
x
,

 
2
<
=
x
<
=
3
,
 
x
^
2
]
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P
l
o
t
[
t
e
p
[
x
]
,
{
x
,
-
1
,
3
}
]
;-
1

1
2

3

2 4 6 8

‡
G

eneration
 of synthetic classification

 data. 

Suppose w
e generate 50 random

 points in the unit square, {{0,1},{0,1}} such that for the "a" type points,

           x^2+
y^2  >

 b
i
g
r
a
d
i
u
s

^2 and for the "b" points, 

           x^2+
y^2 <

 l
i
t
t
l
e
r
a
d
i
u
s

.

E
ach pair of points has its corresponding label, a or b. D

epending on the radius values (in this case, 0.25, 0.4), these patterns 
m

ay or m
ay not be linearly separable because they fall inside or outside their respective circles. T

he data are stored in stuff 
(N

ote, w
e haven't defined stuff in this N

otebook, so don't try to evaluate the next line--but it could be useful for Problem
 6 

in PS3).

T
e
x
t
L
i
s
t
P
l
o
t
@
T
r
a
n
s
p
o
s
e
@
R
o
t
a
t
e
L
e
f
t
@
T
r
a
n
s
p
o
s
e
@
M
a
p
@
D
r
o
p
@
#
,
8
2
<
D
&
,
s
t
u
f
f
D
D
,
1
D
D
,

P
l
o
t
R
a
n
g
e
-
>
8
8
0
,
1
<
,
8
0
,
1
<
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‡
P

erceptron
 learning algorithm

In the problem
 set you w

rite a program
 that w

ill run through the training pairs. Start off w
ith a w

eight vector of: {-.3, -.05, 
0.5}.  If a point is classified correctly (e.g. as an "a" type), do nothing to the w

eights. If the point is actually an "a" type, but 
is incorrectly classified, increm

ent the w
eights in som

e proportion (e.g. c =
 0.1) of the point vector. If a "b" point is incor-

rectly classified, decrem
ent the w

eight vector in proportion (e.g. c =
 - 0.1) to the values of coordinates of the training point.

N
ote that you m

ay have to iterate through the list of training pairs m
ore than once to obtain convergence--rem

em
ber conver-

gence is guaranteed for linearly separable data sets.

‡
P

lots of discrim
inant line

B
elow

 w
e show

 a series of plots of how
 the w

eights evolve through the learning phase. A
fter 150 iterations, percent correct 

has im
proved, but still isn't perfect.
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L
im

itatio
n

s
 o

f P
ercep

tro
n

s
 (M

in
ksy

 &
 P

ap
ert, 1969)

Inclusive vs. E
xclusive O

R
 (X

O
R

)

A
ugm

enting the input representation to solve X
O

R
 (p. 230). A

 special case of polynom
ial m

appings. T
he idea of augm

ent-
ing inputs has seen a recent revival w

ith new
 developm

ents in Support V
ector m

achine learning.

Perceptron w
ith natural lim

itations:

O
rder-lim

ited:  no unit sees m
ore than som

e m
axim

um
 num

ber of inputs

D
iam

eter-lim
ited: no unit sees inputs outside som

e m
axim

um
 diam

eter (e.g. outside som
e region on 

the retina).

A
rgum

ent : C
onnectedness can't be solved w

ith diam
eter-lim

ited perceptrons.

E
xercise

M
ake a truth table for X

O
R

. Plot the logical outputs for the four possible input states. C
an you draw

 a straight line to 
separate the 1's from

 the 0's?

W
hat if you added a third input w

hich is the product of the original tw
o inputs? M

ake a 3D
 plot of the four possible states, 

now
 including the third input as one of the axes.

F
u

tu
re

 d
irectio

n
s

 fo
r classificatio

n
 n

etw
o

rks

‡
W

idrow
-H

off and error back-propagation

L
ater w

e ask w
hether there is a learning rule that w

ill w
ork for m

ulti-layer perceptron-style netw
orks. T

hat w
ill lead us 

(tem
porarily) back to an alternative m

ethod for learning the w
eights in a linear netw

ork. From
 there w

e can understanding a 
fam

ous generalization to non-linear netw
orks for both sm

ooth and discrete function m
appings, called "error back-propaga-

tion". 

T
hese non-linear feedforw

ard netw
orks, w

ith "back-prop" learning, are a pow
er class for both sm

ooth regression and 
classification.

14
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‡
L

inear discrim
inant analysis

‡
Support V

ector M
achines

W
ithin the last few

 years, there has been considerable interest in Support V
ector M

achine learning. T
his is a technique 

w
hich in its sim

plest form
 provides a pow

erful tool for finding non-linear decision boundaries. 
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