
 functions of the inputs. However, as we have pointed out earlier, linear models provide an excellent foundation on which to
build. On this foundation, non-linear models have moved in several directions. Introduction to non-linear models
By definition, linear models have several limitations on the class of functions they can compute--outputs have to be linear Introduction to non-linear models
By definition, linear models have several limitations on the class of functions they can compute--outputs have to be linear Introduction to non-linear models
By definition, linear models have several limitations on the class of functions they can compute--outputs have to be linear

- Non-linear models for classification

керод

■ Introduction to statistical learning
■ Summed vector memories
Last time
Introduction

Altorent
the Perceptron, an early example of a network built on such threshold logic units. linearity. The neuron then makes discrete (binary) decisions. Recall the McCulloch-Pitts model of the 1940's. Let us look at These modifications produce smooth functions. If we want to classify rather than regress, we need something abrupt.
Generally, we add a sigmoidal squashing function. As the slope of the sigmoid increases, we approach a simple step non weights, while at the same time avoiding over-fitting (i.e. using too many weights). We'll talk more about this problem later. A central challenge in the above and all methods which seek general mappings, is to develop techniques to learn the ш.əə ио!̣еZ!! introduced, it makes sense to add more than additional layers of neurons. Much of the modeling of human visual pattern linearity. Recall that this is an inner product followed by a non-linear sigmoid. Once a non-linearity such as a sigmoid But the simplest thing we can do at this point is to use the generic connectionist neuron with its second stage point-wise nonlogical receptive field properties in vision (Heeger et al., 1996). A straightforward generalization of the generic connectionist model is to divide the neural output by the squared responses

(\%.ıдqssoID)

assume the threshold to be fixed at zero, and then augment the inputs with one more input that is always on. Here is a two
input TLU, in which we augment it with a third input that is always 1 and whose weight is θ : of freedom into the weights, then the math is simpler--we'll only have to worry about learning weights. To see this, we Our goal will be to find the weight and threshold parameters for which the TLU does a correct classification.

decision line in red.

səsuodsə. әцұ рие еұер әцұ мә!ム ■

 abovethreshold $=$ Table $[\{x=\operatorname{Random}[], y=\operatorname{Random}[]$,
step[waug. $\{x, y, 1\}]\},\{i, 1,20\}] ;$ Remove[step];
step $\left[x_{-}\right]:=\operatorname{If}[x>0,1,-1] ;$

Now we generate some random input data and run it through the TLU. Because we've put the threshold variable into the
weights, we re-define step[] to have a fixed threshold of zero:

- Simulate data and network response for a two-input simplified perceptron

Let's write a function for the decision line:
- Define equation for the decision line of a two-input simplified perceptron
We can see that f 2 is a linear function of f 1 for fixed weight values.

~~~
Solve[waug. faug=0, \(\{\mathbf{f} 2\}\) ]

Lect_10_Perceptron.nb


\footnotetext{
radius 1 , and the features for " b " fell outside this circle?
limited classification capabiry. For exanle, what side, and all the members of the other category falling on the other side. The hyperplane provides an intuition for the TLU's For an n-dimensional input TLU, this decision surface is a hyperplane with all the members of one category falling on one
}
Exercise: Find the algebraic expression for the decision plane



\footnotetext{




\section*{ I- Sем .дамsue po.л.}
}
and \(\mathbf{c} \mathbf{f . f}>=\mathbf{0}\).

\section*{Simplify[nextw.f - w. \(\mathbf{f}\) ]
( \(\begin{aligned} & \text { S }\left(1+f 1^{2}+\mathfrak{f} 2^{2}\right)\end{aligned}\)
In general, nextw. \(\mathbf{f}>\mathbf{w . f}\), because nex}





If the classification is incorrect...


If the classification is correct, don't change the weights:



\(\cdots\)

\footnotetext{
\begin{abstract}
\begin{abstract}

\end{abstract}
\end{abstract}
}
- 1



You have seen how to generate threshold functions using rules. But you can also use conditional statements. For example
the following function returns x when \(\operatorname{Sin}[2 \mathrm{Pix}]<0.5\), and returns -1 otherwise:
■ Sidenote: More on conditionals
the threshold into the weight vector. So three weights will have to be learned: \(\{\mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3\}\), where the first can be thought of
as the negative of the threshold. It may help to know something more about Conditionals in Mathematica. classify two-dimensional vectors into "a" or " b " types. The unit will have three inputs: \(\{1, \mathrm{x}, \mathrm{y}\}\), where x and y are the
coordinates of the data to be classified. The first component, 1 is there because we use the above "trick" used to incorpo In the problem set you are going to write a program that uses a Perceptron style threshold logic unit (TLU) that learns to Demonstration of perceptron classification (Problem Set 3) If you are interested in understanding the proof of convergence, take a look at page 222 of the textbook. Perceptron Convergence Theorem (Anderson, p 222)
(since nextw. \(\mathbf{f}-\mathbf{w . f}=-\mathbf{c} \mathbf{f . f}\), and \(\mathbf{c} \mathbf{f . f}>=0\), as before).
Note that the inner product nextw.f must now be smaller than before (nextw. \(\mathbf{f}<\mathbf{w . f}\) ), because
nextw.f \(\mathbf{~ w . f < 0}\)
Lect_10_Perceptron.nb
\(\pm\)


 Each pair of points has its corresponding label, a or b. Depending on the radius values (in this case, \(0.25,0.4\) ), these patterns









 What if you added a third input which is the product of the original two inputs? Make a 3D plot of the four possible states,
now including the third input as one of the axes. Make a truth table for XOR. Plot the logical outputs for the four possible input states. Can you draw a straight line to
separate the 1's from the 0's?

Argument : Connectedness can't be solved with diameter-limited perceptrons. the retina). Diameter-limited: no unit sees inputs outside some maximum diameter (e.g. outside some region on
 ing inputs has seen a recent revival with new developments in Support Vector machine learning.
Perceptron with natural limitations: Augmenting the input representation to solve XOR (p.230). A special case of polynomial mappings. The idea of augment-
ing inputs has seen a recent revival with new developments in Support Vector machine learning.

Limitations of Perceptrons (Minksy \& Papert, 1969)都
Vapnik, V. N. (1995). The nature of statistical learning. New York: Springer-Verlag.
© 1998, 2001 Daniel Kersten, Computational Vision Lab, Department of Psychology, University of Minnesota. Poggio, T. (1975). On optimal nonlinear associative recall. Biological Cybernetics, 19, 201-209 Heeger, D. J., Simoncelli, E. P., \& Movshon, J. A. (1996). Computational models of cortical visual processing. Proc Natl algebra nad ordinary differential equations to living systems, : Birkhauser Boston Inc., 380 Green Street Cambridge, MA
References
Lect_10_Perceptron.nb
\(\square\) Linear discriminant analysis
\(\square\) Support Vector Machines
Within the last few years, there has been considerable interest in Support Vector Machine learning. This is a technique
which in its simplest form provides a powerful tool for finding non-linear decision boundaries.~~~

