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Initialize standard library files:

In[75]:= Off[General::spell1];

Outline

Last time: Graphical models and Bayesian decision theory

Bayesian decision theory applied to perception

By Bayes' theorem the posterior probability is given by:

p[Sprim I] =
p[I Sprim] p[Sprim]

p[I]

p[I Sprim] is the likelihood,
and is determined by the generative model for I

p[Sprim] is the prior model,
which can also be considered part of the generative model

p[I] is fixed

Picking the most probable value of Sprim (MAP) results in the fewest errors on average

The task is important: Some causes of image features are important to estimate (primary variables, 
Sprim), and some are not Ssec.

Use the joint probability to characterize the "universe" of possibilities: 
p Sprim, Ssec, I

(Directed) Graphs provide a way of modeling what random variables influence other random variables, 
and correspondingly how to decompose the joint distribution into a simpler set of factors (conditional 
probabilities).

Through conditioning on what is known, and integrating out what we don't care to estimate, we arrive 
at the posterior: 

p Sprim I



Counter-intuitive consequences:

The fruit example illustrates how MAP decisions depend on what variables get summed (integrated) 
out.

Inference: Fruit classification example 

Pick most probable color--Answer "red"
Pick most probable fruit--Answer "apple"
Pick most probable fruit AND color--Answer "red tomato", not "red apple"
Moral of the story: Optimal inference depends on the precise definition of the task

Generalization to degrees of desired precision (loss or utility functions) leads to 
Bayesian decision theory

Slant estimation example illustrates how utility affects optimal estimates

Imagine the image of an ellipse arrives at your retina, and  that  you already know the width = 1. Your 
visual system measures the height of the ellipse in the image (e.g. x=1/2) and using this single number 
must estimate two object properties that differ in their relative costs in accuracy: 1) the aspect ratio of 
the actual disk causing the elliptical image, (i.e. the physical dimension of the disk orthogonal to the 
width); 2) the angle of inclination (slant) away from the vertical. 

The graph below illustrates slant/aspect ratio estimation, given the utility assumption that accuracy in 
slant estimation is more important than accuracy in aspect ratio.
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Today

Generative modeling of image patterns -- How can we characterize an image, or a collection of images?
Introduction to modeling image structure: 

image-based vs. scene-based

Linear systems (linear image-intensity based modeling)
Optical Resolution: Diffraction limits to spatial resolution
Point spread function, convolutions and blur

Overview of image modeling

Generative and descriptive models of images: rationale

Provides practical tools to specify the variables that determine the properties of images, either in terms 
of image features or scene properties. Important for characterizing the independent variables in 
psychophysics, and vision models. Sometimes a distinction is made between models of images that are 
descriptive vs. generative. Generative has the connotation of a series or hierarchical model of factors 
that cause an image. Descriptive models are “flat”, e.g. modeling the observation that nearby pixels 
tend to have similar colors.

Another distinction is between inference that assumes a known generative model, and ones that don’t, 
in particular predictive modeling based on data. For example, many machine learning algorithms rely 
on large databases to achieve good predictions.
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Provides practical tools to specify the variables that determine the properties of images, either in terms 
of image features or scene properties. Important for characterizing the independent variables in 
psychophysics, and vision models. Sometimes a distinction is made between models of images that are 
descriptive vs. generative. Generative has the connotation of a series or hierarchical model of factors 
that cause an image. Descriptive models are “flat”, e.g. modeling the observation that nearby pixels 
tend to have similar colors.

Another distinction is between inference that assumes a known generative model, and ones that don’t, 
in particular predictive modeling based on data. For example, many machine learning algorithms rely 
on large databases to achieve good predictions.

Easier to characterize information flow

Generative models be used to model the likelihood of scene descriptions, p(I|S) (i.e. the probability of 
an image description given a scene description)

Often easier to first specify p[I S] and p[S] than p[S I].

Characterize the knowledge required for inference mechanisms, e.g.  neural 
networks for visual recognition

Feedforward procedures:

Pattern theory perspective: "analysis by synthesis" (Grenander, Mumford), requires a generative model 
to support inference.

Two basic concepts: Photometric (intensity, color) & geometric variation

Two more basic concepts: Local and global representations

E.g. an edge can be locally represented in terms of the contrast and orientation at a point of an image. 
But a long edge (or contour) can also be represented by function with a small number of parameters 
(e.g. slope and intercept of  straight line, or if curved, as the algebraic parameters of a polynomial 
curve). A change in slope has a big effect on where pixels are “on”.

An image can be represented in terms of a list of intensities at each location (local), or as we will see 
shortly, as a linear combination of global patterns (sine-wave gratings or other "basis functions"). A 
change in one component changes the patterns of intensity in the whole image.
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E.g. an edge can be locally represented in terms of the contrast and orientation at a point of an image. 
But a long edge (or contour) can also be represented by function with a small number of parameters 
(e.g. slope and intercept of  straight line, or if curved, as the algebraic parameters of a polynomial 
curve). A change in slope has a big effect on where pixels are “on”.

An image can be represented in terms of a list of intensities at each location (local), or as we will see 
shortly, as a linear combination of global patterns (sine-wave gratings or other "basis functions"). A 
change in one component changes the patterns of intensity in the whole image.

Basic classes of image modeling: 

1) image- (or appearance) based
2) scene-based
3) physics- or dynamics-based

As an example,  image-based modeling tools are provided in software packages like:
 Adobe Photoshop or GIMP, or Adobe Illustrator
 Photoshop is better suited for photometric manipulations, and Illustrator for geometry ones.
 
They can also be based on linear models that express an image in terms of weighted sums of other 

images.
 For an introduction to image manipulation using Mathematica, see:
 http://library.wolfram.com/infocenter/Articles/1906/

Scene-based modeling tools are provided in 3D graphics packages like: Maya, 3DS Studio Max, 
Sketchup, Blender, or software development packages like OpenGL, http://www.opengl.org. And 
Radiance for rendering,  http://radsite.lbl.gov/radiance/

Dynamics-based modeling tools model physical properties such as mass, elasticity, forces, and are 
provided as additions to 3D graphics packages such as and Blender and video game prototyping 
packages like Unity. http://unity3d.com/unity  

Review: Getting images into Mathematica

The easiest way is to drag an image from your computer desktop into the argument slot for Image[<-
drop it here>]
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In[76]:= Image 

Out[76]=

You can find out the image type using ImageType[]. Use ImageDimensions[] to get the pixel dimen-
sions of the raster. 

Often we'll want the raw pixel data  in raster format:

In[77]:= testimage = ImageData ;

Remember if you execute ImageData[< >] without a semi-colon, Mathematica will start to output the 
whole array. We can use Dimension[] to see the  dimensions of any list, including.

In[78]:= Dimensions[testimage]

Out[78]= {287, 200, 3}

It is a 287x200 pixel array with 3 values for each pixel, one for each color channel. If we want the gray-
level version

In[79]:= testimageg = ImageDataColorConvert , "Grayscale";

Check the Dimensions of testimageg.

Mathematica database

Mathematica has a standard database library that includes images. You can get a list of testimages 
with:  
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Mathematica has a standard database library that includes images. You can get a list of testimages 
with:  

In[80]:= ExampleData["TestImage"]

Out[80]= {{TestImage, Aerial}, {TestImage, Aerial2}, {TestImage, Airplane},
{TestImage, Airplane2}, {TestImage, Airport}, {TestImage, APC}, {TestImage, Apples},
{TestImage, Boat}, {TestImage, Bridge}, {TestImage, CarAndAPC},
{TestImage, CarAndAPC2}, {TestImage, ChemicalPlant}, {TestImage, Clock},
{TestImage, Couple}, {TestImage, Couple2}, {TestImage, Elaine},
{TestImage, F16}, {TestImage, Flower}, {TestImage, Girl}, {TestImage, Girl2},
{TestImage, Girl3}, {TestImage, Gray21}, {TestImage, House}, {TestImage, House2},
{TestImage, JellyBeans}, {TestImage, JellyBeans2}, {TestImage, Lena},
{TestImage, Man}, {TestImage, Mandrill}, {TestImage, Marruecos}, {TestImage, Moon},
{TestImage, Numbers}, {TestImage, Peppers}, {TestImage, RadcliffeCamera},
{TestImage, ResolutionChart}, {TestImage, Ruler}, {TestImage, Sailboat},
{TestImage, Splash}, {TestImage, Stall}, {TestImage, Tank}, {TestImage, Tank2},
{TestImage, Tank3}, {TestImage, TestPattern}, {TestImage, Tiffany},
{TestImage, Tree}, {TestImage, Truck}, {TestImage, TruckAndAPC},
{TestImage, TruckAndAPC2}, {TestImage, U2}, {TestImage, Volubilis}}

ExampleData[{"TestImage", "Peppers"}] can be used to display an image. The test image "Lena" (or 
“Lenna”) was used extensively in the development of digital compression and other image processing 
algorithms. Check wikipedia for an overview of the controversy surrounding its use.

Image-based modeling

Four classes of image-based models

Linear intensity-based

(Photometric)

Basic idea is to represent an image I in terms of linear combinations or sums of other images Ii
:

I = m1*I1
 + m2*I2

 + m3*I3
 + ...

where mi's are scalars. You can think of each image as a point in an N-dimensional space, where N is 
the number of pixels, and the dimensions of the point correspond to the pixel intensities.

In[81]:= rcolorpic1 = ImageData ;

rcolorpic2 = ImageData ;
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In[83]:= Manipulate[Image[a * rcolorpic1 + (1 - a) * rcolorpic2], {{a, .4}, 0, 1}]

Out[83]=

a

Linear models get mathematically interesting when we begin to talk about linear transformations. A 
clear image on a computer screen can get transformed by poor optics by the time the information 
lands on the retina. The powerful idea behind linear systems is that a transformed image can be repre-
sented by the sum of its transformed "sub-images" or "basis images". This is the principle of superposi-
tion that will crop up repeatedly later.

Here’s a demo of the how a square wave pattern can be built from a weighted sum of sinusoidal pat-
terns. The parameter m controls how much of the total harmonics to add to the fundamental.
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In[84]:=

approxsquare2[x_, y_, m_] :=
Sin[x] + m * ((1 / 3) Sin[3 x] + (1 / 5) Sin[5 x] + (1 / 7) Sin[7 x] +

(1 / 9) Sin[9 x] + (1 / 11) Sin[11 x] +

(1 / 13) Sin[13 x] + (1 / 15) Sin[15 x] +

(1 / 17) Sin[17 x] + (1 / 19) Sin[19 x] + (1 / 21) Sin[21 x] +

(1 / 23) Sin[23 x] + + (1 / 25) Sin[25 x] + + (1 / 27) Sin[27 x]);
Manipulate[Image[.25 * Table[approxsquare2[y, x, m] + 2,

{x, 0, 20, .2}, {y, 0, 20, .2} ]], {m, 0, 1}]

Out[85]=

m

A quick preview of concepts involved in using a linear image basis set { Ii
} :

Complete:
Means you have enough basis images that you can construct any image from a weighted sum 

of the basis images
I = m1*I1

 + m2*I2
 + m3*I3

 + ...
Will lead us to linear shift-invariant systems--fourier synthesis

application: optics of the eye
efficient representation of natural images -- wavelets (sometimes "over-complete")

application: V1 cortical neuron representation, edge detection
     V1, MT motion-selective neurons

Incomplete:
lossy compression, principal components analysis (PCA), independent components analysis 

(ICA)
characterizing image variation in specialized domains

application: illumination variation for fixed views of an object.

There is a close relationship between basis images and theories of the cortical representation of 
images in the brain. Sometimes models of basis images are identified with the types of patterns that 
neurons are selective for.
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Non-linear intensity-based

(Photometric)

Point non-linearities (e.g. gamma correction for computer display): intensity at pixel i <- function(in-
tensity at pixel i)

General non-linearities: intensity at pixel i <- function(intensity at pixel j, j in some neighborhood 
of i)

-- Polynomial expansions (a generalization of the linear case): the function is a polynomial func-
tion of the neighboring pixel intensities

-- Divisive normalization (used for gain control): function is a combination of linear and divisive 
terms

application: model non-linearities in V1 cortical neurons

Linear geometry-based

Geometry-based models use operations on the pixel locations rather than pixel intensities. 

Affine:
{xi,yi}→{x 'i,y 'i}, {x 'i,y 'i} = M.{xi,yi}, where M is a 2x2 matrix

rigid translations, rotations, scale and shear 
(e.g. in 2D, all the transformations that result from applying the 2x2 M matrix

to each of the coordinates of points {xi,yi in an image)
Application: viewpoint variation

You can play with the values in the matrix M below to transform the rectangle x into new shapes x2:
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In[86]:= Manipulate[
x = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}};

M = {{m11, m12}, {m21, m22}};
x2 = (M.#1 &) /@ {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}};
GraphicsRow[{Graphics[Line[x]], Graphics[Line[x2]]}, ImageSize → Tiny],
{{m11, 1}, -2, 2}, {{m12, 2}, -2, 2}, {{m21, 2}, -2, 2}, {{m22, 0}, -2, 2}]

Out[86]=

m11

m12

m21

m22

Non-linear geometry-based

Warps (Morphs)
{xi,yi}→{x 'i,y 'i}, where the transformation is no longer a single matrix, and each point can get 

mapped in arbitrary ways. By warp or morph, we usually mean a smooth mapping.

Applications in vision:
within-category variation for an object, or objects
finding the "average" face
(e.g. Perrett, D. I., May, K. A., & Yoshikawa, S. (1994). Facial shape and judgments of female 

attractiveness. 
Nature, 368, 239-242.)

computing correspondence between pixel points in two images, such as optic flow, and 
stereo vision

In[87]:= grayscalepic =

ImageData[ColorConvert[ExampleData[{"TestImage", "House"}], "Grayscale"]];
g1 = ArrayPlot[grayscalepic, Mesh → False, ColorFunction → "GrayTones",

DataReversed → False, ImageSize → Tiny];

In[89]:= grayscalepicFunction =

ListInterpolation[Transpose[Reverse[grayscalepic, 1]], {{-1, 1}, {-1.19, 1.19}}];

(Transpose[] and Reverse[] were used so the image upright below would be upright.)
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In[90]:= g2 = DensityPlotgrayscalepicFunctionSign[x] x2, Sign[y] y2, {x, -1, 1},

y, - 1.19 , 1.19 , PlotPoints → 100, Mesh → False, AspectRatio → Automatic,

Frame → None, ColorFunction → "GrayTones", ImageSize → Tiny;

GraphicsRow[
{g1,
g2}]

Out[91]=

See http : // demonstrations.wolfram.com / ImageWarping / for a warp demonstration with download-
able code.

Pattern theory perspective (Grenander, Mumford)

Is there a convenient set of operations to describe the kinds of transformations that are typically 
undergone by natural patterns such as images? Grenander's pattern theory:

Original

Superposition: blur, additive noise, transparency

photometric

added noise
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transparency: sum of two images

Domain warping (morphs)

geometric

Domain interruption (occlusion)

geometric

Processes occur over multiple scales

photometric and geometric

Low-pass
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High-pass

Large scale structures, and small scale structures

We'll see later how local edges can be seen as a kind of cooperation over multiple scales

Texture (regularities at small scales) can interact with regularities at larger scales (surface shape) to 
produce patterns like this:

Combinations

We need various combinations of transformations to account for the kind of variations that we'd see in 
other forms of the same face. For example, a 3D rotation produces both domain warping and occlusion. 
A beard is another form of domain interruption. Expressions are a combination of warping, occlusion, 
and dis-occlusion. 
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We need various combinations of transformations to account for the kind of variations that we'd see in 
other forms of the same face. For example, a 3D rotation produces both domain warping and occlusion. 
A beard is another form of domain interruption. Expressions are a combination of warping, occlusion, 
and dis-occlusion. 

David Mumford

Ulf Grenander

(From: http://www.dam.brown.edu/ptg/ and http://www.dam.brown.edu/people/mumford/)

Scene-based modeling: 3D Computer graphics models

See: Thompson, W., Fleming, R., Creem-Regehr, S., & Stefanucci, J. K. (2011). Visual Perception from a 
Computer Graphics Perspective (1st ed.). A K Peters/CRC Press.

Scenes

Model classes : extended surfaces, solid objects, diffuse "stuff"/particles, fluids, lights, and camera 
(eye).

Objects & surfaces

Shape: Lots of choices...parametric, polygon composites, hierarchical composites,...

Articulations: E.g. dynamic linkages between parts, as in the motion of an animal

Material & texture: E.g. pigmentation, shiny, reflectance...

Illumination

Points and extended light sources

Ray-tracing: Physics-based modeling of individual light rays and how they bounce from one object to 
the next

Radiosity: equilibrium solution of light ray bounces
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Points and extended light sources

Ray-tracing: Physics-based modeling of individual light rays and how they bounce from one object to 
the next

Radiosity: equilibrium solution of light ray bounces

Camera

Projection geometry:
perspective, orthographic
focus -- can be modeled as image-based in one depth plane, but need knowledge of depth in 3D 

for depth-of-field effects

Demonstration of orthographic projection. 

In[92]:= Manipulate[Graphics3D[Cuboid[], ViewPoint → dist * {Pi, Pi / 2, 2},
ImageSize → Small, Boxed → False], {{dist, 1}, .5, 10}]

Out[92]=

dist

◼ The above demo also illustrates a visual shape illusion--what is the illusion? Can you explain it?

Mathematica provides some basic 3D modeling tools

See the Mathematica Documentation on Lighting for some examples.

In[93]:= Clear[p1]
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In[94]:= p1[θ_] := RotationTransform[θ, {0, 0, 1}][{0, 1, 1}];
Animate[Graphics3D[{Specularity[White, 30], {EdgeForm[],

Opacity[opac], Cuboid[{-.5, -.5, -.5}]}, Sphere[{.3, .3, .3} + p1[θ], .2]},
Lighting → {{"Ambient", GrayLevel[.1]}, {"Point", Red, p1[θ]}},
PlotRange → 1.0, Background → Black, Boxed → False, ImageSize → 200], {θ, 0, 2 Pi},

{{opac, .5}, 0, 1}, SaveDefinitions → True, AnimationRunning → False]

Out[94]=

θ

opac

Digression: Getting objects into Mathematica

Mathematica also maintains a library of standard 3D objects
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In[95]:= ExampleData[{"Geometry3D", "UtahVWBug"}]

Out[95]=

Examples of relevance for vision as an inferential process:

Edge ambiguity: What is the cause of an intensity change in the  image?

Scene-based modeling prompts questions such as is an image intensity change due to: 
Depth change, orientation change, material change, illumination change?

Human vision places more emphasis on intensity change associated with geometrical or material 
change. This is an inference.

Shape ambiguity:  Are there image properties that don’t change because of projection from 3D to 2D? 
E.g. Will a straightline in 3D (e.g. a telephone pole) project to a curved line in the image? Will a curved 
line in 3D (e.g. telephone cable) project to a straight line in the image? This is a questtion of projection 
invariants. Image shape varies with view, but for some shape attributes, view has little or no effect. 

Other types of models

Dynamics-based

Scene-based models are typically based on the physics of surface geometry, material and image 
formation. Motion can be described in terms of kinematics.

But one can consider deeper, dynamical causes of images especially movies, such as physical elasticity, 
viscosity, mass & gravity, and how these affect the patterns that we see. As mentioned above, 3D 
graphics programming environments like Unity provide these kinds of tools. It is much easier for a 
programmer to specify mass, gravity and elasticity for a ball, and then let it drop, than it is to calculate 
all the kinematic variables that would make the drop look realistic.

Is vision sensitive to physical or dynamic properties? Yes, imagine pouring honey. But sometimes, it is 
almost mysteriously blind. E.g. If a friend drops a ball, can you tell how far away it is just from the 
acceleration of its image on your retina? (The answer is no: See Hecht et al., 1996).

We  know relatively little about how human vision extracts dynamical information from natural image 
motions. 

Or how “deep” our knowledge is of physics. There are many examples of poor physical intuition (e.g. 
what is the trajectory of a ball swirled on a string and then let go?). But see:

Battaglia, P. W., Hamrick, J. B., & Tenenbaum, J. B. (2013). Simulation as an engine of physical scene 
understanding. Proceedings of the National Academy of Sciences, 110(45), 18327–18332, for a recent 
study.

18     7.ImageModelLinearSystems.nb



Scene-based models are typically based on the physics of surface geometry, material and image 
formation. Motion can be described in terms of kinematics.

But one can consider deeper, dynamical causes of images especially movies, such as physical elasticity, 
viscosity, mass & gravity, and how these affect the patterns that we see. As mentioned above, 3D 
graphics programming environments like Unity provide these kinds of tools. It is much easier for a 
programmer to specify mass, gravity and elasticity for a ball, and then let it drop, than it is to calculate 
all the kinematic variables that would make the drop look realistic.

Is vision sensitive to physical or dynamic properties? Yes, imagine pouring honey. But sometimes, it is 
almost mysteriously blind. E.g. If a friend drops a ball, can you tell how far away it is just from the 
acceleration of its image on your retina? (The answer is no: See Hecht et al., 1996).

We  know relatively little about how human vision extracts dynamical information from natural image 
motions. 

Or how “deep” our knowledge is of physics. There are many examples of poor physical intuition (e.g. 
what is the trajectory of a ball swirled on a string and then let go?). But see:

Battaglia, P. W., Hamrick, J. B., & Tenenbaum, J. B. (2013). Simulation as an engine of physical scene 
understanding. Proceedings of the National Academy of Sciences, 110(45), 18327–18332, for a recent 
study.

Compositional image models

Later we will also discuss other models that are relevant to understanding the hierarchical structure of 
visual areas in the cortex. “Compositional” models are one example. The basic idea is similar to the 
hierarchical organization in written language:  letters, words, sentences. Objects are built from parts 
and relationships, which are in turn built from features and their relationships. Here the sub-compo-
nents may have semantic interpretations, and relationships between parts become important. The 
perceptual organization of  the body poses of animals  is a good example.

Which image model should we use, image or scene?
Pros of image-based modeling: 

closer in some sense to the image data representations, "features", that visual perceptual infer-
ence deals with.

The so-called "proximal" stimulus corresponds to image information or features directly tied to 
the image.

Cons of image-based modeling: 
usually far from the kinds of representations useful for representing invariant object properties 

and planning actions
scene-based modeling specifies the properties of the "distal stimulus", like depth, shape, material.

Moral: Good to be familiar with both kinds of generative image modeling

Human vision behaves as if it has built-in generative knowledge, but this knowledge isn’t simply 
captured by any standard image-based, scene-based model or dynamics-based model. So while there 
may not be one generative model that is necessary and sufficient to account for human perception, we 
can use standard models to test for built-in knowledge, and hopefully converge on to better, more 
psychologically based, models. 

Techniques of machine learning can be applied to discovering generative models. Later we will 
also look at learning image models using biologically plausible principles. 

In vision, historically the most common type of modeling begins with linear-intensity based models, 
which we treat next.
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Pros of image-based modeling: 
closer in some sense to the image data representations, "features", that visual perceptual infer-

ence deals with.
The so-called "proximal" stimulus corresponds to image information or features directly tied to 

the image.

Cons of image-based modeling: 
usually far from the kinds of representations useful for representing invariant object properties 

and planning actions
scene-based modeling specifies the properties of the "distal stimulus", like depth, shape, material.

Moral: Good to be familiar with both kinds of generative image modeling

Human vision behaves as if it has built-in generative knowledge, but this knowledge isn’t simply 
captured by any standard image-based, scene-based model or dynamics-based model. So while there 
may not be one generative model that is necessary and sufficient to account for human perception, we 
can use standard models to test for built-in knowledge, and hopefully converge on to better, more 
psychologically based, models. 

Techniques of machine learning can be applied to discovering generative models. Later we will 
also look at learning image models using biologically plausible principles. 

In vision, historically the most common type of modeling begins with linear-intensity based models, 
which we treat next.

Linear systems & images: Motivation
Often when you look through a reflecting glass, you can see one image superimposed transparently on 
another, as in the above demo in which the intensities of two faces were averaged. But superposition is 
one of the image transformations of pattern theory that crops up in many different circumstances 
other than transparency, from early vision to high-level vision. The idea is that a particular image 
intensity pattern can be expressed as a weighted sum of other images. Being able to combine weighted 
sums of images can be useful in domains quite different from reflections in a window.

Here is a simple thing you could do by combining images. You could calculate the "average" face. This 
has been done, and the average face is rated as "beautiful", if tending to be a bit fuzzy even with careful 
registration. This raises the question: when is it appropriate to model image variation in terms of sums? 
It turns out that taking the average of a set of images, such as faces, is tricky because there is not only 
photometric variation, but also geometric variation. I.e. the faces need to be put in register, and geomet-
ric registration is a non-trivial problem, and one that has been studied in many domains such as 
biometrics.

In[96]:= Image ;

Rather than adding images up, suppose we have an image, and want to decompose it as a sum of other 
sub-images. A natural question to ask is: what should the other "sub" images be? The answer will 
depend on the task.  For example, below we will learn to model how the optics of the eye transform an 
input image to retinal image. A natural "sub-image" is the image of a point of light or a pixel. These sub-
images are the extreme case of being spatially localized.

But we will see there are advantages to using sub-images that are not spatially localized, and are 
global, or somewhere between. An important class of global sub-images are sinusoidal gratings.

Later, when we study early neural mechanisms in vision, we will see that models of image coding can 
be understood as a decomposition of the visual image into image-like sub-components that make a 
local/global trade-off. We will see evidence for neural basis images that look like two-dimensional 
"wavelets" that if summed up (with appropriate weights) would give us back the orginal image. 
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Rather than adding images up, suppose we have an image, and want to decompose it as a sum of other 
sub-images. A natural question to ask is: what should the other "sub" images be? The answer will 
depend on the task.  For example, below we will learn to model how the optics of the eye transform an 
input image to retinal image. A natural "sub-image" is the image of a point of light or a pixel. These sub-
images are the extreme case of being spatially localized.

But we will see there are advantages to using sub-images that are not spatially localized, and are 
global, or somewhere between. An important class of global sub-images are sinusoidal gratings.

Later, when we study early neural mechanisms in vision, we will see that models of image coding can 
be understood as a decomposition of the visual image into image-like sub-components that make a 
local/global trade-off. We will see evidence for neural basis images that look like two-dimensional 
"wavelets" that if summed up (with appropriate weights) would give us back the orginal image. 

As another example, it is possible to model the space of human faces in terms of a linear sum of "basis 
faces", also called “eigen faces” whose number is carefully chosen to be as small as possible. 

Much later in this course, we will see a less obvious consequence of superposition of light in a method 
to deal with illumination variation in object recognition. A good approximation to the space of all 
images of an object can be obtained by summing a small set of appropriate sub-images.

 In order to understand how to use superposition, we need to understand the principles of linear 
systems analysis. And in order to introduce linear systems, we will start with a historical question we 
asked in lecture 2:  

 What are the physical limits to vision?
 
 And in particular ask a question scientists, starting with astronomers, have been asking for at least 
three centuries:

What are the physical/optical limits to spatial resolution?

Optical Resolution

Factors limiting spatial resolution

As we have noted earlier, the physical limits to visual light discrimination and resolution are a 
consequence of the quantum and wave nature of light. We have seen how the particle aspect of light 
limits resolution of intensity differences. The wave nature of light limits resolution of spatial differences.

As two identical small points of light get closer and closer, we eventually reach a point at which we 
can no longer tell whether we are looking at one or two spots of light. What are the limits to our ability 
to resolve spatial separation?

 Physical/optical
Diffraction

(Recall Paul Dirac's famous statement about photons:
"Each photon interferes only with itself. Interference between photons never occurs." )

Optical aberrations
spherical, chromatic, focus, astigmatism

 Biological
Sampling--retinal receptor array is discrete
Neural convergence (may lead to loss of resolution information)
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Sampling--retinal receptor array is discrete
Neural convergence (may lead to loss of resolution information)

Diffraction

As with limits to intensity discrimination, our understanding of the limits to spatial resolution 
begins with the physics of light. Diffraction effects are caused by  the constructive and destructive 
interference of many wavefronts. (The word interference is a result of the same underlying causes, but 
typically is used when talking about wave phenomena involving only a small number of wavefronts).

It is possible to mathematically describe what the image of point of light looks like under ideal 
optical conditions. The image is not a point, because of diffraction. The many wavefront sources 
around the aperture produce a characteristic pattern for a circular pupil called an Airy disk (1834):

This distribution of light has a very precise  form depending on the pupil shape. For a circular pupil, the 
light energy distribution as a function of distance x  away from the center axis, is given by the Airy disk 
function:

In[128]:= Clear[Airy, x, d, twopoints];

Airy[x_, y_] := NIfx ⩵ 0 && y ⩵ 0,
1

4
,

BesselJ1, π x2 + y2 

π x2 + y2

2

;

Plot[Airy[x, 0], {x, -5, 5}, PlotRange → {0, 0.26}, Axes → False]

Out[130]=

where  J1 is a first order Bessel function--which if you haven't run into them before, is another one of a 
large class of "special functions" mathematicians, engineers, and physicists keep in their bag of tricks 
because they come in handy (See Gaskill, 1978 for details about  imaging optics; Also look at section 6.9 
in "Robot Vision" by Horn, 1986 for a discussion of the zero and first order Bessel functions in the 
context of Hankel transforms, and see the Mathematica Help Browser for the differential equation for 
which Bessel functions are the solution). We won't go into the details of the derivation.  Here is a two 
dimensional density plot, where the intensity is squashed by a log function so you can see the ripples 
(which actually fade away rather quickly as you can check by playing with the PlotRange in the  linear 
cross-section plot above):
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where  J1 is a first order Bessel function--which if you haven't run into them before, is another one of a 
large class of "special functions" mathematicians, engineers, and physicists keep in their bag of tricks 
because they come in handy (See Gaskill, 1978 for details about  imaging optics; Also look at section 6.9 
in "Robot Vision" by Horn, 1986 for a discussion of the zero and first order Bessel functions in the 
context of Hankel transforms, and see the Mathematica Help Browser for the differential equation for 
which Bessel functions are the solution). We won't go into the details of the derivation.  Here is a two 
dimensional density plot, where the intensity is squashed by a log function so you can see the ripples 
(which actually fade away rather quickly as you can check by playing with the PlotRange in the  linear 
cross-section plot above):

In[131]:= LogAiry[x_, y_] := Log[0.00001 + Airy[x, y]];
DensityPlot[LogAiry[x, y], {x, -5, 5.0}, {y, -5, 5.0},
Mesh → False, ImageSize → Small, ColorFunction → "GrayTones"]

Out[132]=

Some of the earliest psychophysics on the limits to spatial resolution was done by astronomers.  In 
1705, Robert Hooke determined that resolution by eye of two stars was pretty good around 3 min, 
but became difficult around 1 min of arc. Can we account for human spatial resolution in terms of 
diffraction limits?

With 2 points of light, the diffraction patterns overlap. Imagine two of the above Airy functions superim-
posed exactly on top of each other

In[133]:= Clear[twopoints]
twopoints[x_,d_] := Airy[x+d,0] + Airy[x-d,0];

Let's plot the intensity distribution of two points with several separations: d= 1, 0.5, and  0:
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In[135]:= Manipulate[Plot[twopoints[x, d], {x, -7, 7}, Ticks → None,
ImageSize → Small, PlotRange → {{-3, 3}, {0.0, 0.5}}], {{d, .5}, .3, 3}]

Out[135]=

d

0.745

▶  1. What if the light level was very low, and you only caught a glimpse of the star(s). Is the above two-
point plot representative of the observation?

A back-of-the-envelope calculation

When are the points distinguishable?

To answer these questions rigorously would require a signal detection theory model based on the 
noisiness of the light samples obtained to make a decision (see Geisler, 1984; 1989). This would require 
bringing what we learned about Poisson statistics into the picture. But let's ignore the photon noise for 
the moment, and assume that the temporal integration time is sufficient to absorb lots of photons, so 
that the image intensity profiles are smooth as in the above figure. Then we can make some "back of 
the envelope calculations just based on diffraction.  Let's proceed with a little less rigor, and ask: when 
are two points separated far enough so that the first zeros of the 2 Airy disks coincide?

The distance from the peak to the first zero is given by: x = 1.22λ/a, where a is the pupil diameter, 
so the distance between the two peaks when separated by twice this distance is:

picking 2mm pupil,  and the wavelength corresponding to peak photopic sensitivity. 
We can then calculate the separation between the two points to be: 

d = 0.04 degrees of visual angle, or 2.3' of arc. 

(By the way, it is useful to bear in mind that, in the human visual system: 

receptor spacing ~ 0.008 degrees in the fovea, or, about 0.48'.
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..but wait a minute...let's check our assumptions

Now let's see how what we've just done is related to the observation made by Hooke in 1705. At first 
you might think that 2' of arc is close enough to explain the 3' that Robert Hooke reported. But there 
were a couple of things wrong with our choices for both pupil size and wavelength. These figures aren't 
really appropropriate for scotopic vision where the pupil would be larger, and we should use the peak 
sensitivity for dark adapted rod vision.

If the pupil is 8 mm in diameter, and the wavelength is 505 nm,  the predicted d would be smaller--
about 0.008 degrees, which corresponds to 0.5' of arc. This is too small to account for the observed 
limit to human resolution of between 1 and 3' of arc for spatial resolution of two points in the dark.

Further, we were actually quite liberal in allowing this big of a separation between the two points. 
In fact, if there were no intensity fluctuations to worry about (imagine averaging the image of the two 
points over a long period of time), then there would be no theoretical limit to the separation one could 
discriminate, if the observer had an exact model of the two images (two vs one point) to look for. 
Factors other than diffraction enter to limit spatial resolution of two points in the dark. The main 
limitation is the separation of the rods, and the degree of neural convergence.

Although our ability to resolve two points for scotopic vision is worse than we would calculate 
based on diffraction-blur alone, there are conditions under bright light were our spatial resolution 
comes very close to the diffraction limit. But we need some more powerful mathematical tools to make 
this point solid. Later we will   introduce a technique--spatial frequency analysis (or  2D Fourier analy-
sis)--to study spatial resolution in general, that will include diffraction as a special case. One of the 
consequences of spatial frequency analysis of imaging optics is that we will see that there is informa-
tion which is lost when going through the optics, and noise averaging will not help to get it back.

But first let's generalize the idea of the diffraction function to a point source, and see what it could 
buy us. This will give us a preview of the kind of predictions we would like to be able to make about 
image quality, and introduce a simple mathematical notion that has broad uses.

Point spread functions, blur, and convolution

Going from two points to lots of points

Incoherent light adds. So we can use the principle of superposition to predict what the image of two 
points of light will look by summing up the images corresponding to what each would look like alone. 
This is the key idea behind linear sysems analysis pursued in greater detail below.
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In[105]:= offset = 2;
size = 64;
onepoint = Table[0., {size}, {size}];
anotheronepoint = Table[0., {size}, {size}];

anotheronepoint〚size / 2, size / 2 + offset〛 = 1.;
onepoint〚size / 2, size / 2 - offset〛 = 1.;

twopoints =
onepoint + anotheronepoint

2
;

In[112]:= Manipulate

oneblurredpoint =

TableAiry
x - size / 2

4
,
1

4
(y - (size / 2 - offset)), {x, 1, size}, {y, 1, size};

anotheroneblurredpoint = TableAiry
x - size / 2

4
,
1

4
(y - (size / 2 + offset)),

{x, 1, size}, {y, 1, size};

ArrayPlot[Log[oneblurredpoint + anotheroneblurredpoint],

Mesh → False, ImageSize → Small], {{offset, 3.0}, 0, 10, 1}

Out[112]=

offset

If we have N points, then we just add up the images of each of them. This kind of operation occurs so 
frequently in many domains, that we will now formalize and generalize what we've just illustrated.

Point spread function (impulse response function)

We see that a theory of spatial resolution based on diffraction alone is not enough to account for 
spatial resolution. One of the reasons is that the actual pattern at the back of the eye due to a point 
source of light, in general, is not an Airy function. This is because of other optical aberrations (e.g. 
spherical, chromatic, astigmatism) in addition to diffraction, that blur the image. 

In general, an optical system's response to a delta function input (point of light) is called a point 
spread function (PSF):
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We see that a theory of spatial resolution based on diffraction alone is not enough to account for 
spatial resolution. One of the reasons is that the actual pattern at the back of the eye due to a point 
source of light, in general, is not an Airy function. This is because of other optical aberrations (e.g. 
spherical, chromatic, astigmatism) in addition to diffraction, that blur the image. 

In general, an optical system's response to a delta function input (point of light) is called a point 
spread function (PSF):

The Dirac delta function is an infinite spike at 0, but the area under it is finite and equal to 1:

In[113]:= Clear[x];
Integrate[DiracDelta[x], {x, -Infinity, Infinity}]

Out[114]= 1

(In the ProbabilityOverview notes, we encountered the Dirac delta function in the formalism to repre-
sent discrete probability distributions as densities.)
Below we will study convolutions. One example of a convolution is the following integral ("convolution 
of Dirac delta function with a function f1() ).  It may look sophisticated, but the net result is that it is 
equivalent to evaluating f1[x] at t:

In[115]:= Integrate[f1[t - x] DiracDelta[x], {x, -Infinity, Infinity}]

Out[115]= f1[t]

A delta function, for us, is a unit point source of light--it has no size, but the light intensity adds up to 1--
this is a tricky definition, because it means that the intensity at (0,0 has to be infinite (the delta function 
is also called the unit impulse, e.g. "Robot Vision" by Horn, chapter 6). It is a useful idealization that can 
make calculations easier. The convolution property of Dirac delta functions is important and crops up 
frequently.

For the special case of diffraction limited imaging with a circular aperture, the PSF is the Airy disk 
function.

Suppose for the moment that we have measured the point spread function (or "impulse 
response") of an optical imaging system--e.g. your eye. With enough information we could calculate it 
too--this is a branch of Fourier Optics. In any case, if we know the point spread function of the eye's 
optics, could we predict the form of the image on the retina, given an arbitrary input image? Yes. It is 
fairly straightforward if we can assume that the optics are linear and spatially homogeneous (a fairly 
good approximation for the optics of the eye over small patches called isoplanatic patches). Given an 
input image l(x,y), the output r(x,y) is given by the convolution of l(x,y) with the point spread function, 
PSF(x,y):

The idea is to treat each point in the input image as generating a smeared-out pattern (i.e.the PSF) on 
the output image whose intensity value is scaled by the input intensity l(x,y).Then add up all the contri-
butions over the whole image. The short hand for convolution is

Among other properties, you can show that the convolution operation commutes: f*g = g*f.
Understanding convolutions is important, not only for understanding optical image formation, but also 
because the formalism is applied in a number of models of the neural processing of images. Convolu-
tion is often used as a step to describe how image information is transformed by neural networks. So, 
r(x,y) could also be "neural image" response due to some neural analog of the point spread function. 
We will see too that convolution or pre-blurring is an important step in edge detection algorithms in 
computer vision. But more on this later.

If we know the point spread function of the eye's optics, we could predict the image intensity pattern 
for an arbitrary input. Further, given a linear approximation to neural image transmission, we might be 
able to find a "neural point spread function", and thereby predict the form that neural images might 
take at various stages of early vision. In some cases, the neurophysiologist's analog for the neural point 
spread function is receptive field. One has to be careful, because this analogy is only good to the extent 
that neural networks are spatially homogeneous (the receptive field of a single neuron can be modeled 
by the same set of weights from each input; the "spread" function corresponds to the weights assigned 
multiple outputs given a single input unit), and behave as if they are linear--e.g. calculating the 
response as the area under the input pattern times the receptive field. Under a number of instances, 
these are reasonable approximations.
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Among other properties, you can show that the convolution operation commutes: f*g = g*f.
Understanding convolutions is important, not only for understanding optical image formation, but also 
because the formalism is applied in a number of models of the neural processing of images. Convolu-
tion is often used as a step to describe how image information is transformed by neural networks. So, 
r(x,y) could also be "neural image" response due to some neural analog of the point spread function. 
We will see too that convolution or pre-blurring is an important step in edge detection algorithms in 
computer vision. But more on this later.

If we know the point spread function of the eye's optics, we could predict the image intensity pattern 
for an arbitrary input. Further, given a linear approximation to neural image transmission, we might be 
able to find a "neural point spread function", and thereby predict the form that neural images might 
take at various stages of early vision. In some cases, the neurophysiologist's analog for the neural point 
spread function is receptive field. One has to be careful, because this analogy is only good to the extent 
that neural networks are spatially homogeneous (the receptive field of a single neuron can be modeled 
by the same set of weights from each input; the "spread" function corresponds to the weights assigned 
multiple outputs given a single input unit), and behave as if they are linear--e.g. calculating the 
response as the area under the input pattern times the receptive field. Under a number of instances, 
these are reasonable approximations.

Convolutions with Mathematica

Suppose we have measured the PSF, let's see how various PSF patterns affect the input image. First, we 
will get a sample image file, Fourier128x128.jpeg.

In[116]:= fourier = ImageData ;

In[117]:= ArrayPlot[fourier, Frame → False, Mesh → False, AspectRatio → Automatic,
ImageSize → Small, ColorFunction → "GrayTones", DataReversed → False]

Out[117]=

You can get the width and height using: Dimensions[fourier]. 
We set up a simple point spread function (in general called a "kernel") in which each element is 1/64 in 
an 8x8 array. Convolution replaces each pixel intensity with the average value of the 64 values in the 
square image region surrounding it:
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You can get the width and height using: Dimensions[fourier]. 
We set up a simple point spread function (in general called a "kernel") in which each element is 1/64 in 
an 8x8 array. Convolution replaces each pixel intensity with the average value of the 64 values in the 
square image region surrounding it:

In[118]:= kernel = Table
1

64
, {i, 1, 18}, {j, 1, 18}; (*the kernel is the PSF*)

In[119]:= blurFourier = ListConvolve[kernel, fourier];
ArrayPlot[blurFourier, Frame → False, Mesh → False, AspectRatio → Automatic,
ColorFunction → "GrayTones", DataReversed → False, ImageSize → Small]

Out[120]=

In[121]:= kernel = Table[Airy[x, y], {x, -2.3, 2.3, .3}, {y, -2.3, 2.3, .3}];

In[122]:= blurFourier = ListConvolve[kernel, N[fourier]];
ArrayPlot[blurFourier, Frame → False, Mesh → False, AspectRatio → Automatic,
ColorFunction → "GrayTones", DataReversed → False, ImageSize → Small]

Out[123]=

It is technically hard to measure the response to a delta function for most real (physical or biological) 
devices--infinite or near infinite values in the input fall outside any approximately linear range the 
device might have. An alternative is to measure the responses to other basic image patterns that are 
formally related to point spread functions. This problem leads us to a more general consideration of 
linear systems theory, and in particular to the spatial frequency or Fourier analysis of images. Spatial 
frequency has a number of other nice properties over point spread function characterizations. One, 
alluded to earlier, is that it will make explicit the kind of information that is lost, irrespective of the 
noise considerations.
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▶  2. Exercise: Astigmatism

Modify the above blurring kernel so that it blurs more in the horizontal than the vertical direction. This 
would simulate the effect of astigmatism.

▶  3. Exercise:

Now try a kernel = {{0,1,0},{1,-4,1},{0,1,0}};

In[124]:= kernel = {{0, 1, 0}, {1, -4, 1}, {0, 1, 0}} // MatrixForm
Out[124]//MatrixForm=

0 1 0
1 -4 1
0 1 0

Convolution is a special case of a a linear operator. The next lecture looks at the 
general discrete case.

Next time

Linear shift-invariant systems: Fourier analysis of images & optics

Sinewave basis elements

The Fourier Transform

Appendices

Other ways of importing images

SetDirectory[SystemDialogInput["Directory"]]

In[125]:= Directory[]

Out[125]= /Users/kersten

{FileNameSetter[Dynamic[f], "Open"], Dynamic[f]}

 Browse… , f

colorpic = Import[f]

Import: First argument f is not a valid file, directory, or URL specification.

$Failed
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ImageType[colorpic]

ImageType: Expecting an image or graphics instead of $Failed.

ImageType[$Failed]

Gray scale plot

You can specify weights for how to mix the red, green, and blue channels:

In[126]:= grayscalepic =

Map
0.3 #[[1]] + 0.59 #[[2]] + 0.11 #[[3]]

255
& , ImageData[colorpic], {2};

ImageData: Expecting an image or graphics instead of colorpic.

In[127]:= ArrayPlot[grayscalepic, DataReversed → True, ColorFunction → "Graytones"]

ArrayPlot: Argument ImageData[colorpic] at position 1 is not a list of lists.

Out[127]= ArrayPlot[ImageData[colorpic], DataReversed → True, ColorFunction → Graytones]
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