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Goals

Last time

Developed signal detection theory for characterizing an ideal observer for detecting a "known" pattern in 
additive gaussian noise.
The statistical treatment is a special case of Bayesian inference.

Showed how human and ideal performance can be quantitatively compared by their respective sensitivi-
ties, d's.

One can study how stimuli that are objectively easily discriminable nevertheless produce human errors:

Or as in our photon/dot studies, one can study how stimuli that are objectively noisy nevertheless 
produce human errors. The rationale for the latter approach is to distinguish external from internal 
sources of variability.

This time

How to model more complex pattern inference tasks with external, objective uncertainty? Extend the 
tools of signal detection theory to object recognition/estimation.



Two main observations for simplification: 
Graphical models of influence

Task dependence: Bayesian inference theory -> Bayesian decision theory, to take into account what 
information is important and what is not. I.e. what is signal and what is noise.

Some motivation: Examples of object tasks

Estimation

Imagine the top of a coffee mug. It typically has a circular cross-section. However, due to projection, the 
image on your retina is more like an ellipse from most viewpoints. Now imagine it is a "designer coffee 
mug" which has an elliptical cross-section. How could you guess the true, i.e. physical 3D shape, from 
measurements made in the projected image? The "aspect" slider below changes the ratio of the major 
to minor axes of the coffee mug. The "y" variable changes the slant of your viewpoint. These two 
causes determine an image measurement x--the height of the projected ellipse in the image (See 
"Slant" example below).

In[26]:= Manipulate[Graphics3D[{EdgeForm[],
Scale[Cylinder[{{-−.0, -−.05, -−.0}, {.0, .05, .0}}, 1 /∕ 2], {1, 1, aspect}]},

Boxed → False, ImageSize → 100, ViewCenter → {0, 0, 0}, ViewPoint → {0, 10, y}],
{{aspect, 1.0}, .1, 2}, {y, -−20, 20}]

Out[26]=

aspect

0.436

y

Recognition

Suppose you are doing some grocery shopping in the fruit and vegetable section. You are looking at a 
fruit that is either a tomato or an apple. The type of fruit will influence the regularities in measurements 
you have available to decide. For example, the contours of the fruit might be more like what you previ-
ously experienced from apples, or from tomatoes. But there might be some ambiguity--silhouettes of 
apples aren't that different from tomatoes. Another kind of measurement could come from spectral 
measurements (e.g. from your cone photoreceptors), i.e. from longer-wave vs. shorter-wave parts of the 
spectrum. But these measurements rely on intermediate variables of material, i.e. the red or green stuff 
that the skin of the fruit is made of. The figure below shows the generative model. Given shape and 
wave-length measurements, how can one make the best guess of the fruit type and/or material type? 
We won't solve this problem in general, but we will look at a very simple version with a view to under-
standing how different kinds of tasks affect the guesses, even when the generative model remains 
unchanged.
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Suppose you are doing some grocery shopping in the fruit and vegetable section. You are looking at a 
fruit that is either a tomato or an apple. The type of fruit will influence the regularities in measurements 
you have available to decide. For example, the contours of the fruit might be more like what you previ-
ously experienced from apples, or from tomatoes. But there might be some ambiguity--silhouettes of 
apples aren't that different from tomatoes. Another kind of measurement could come from spectral 
measurements (e.g. from your cone photoreceptors), i.e. from longer-wave vs. shorter-wave parts of the 
spectrum. But these measurements rely on intermediate variables of material, i.e. the red or green stuff 
that the skin of the fruit is made of. The figure below shows the generative model. Given shape and 
wave-length measurements, how can one make the best guess of the fruit type and/or material type? 
We won't solve this problem in general, but we will look at a very simple version with a view to under-
standing how different kinds of tasks affect the guesses, even when the generative model remains 
unchanged.

Bayesian inference: general picture
Given a signal pattern, which could be a scene description S = {S1,...,SN}, and image measurements or 
features I={I1,...,IM}, the "universe" of possibilities is the joint probability:

p (S, I)

“universe” in the sense that the sum over S and I sums to one. To do inference, there are two basic 
operations on the joint probability:

1. Condition on what is known:
If we know (i.e. the visual system has measured some image feature I), the joint can be turned into a 
conditional (posterior):

p (S I) = p (S, I) /∕ p (I)

2. Integrate out what you don't care about
We don't care to estimate the noise (or other generic, "nuisance", or "secondary" variables):

p (Ssignal I) = 
Snoise

p (Ssignal, Snoise I), or if continuous = 
Snoise

p (Ssignal, Snoise I) ⅆSnoise

Called "integrating out" or "marginalization". 

For example, suppose I want to calculate the ideal observer for recognizing one of 6 objects, but each 
object could appear in one of 12 "poses". A "pose" means a specific position relative to the camera. I'd 
want to set up my problem so that I can integrate over the poses, to effectively discount that source of 
variation. In other words I really don't want a precise estimate of the pose parameters, but I do want to 
be as accurate as possible in deciding which object I've seen. This kind of ideal observer analysis of 
human object recognition was done by Tjan et al. in 1995.

With the posterior,  p (Ssignal I), we can employ an optimality rule, such as “pick the signal that 
makes the posterior biggest for this specific measured I”. This is the MAP observer strategy we intro-
duced earlier. 

Graphical models of dependence
In the SDT example of pattern detection in noise, the generative model and task was simple. The 
signals were two fixed images (e.g. a sinusoidal grating and a uniform image), and the image variability 
was solely due to additive noise. What about natural images? Other tasks?

The "universe" of possible factors generating an image could be expressed by constructing the joint 
probability on all possible combinations of description. For example, suppose we have decided that the 
key variable classes to model all natural images can be broken down into descriptions of the scene, 
object class, environment lighting, object reflectivity, object shape, and that these result in several 
kinds of data measurements, such as global features, local features, haptic. Then our knowledge of 
the universe of natural images could be modeled as:
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The "universe" of possible factors generating an image could be expressed by constructing the joint 
probability on all possible combinations of description. For example, suppose we have decided that the 
key variable classes to model all natural images can be broken down into descriptions of the scene, 
object class, environment lighting, object reflectivity, object shape, and that these result in several 
kinds of data measurements, such as global features, local features, haptic. Then our knowledge of 
the universe of natural images could be modeled as:

p(scene, object class, environment lighting, object reflectivity, object shape, global features, 
local features, haptic)
where each of the variable classes is itself a high-dimensional description. But this is clearly hopelessly 
large, because of the combinatorial problem.

In general it is difficult and often impractical to build a detailed quantitative generative model. But natural 
images do have regularities, and we can get insight into the problem by considering how various factors 
or causes might produce natural images. We can also simplify based on assumptions of what kind of 
information, i.e. which factors, are important to estimate.

One way to begin simplifying the problem is to note that not all variables have a direct influence on each 
other. Imagine you are designing a 3D software environment for quickly generating visual images, 
perhaps with some touch or haptic output too. We draw a graph in which lines only connect variables 
that influence each other. We are going to use directed graphs to represent conditional probabilities.

Strategy

Identify the variables of interest. For perception problems, we often separate the 
variables into observables (I), i.e. image intensity patterns or features, and causal 
factors S. (We generalize this later.)

Use knowledge of the influence structure to simplify the joint distribution: 
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For example, 

The arrows above represent a graphical shorthand that tells us how to factor a joint probability into 
conditionals. For the three examples above, we have:

p(S1, S2, I)  = p(I | S1, S2) p(S1) p(S2)
p(S, I1, I2)  = p(I1 | S) p(I2 | S) p(S)
p(S, L, I)     = p(I | L) p(L | S) p(S)
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Identify which variables are known, which need to be estimated, and which 
should be discounted.

We use a color code for nodes in our graphs: green means unknown and we’d like to estimate its value. 
Black means measureable or known through some means. Sometimes, we will use orange to mean 
some auxiliary data caused by one of the unknown variables.

Some basic graph types in vision

To help build intuitions, let’s look at the application of graphical models to the analysis of types of 
problems in object vision. From: Kersten, D., & Yuille, A. (2003). Bayesian models of object perception. 
Current Opinion in Neurobiology, 13(2), 1-9.

Basic Bayes

p[S I] =
p[I S] p[S]

p[I]

Usually, we will be thinking of the Y term as a random variable over the hypothesis space, and X as 
data. So for visual inference, Y = S (the scene), and X = I (the image data), and I = f(S).

We'd like to have:
p(S|I), where is the posterior probability of the scene given the image
-- i.e. what you get when you condition the joint by the image data. The posterior is often what we'd like 
to base our decisions on, because as we discuss below,  picking the hypothesis S which maximizes the 
posterior (i.e. maximum a posteriori or MAP estimation) minimizes the average probability of error.

p(S) is the prior probability of the scene.
p(I|S) is the likelihood of the scene. Note this is a probability of I, but not of S.
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Usually, we will be thinking of the Y term as a random variable over the hypothesis space, and X as 
data. So for visual inference, Y = S (the scene), and X = I (the image data), and I = f(S).

We'd like to have:
p(S|I), where is the posterior probability of the scene given the image
-- i.e. what you get when you condition the joint by the image data. The posterior is often what we'd like 
to base our decisions on, because as we discuss below,  picking the hypothesis S which maximizes the 
posterior (i.e. maximum a posteriori or MAP estimation) minimizes the average probability of error.

p(S) is the prior probability of the scene.
p(I|S) is the likelihood of the scene. Note this is a probability of I, but not of S.

See: Sinha, P., & Adelson, E. (1993). Recovering reflectance and illumination in a world of 
painted polyhedra. Paper presented at the Proceedings of Fourth International Conference on 
Computer Vision, Berlin.

Discounting

The generative structure of the SDT problems we've looked at.

p(S1 | I)=∑S2 p(S2, S1 I)
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Cue integration

Here two measurements (shadow displacement and stereo disparity) may be correlated. However, if S 
is fixed, i.e. known, then they become conditionally independent.

Perceptual explaining away

The idea here is that one can have a probabilistic structure that gives rise to "competing explanations" 
for some image data. 
This is a preview. We'll see more examples of this later in the course.

See: Lorenceau, J., & Shiffrar, M. (1992). The influence of terminators on motion integration 
across space. Vision Res, 32(2), 263-273.

Bayesian Decision Theory: Natural loss functions

Bayes Decision theory, loss, and risk

 (or their flip side: utility and expected utility)

We'd now like to generalize the idea of "integrating out" unwanted variables to allow us to put weights 
on how important a variable is for a task.

Earlier we noted that the costs of certain kinds of errors (e.g. a high cost to false alarms) could affect 
the decision criterion. Even though the sensitivity of the observer is essentially unchanged (e.g. the d' 
for the two Gaussian distributions remains unchanged), increasing the criterion can increase the propor-
tion of misses. This isn't necessarily bad. 

A doctor might say that since stress EKG's have about a 30% false alarm rate in predicting heart dis-
ease, it isn't worth doing. The cost of a false alarm is high--at least for the HMO, with the resulting follow-
ups, angiograms, etc.. And some increased risk to the patient of extra unnecessary tests.  But, of 
course, false alarm rate isn't the whole story, and one should also ask what the hit rate (or alternatively 
the miss rate) is? Miss rate is about 10%. (Thus, d' is reasonably high--what is it?). From the patient's 
point of view, the cost of a miss is very high, possibly one's life. So a patient's goal would not be to 
minimize errors (i.e. probability of a mis-diagnosis), but rather to minimize a measure of personal cost 
that puts a very high cost on a miss, and lower cost on a false alarms.

Although decision theory in vision has traditionally been applied to analogous trade-offs that are more 
cognitive than perceptual, vision research has shown that perception has implicit, unconscious trade-
offs in the kinds of errors that are made. 
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Earlier we noted that the costs of certain kinds of errors (e.g. a high cost to false alarms) could affect 
the decision criterion. Even though the sensitivity of the observer is essentially unchanged (e.g. the d' 
for the two Gaussian distributions remains unchanged), increasing the criterion can increase the propor-
tion of misses. This isn't necessarily bad. 

A doctor might say that since stress EKG's have about a 30% false alarm rate in predicting heart dis-
ease, it isn't worth doing. The cost of a false alarm is high--at least for the HMO, with the resulting follow-
ups, angiograms, etc.. And some increased risk to the patient of extra unnecessary tests.  But, of 
course, false alarm rate isn't the whole story, and one should also ask what the hit rate (or alternatively 
the miss rate) is? Miss rate is about 10%. (Thus, d' is reasonably high--what is it?). From the patient's 
point of view, the cost of a miss is very high, possibly one's life. So a patient's goal would not be to 
minimize errors (i.e. probability of a mis-diagnosis), but rather to minimize a measure of personal cost 
that puts a very high cost on a miss, and lower cost on a false alarms.

Although decision theory in vision has traditionally been applied to analogous trade-offs that are more 
cognitive than perceptual, vision research has shown that perception has implicit, unconscious trade-
offs in the kinds of errors that are made. 

One example is in shape from shading. An image provides the "measurements" that can be used to 
estimate an object's shape and/or estimate the direction of illumination. Accurate object identification 
often depends crucially on an object's shape, and the illumination is a confounding (secondary) variable. 
This suggests that visual recognition should put a high cost to errors in shape perception, and lower 
costs on errors in illumination direction estimation. So the process of perceptual inference depends on 
task. The effect of marginalization in the  fruit example  below illustrates the effect of task-dependence 
on optimal decisions.

To get insight into the ideas behind decision theory, let’s look at an example where the costs of errors 
are continuous functions of the estimates of object properties. 

Slant estimation example using Bayes decision theory
Recall the coffee mug top example at the beginning of the lecture. We are given one simple measure-
ment x -- the height of the ellipse in the image. From it, we'd like to estimate the most probable values of 
the shape of the ellipse and the viewpoint. We assume a fixed width (say unit 1), so the shape is charac-
terized by the aspect ratio--i.e. the physical height of the top in 3D. And the viewpoint is characterized 
by the slant, as shown in the figure below. 

So given one number x (e.g. x = 0.5), we have to estimate two unknowns about the physical state of 
affairs: 

-- slant of the top with respect to the viewer and 
-- aspect ratio of the top of the cup, which in our simplified case is just the physical height of the 

disk.

We will use three types of constraints:
--a generative model: x = aspectratio*Cos[slant] + noise
--prior assumptions about typical shapes and viewpoints
--assumptions about what is more important to get right, the slant or the aspect ratio
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From: Geisler, W. S., & Kersten, D. (2002). Illusions, perception and Bayes. Nat Neurosci, 5(6), 
508-510.

Mathematica code to illustrate Bayesian estimation of surface slant and aspect 
ratio

This code was used to produce the figure in a Nature Neuroscience News & Views article by Geisler 
and Kersten (2002) that put in context a paper by Weiss, Simoncelli and Adelson.

Wilson S. Geisler and Daniel Kersten (2002) Illusions, perception  and Bayes. Nature Neuroscience, 5 
(6), 508-510. Or (pdf).
http://gandalf.psych.umn.edu/~kersten/kersten-lab/papers/GeislerKerstennn0602-508.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=120
37517
For:  Weiss, Y., Simoncelli, E. P., & Adelson, E. H. (2002). Motion illusions as optimal percepts. Nat 
Neurosci, 5(6), 598-604.
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=120
21763
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Introduction
Consider the above figure which illustrates a Bayesian ideal observer for a tasks involving the percep-
tion of object properties that differ along two physical dimensions, such  as aspect ratio and slant (other 
examples are size and distance, or speed and direction of motion). 
When a stimulus is received, in this case a measurement x = 0.5, the ideal observer computes the 
likelihood of receiving that stimulus for each possible pair of dimension values (that is, for each possible 
interpretation). It then multiplies this likelihood distribution by the prior probability distribution for each 
pair of values to obtain the posterior probability distribution—the probability of each possible pair of 
values given the stimulus. The peak of this gives the most probable estimate, but not necessarily the 
most useful.
So finally, the posterior probability distribution is convolved with a utility function, representing the costs 
and benefits of different levels of perceptual accuracy, to obtain the expected utility associated with 
each possible interpretation. The ideal observer picks the interpretation that maximizes the expected 
utility. (Black dots and curves indicate the maxima in each of the plots.) 
As a tutorial example, the figure was constructed with a specific task in mind; namely, determining the 
aspect ratio and slant of a tilted ellipse from a measurement of the aspect ratio (x = 1/2) of the image on 
the retina. The black curve in the likelihood plot shows the ridge of maximum likelihood corresponding 
to the combinations of slant and aspect ratio that are exactly consistent with x; the other non-zero 
likelihoods occur because of noise in the image and in the measurement of x. The prior probability 
distribution corresponds to the assumption that surface patches tend to be slanted away at the top and 
have aspect ratios closer to 1.0. The asymmetric utility function corresponds to the assumption that it is 
more important to have an accurate estimate of slant than aspect ratio.

Initialization

npoints = 128;
loaspect = 0;
hiaspect = 5;
$TextStyle = {FontFamily → "Helvetica", FontSize → 14}
Fswitch = True;

{FontFamily → Helvetica, FontSize → 14}

PadMatrix[mat_, gray_, n_] := Module[{d},
d = Dimensions[mat];
Return[PadRight[PadLeft[mat, {d[[1]] + n, d[[2]] + n}, gray],

{d[[1]] + 2 *⋆ n, d[[2]] + 2 *⋆ n}, gray]];
];

Init delta

gdelta[x_, w_] := 1 -− UnitStep[x + w /∕ 2] -− UnitStep[x -− w /∕ 2];
(*⋆Plot[gdelta[x,1],{x,-−10,10},PlotRange→{0,2}];*⋆)

Calculate Likelihood function and its maxima
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The generative or image model determines the constraint, x = d Cos[alpha] + 
noise, determines the likelihood

Assume noise has a Gaussian distribution with standard deviation = 1/5;
Assume an image measurement (x=1/2)

likeli[alpha_, x_, d_, s_] :=
Exp-−(x -− d Cos[alpha])^2  2 s^2 1  Sqrt[2 Pi s^2]

likeli[α, x, d, s]
x = 1 /∕ 2; s = 1 /∕ 5;
like = likeli[α, x, d, s]

ⅇ-−
x-−d Cos[α]2

2 s2

2 π s2

5 ⅇ-−
25
2


1
2
-−d Cos[α]2

2 π

Plot likelihood 

gdlike = DensityPlotlike, {d, loaspect, hiaspect}, α, -−
π

2
,

π

2
, PlotPoints → npoints,

Mesh → False, ColorFunction → RGBColor1 -− 0.1`+ 0.8` #1, 1, 1 &,
FrameLabel → {"aspect ratio, d", "slant angle, α"}, RotateLabel → False
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Plot likelihood maxima

There is no unique maximum. The likelihood function has a ridge

temp2 = TablePoint
x

Cos[alpha]
, alpha, alpha, -−

π

2
,

π

2
, 0.001;

temp = JoinTablePointd, ArcCos
x

d
, {d, loaspect + 0.5, hiaspect, 0.01}, temp2;

gtemp = Graphics[{PointSize[0.01], temp}];

Plot likelihood together with maximum along the ridge

gdlike = DensityPlotlike, {d, loaspect, hiaspect}, α, -−
π

2
,

π

2
, PlotPoints → npoints,

Mesh → False, ColorFunction → (RGBColor[1 -− (0.1+ 0.8 #1), 1, 1] &),
FrameLabel → {"aspect ratio, d", "slant angle, α"},
RotateLabel → False, Frame → Fswitch;

glikemax = Show[gdlike, gtemp]

Calculate the prior, and find its maximum

The prior probability distribution corresponds to the assumption that surface patches tend to 
be slanted away at the top and have aspect ratios closer to 1.0. We model the prior by a 
bivariate gaussian:
Needs["MultivariateStatistics`"]
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PDF[MultinormalDistribution[{μα, μd}, R], {α, d}]

PDF[MultinormalDistribution[{μα, μd}, R], {α, d}]

R1 = {{.25, 0}, {0, .25}};
ndist3 = MultinormalDistributionPi  4., 1, R1;
pdf3 = PDF[ndist3, {α, d}];
FindMinimum[-−pdf3, {d, 5}, {α, 1}]
gdprior = DensityPlotpdf3^.4, {d, loaspect, hiaspect},

α, -−Pi  2, Pi  2, PlotPoints → npoints, Mesh → False,
ColorFunction -−> (RGBColor[1, 1 -− (0.1 + 0.8 #), 1 -− (0.1 + 0.8 #)] &),
FrameLabel → {"aspect ratio, d", "slant angle, α"}, RotateLabel → False;

-−7.35283 × 10-−15, {d → 5., α → 1.}

Show[gdprior, Graphics[{PointSize[0.05`], Point[{1, 0.785`}]}],
DisplayFunction → $DisplayFunction]

Calculate the posterior, and find its maximum

More precisely, we'll calculate a quantity proportional to the posterior. The posterior is equal to the 
product of the likelihood and the prior, divided by the probability of the image measurement, x. Because 
the image measurement is fixed, we only need to calculate the product of the likelihood and the prior:
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Clear[α, x, d, s];
likeli[α, x, d, s] *⋆ PDF[MultinormalDistribution[{μα, μd}, R], {α, d}]

1

2 π s2
ⅇ-−

x-−d Cos[α]2

2 s2 PDF[MultinormalDistribution[{μα, μd}, R], {α, d}]

gdpost = DensityPlotpdf3 *⋆ like, {d, loaspect, hiaspect}, α, -−Pi  2, Pi  2,
ColorFunction -−> (RGBColor[1, 1, 1 -− (0.01 + 0.9 #)] &), PlotPoints → npoints,
Mesh → False, FrameLabel → {"aspect ratio, d", "slant angle, α"},
RotateLabel → False, Frame → Fswitch;

FindMinimum[-−pdf3 *⋆ like, {d, 1.0}, {α, 0.2}]

{-−1.17378, {d → 0.881475, α → 0.923647}}

Show[gdpost, Graphics[{PointSize[0.05], Point[{0.88, 0.92}]}]]

Compute expected loss--i.e. risk, and find its minimum
The expected loss is given by the convolution of the loss with the posterior:

                      risk=posterior*loss, where * means convolve; utility=-risk.

Loss function

The asymmetric utility function corresponds to the assumption that it is more important to have an 
accurate estimate of slant than aspect ratio. The loss function reflects the task. Accurate estimates of 
slant may be more important for an action such as stepping or grasping, whereas an accurate estima-
tion of aspect ratio may be more important for determining object shape (circular coffee mug top or 
not?).
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maploss = Table(1 -− gdelta[x1d, 0.25]) (1 -− gdelta[x2d, 2]),

x1d, -−3, 3,
6

npoints
, x2d, -−3, 3,

6

npoints
;

gdloss = ListDensityPlot[maploss, Mesh → False,
ColorFunction → (RGBColor[1 -− (0.01+ 0.9 #1), 1 -− (0.01+ 0.9 #1), 1] &), Frame → False]

Convolve posterior with loss function

Convert function description to numerical arrays for convolving

post = TransposeTablelike *⋆ pdf3, d, loaspect, hiaspect,
hiaspect -− loaspect  npoints, α, -−Pi  2, Pi  2, Pi  npoints;

post2 = PadMatrix[post, 0, 16];
maploss2 = PadMatrix[maploss, 0, 16];
offset = FloorDimensions[maploss2][[1]]  2;
tempcon = ListConvolve[maploss2, post2, {-−1, -−1}];
risk2 = RotateLeft[tempcon, {offset, offset}];
risk =

Take[risk2, {17, Dimensions[risk2][[1]] -− 16}, {17, Dimensions[risk2][[1]] -− 16}];

grbrisk = ListDensityPlot[Map[#^1. &, risk],
Mesh → False, ColorFunction -−> (RGBColor[1, 1, 1 -− (0.01 + 0.9 #)] &),
FrameLabel → {"aspect ratio, d", "slant angle, α"},
RotateLabel → False, Frame → Fswitch, DisplayFunction → Identity];

Positionrisk, Maxrisk

{{108, 27}}
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Show[grbrisk, Graphics[{PointSize[0.05`], Point[{27, 108}]}],
DisplayFunction → $DisplayFunction]

Exercise: Compute and plot expected loss for the transposed loss function

Bayes decision theory: Formal summary

Formalization of decision theory: loss and risk
Here we formalize the intuitions provided by the above demonstration to show how marginalization can 
be generalized through decision theory to model other kinds of goals than error minimization (MAP) in 
task-dependence.

Bayes Decision theory provides the means to model visual performance as a function of utility.

Some terminology. We've used the terms switch state, hypothesis, signal state as essentially the same--
to represent the random variable indicating the state of the world--the "state space". So far, we've 
assumed that the decision, d,  of the observer maps directly to state space, d->s. We now clearly 
distinguish the decision (or action) space from the state or hypothesis space, and introduce the idea of 
a loss L(d,s), which is the cost for making the decision d, when the actual state is s. 

Often we can't directly measure s, and we can only infer it from observations. Thus, given an observa-
tion (image measurement) x, we define a risk function that represents the average loss over signal 
states s:

R (d; x) = 
s

L (d, s) p (s x)

This suggests a decision rule: α𝛼(x)=argmin
d

 R(d;x). But not all x are equally likely. In principle, we should 

pick our decision rule to minimize the expected risk averaged over all observations: 

R (α) = ∑x R (d; x) p (x)
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This suggests a decision rule: α𝛼(x)=argmin
d

 R(d;x). But not all x are equally likely. In principle, we should 

pick our decision rule to minimize the expected risk averaged over all observations: 

R (α) = ∑x R (d; x) p (x)

Maximum likelihood, MAP, and marginalization are special cases of the choice of 
loss function
With suitable choices of likelihood, prior, and loss functions, we can derive standard estimation proce-
dures (maximum likelihood, MAP, estimation of the mean) as special cases.

For the MAP estimator, 
R (d; x) = 

s

L (d, s) p (s x) = 
s

(1 -− δd,s) p (s x) = 1 -− p (d x)

where δd,sis the discrete analog to the Dirac delta function--it is zero if d≠s, and one if d=s.

Thus minimizing risk with the loss function L = (1 -− δd,s)is equivalent to maximizing the posterior, 
p(d|x), or mode.

What about marginalization? You can see from the definition of the risk function, that this corresponds 
to a uniform loss: 

L = -1.
R (s1; x) = 

s2

L (d2, s2) p (s1, s2 x)

So for our face recognition example, a really huge error in illumination direction has the same cost as 
getting it right. For the fruit example, below, optimal classification of the fruit identity requires marginaliz-
ing over fruit color--i.e. effectively treating fruit color identification errors as equally costly.

◼ What loss function corresponds to estimating the mean rather than the mode?

Inference: Fruit classification example 

This section provides another quantitative example of visual inference, where we use a graphical 
model. It illustrates how the task choice, and therefore what you integrate out,  can change what is the 
optimal decision.

For intuitions and background on the relation between graphical models and conditional dependence, 
see the Supplementary Reading: Griffiths, T. L., & Yuille, A. (2008).

Here we assume MAP estimation, but over posteriors differing by what we decide to integrate out. The 
utility function is implicit--all errors in the secondary variables are equally costly. 
(due to James Coughlan; see Yuille, Coughlan, Kersten & Schrater).
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Figure from Yuille, Coughlan, Kersten & Schrater.

The graph specifies how to decompose the joint probability:

 p[F, C, Is, Ic ] = p[ Ic | C ] p[C | F ] p[Is | F ] p[F ]
 
Let’s see how to go from a graph to a factorization of the joint distribution. Note that we go from left to 
right on the right hand side of the above equation. The idea is to find the top node (parent) which 
defines the prior p(F), and then look for its children, which define the conditionals:
 
 p(Is|F) and p(C|F). 
 
 The “C” node is a child of F, but also a parent to the color measurement, so the last  factor is p(Ic|C), 
(again remember we are going from right to left).
 
Below we use three basic rules of probability:

 p(X,Y) = p(X|Y)p(Y), and
 p(X|Y) = p(X,Y)/p(Y)
p(X) = ∑Y p(X, Y)

The prior model on hypotheses, F & C

More apples (F=1) than tomatoes (F=2) on average, and:

ppF[F_] := If[F ⩵ 1, 9 /∕ 16, 7 /∕ 16];
TableForm[Table[ppF[F], {F, 1, 2}], TableHeadings -−> {{"F=a", "F=t"}}]

F=a 9
16

F=t 7
16

Assume the conditional  probability cpCF[C|F] is:

cpCF[F_, C_] := Which[F ⩵ 1 && C ⩵ 1, 5 /∕ 9,
F ⩵ 1 && C ⩵ 2, 4 /∕ 9, F ⩵ 2 && C ⩵ 1, 6 /∕ 7, F ⩵ 2 && C ⩵ 2, 1 /∕ 7];

TableForm[Table[cpCF[F, C], {F, 1, 2}, {C, 1, 2}],
TableHeadings -−> {{"F=a", "F=t"}, {"C=r", "C=g"}}]

C=r C=g
F=a 5

9
4
9

F=t 6
7

1
7

6_BayesDecisionTheory.nb     19



So the joint is:

jpFC[F_, C_] := cpCF[F, C] ppF[F];
TableForm[Table[jpFC[F, C], {F, 1, 2}, {C, 1, 2}],
TableHeadings -−> {{"F=a", "F=t"}, {"C=r", "C=g"}}]

C=r C=g
F=a 5

16
1
4

F=t 3
8

1
16

We can marginalize to get the prior probability on color alone is:

ppC[C_] := 
F=1

2
jpFC[F, C]

Question: Is fruit identity independent of material color--i.e. is F independent of C?

Answer
No.

TableForm[Table[jpFC[F, C], {F, 1, 2}, {C, 1, 2}],
TableHeadings -−> {{"F=a", "F=t"}, {"C=r", "C=g"}}]

TableForm[Table[ppF[F] ppC[C], {F, 1, 2}, {C, 1, 2}],
TableHeadings -−> {{"F=a", "F=t"}, {"C=r", "C=g"}}]

C=r C=g
F=a 5

16
1
4

F=t 3
8

1
16

C=r C=g
F=a 99

256
45
256

F=t 77
256

35
256

The generative model: “Imaging” probabilities

Analogous to collecting histograms for the two switch positions in the SDT experiment, suppose that we 
have gathered some "image statistics" which provides us knowledge of how the image measurements 
for shape Is, and for color Ic depend on the type of fruit F, and material color, C. For simplicity, our 
measurements are discrete and binary (a more realistic case, they would have continuous values), say 
Is = {am, tm}, and Ic = {rm, gm}.

P(I_S=am,tm | F=a) = {11/16, 5/16}
P(I_S=am,tm | F=t) = {5/8, 3/8}
P(I_C=rm,gm | C=r) = {9/16, 7/16}
P(I_C=rm,gm | C=g) = {1/2, 1/2}

We use the notation am, tm, rm, gm because the measurements are already suggestive of the likely 
cause. So there is a correlation between apple and apple-like shapes, am; and between red material, 
and "red" measurements. In general, there may not be an obvious correlation like this.

We define a function for the  probability of Ic given C,  cpIcC[Ic | C]:
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cpIcC[Ic_, C_] := Which[Ic ⩵ 1 && C ⩵ 1, 9 /∕ 16,
Ic ⩵ 1 && C ⩵ 2, 7 /∕ 16, Ic ⩵ 2 && C ⩵ 1, 1 /∕ 2, Ic ⩵ 2 && C ⩵ 2, 1 /∕ 2];

TableForm[Table[cpIcC[Ic, C], {Ic, 1, 2}, {C, 1, 2}],
TableHeadings -−> {{"Ic=rm", "Ic=gm"}, {"C=r", "C=g"}}]

C=r C=g
Ic=rm 9

16
7
16

Ic=gm 1
2

1
2

The  probability of Is conditional on F is cpIsF[Is | F]:

cpIsF[Is_, F_] := Which[Is ⩵ 1 && F ⩵ 1, 11 /∕ 16,
Is ⩵ 1 && F ⩵ 2, 5 /∕ 8, Is ⩵ 2 && F ⩵ 1, 5 /∕ 16, Is ⩵ 2 && F ⩵ 2, 3 /∕ 8];

TableForm[Table[cpIsF[Is, F], {Is, 1, 2}, {F, 1, 2}],
TableHeadings -−> {{"Is=am", "Is=tm"}, {"F=a", "F=t"}}]

F=a F=t
Is=am 11

16
5
8

Is=tm 5
16

3
8

The total joint probability

We now have enough information to put probabilities on the 2x2x2 "universe" of possibilities, i.e. all 
possible combinations of fruit, color, and image measurements. Looking at the graphical model makes it 
easy to use the product rule to construct the total joint, which is:
 p[F, C, Is, Ic ] = p[ Ic | C ] p[C | F ] p[Is | F ] p[F ]:

jpFCIsIc[F_, C_, Is_, Ic_ ] := cpIcC[ Ic, C ] cpCF[F, C ] cpIsF[Is, F ] ppF[F ]

Usually, we don't need the probabilities of the image measurements (because once the measurements 
are made, they are fixed and we want to compare the probabilities of the hypotheses. But in our simple 
case here, once we have the joint, we can calculate the probabilities of the image measurements 
through marginalization p(Is,Ic)=∑C∑Fp(F, C, Is, Ic), too:

jpIsIc[Is_, Ic_] := 
C=1

2


F=1

2
jpFCIsIc[F, C, Is, Ic ]

Three MAP tasks

Suppose that we measure Is=am, and Is = rm. The measurements suggest "red apple", but to find the 
most probable, we need to take into account the priors too. 

Define argmax[] function:

argmax[x_] := Position[x, Max[x]];

Pick most probable fruit AND color--Answer "red tomato"

Using the total joint, p(F,C | Is, Ic) = p(F,C,Is,Ic)
p(Is,Ic) ∝ p(F,C,Is,Ic)
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TableForm[jpFCIsIcTable = Table[jpFCIsIc[F, C, 1, 1 ], {F, 1, 2}, {C, 1, 2}],
TableHeadings -−> {{"F=a", "F=t"}, {"C=r", "C=g"}}]

Max[jpFCIsIcTable]
argmax[jpFCIsIcTable]

C=r C=g
F=a 495

4096
77

1024

F=t 135
1024

35
2048

135

1024

{{2, 1}}

"Red tomato" is the most probable once we take into account the difference in priors.

Calculating p(F,C | Is, Ic). We didn't actually need p(F,C | Is, Ic), but we can calculate it by conditioning 
the total joint on the probability of the measurments:

jpFCcIsIc[F_, C_, Is_, Ic_] := jpFCIsIc[F, C, Is, Ic ]  jpIsIc[Is, Ic]

TableForm[jpFCcIsIcTable = Table[jpFCcIsIc[F, C, 1, 1 ], {F, 1, 2}, {C, 1, 2}],
TableHeadings -−> {{"F=a", "F=t"}, {"C=r", "C=g"}}]

Max[jpFCcIsIcTable]
argmax[jpFCcIsIcTable]

C=r C=g
F=a 55

157
308
1413

F=t 60
157

70
1413

60

157

{{2, 1}}

Pick most probable color--Answer "red"
In this case, we want maximize the posterior:

p(C | Is, Ic)=∑F=1
2 p(F, C Is, Ic)

pC[C_, Is_, Ic_] := 
F=1

2
jpFCcIsIc[F, C, Is, Ic ]

TableForm[pCTable = Table[pC[C, 1, 1 ], {C, 1, 2}], TableHeadings -−> {{"C=r", "C=g"}}]
Max[pCTable]
argmax[pCTable]

C=r 115
157

C=g 42
157

115

157

{{1}}

Answer is that the most probable material color is C = r, "red".
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Pick most probable fruit--Answer "apple"
p(F | Is, Ic)

pF[F_, Is_, Ic_] := 
C=1

2
jpFCcIsIc[F, C, Is, Ic ]

TableForm[pFTable = Table[pF[F, 1, 1 ], {F, 1, 2}], TableHeadings -−> {{"F=a", "F=t"}}]
Max[pFTable]
argmax[pFTable]

F=a 803
1413

F=t 610
1413

803

1413

{{1}}

The answer is "apple"

Moral of the story: Optimal inference depends on the precise definition of the task

Exercises

MAP minimizes probability of error: Proof for detection

Here is why MAP minimizes average error. Suppose that x is fixed at a value for which P (S =sb |x )>P 
(S =sd |x ). This is exactly like the problem of guessing “heads” or “tails ” for a biased coin, say with a 
probability of heads P (S =sb | x ). Imagine the light discrimination experiment repeated many times and 
you have to decide whether the switch was set to bright or not –but only on those trials for which you 
measured exactly x .The optimal strategy is to always say “bright ”. Let's see why. First note that:

p(error | x) = p(say "bright", actually dim | x) + p(say "dim", actually bright |x) =
p(s1! , s2 | x) + p(s1, s2!  | x)
Given x, the response is independent of the actual signal state (see graphical model for detection 
above--"response is conditionally independent of signal state, given observation x"), so the joint probabili-
ties factor:
p(error|x) = p(say "bright" | x) p(actually dim |x) + p(say "dim" |x)p(actually bright |x)
Let t = p(say "bright" |x), then
p(error|t,x) = t*p(actually dim |x) + (1-t)*p(actually bright |x).
p(error|t), as a function of t, defines a straight line with slope p(actually dim |x)-p(actually bright |x). 
(Just take the partial derivative with respect to t.) We've assumed P (S =sb |x ) > P (S =s d |x )), so 
p(error | t) has a negative slope, with the smallest non-negative value of t being one. So, error is mini-
mized when t=p(say "bright" |x)=1. I.e. Always say "bright". 

Always saying "bright" results in a probability of error P (error |x )=P (S =sd |x ).That’s the best that can 
be done on average. On the other hand, if the observation is in a region for which P (S =sd|x )>P (S =sb 
|x ),the minimum error strategy is to always pick “dim” with a resulting P (error |x )=P (S =sb |x ).Of 
course, x isn’t fixed from trial to trial, so we calculate the total probability of error which is determined by 
the specific values where signal states and decisions don ’t agree:
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Always saying "bright" results in a probability of error P (error |x )=P (S =sd |x ).That’s the best that can 
be done on average. On the other hand, if the observation is in a region for which P (S =sd|x )>P (S =sb 
|x ),the minimum error strategy is to always pick “dim” with a resulting P (error |x )=P (S =sb |x ).Of 
course, x isn’t fixed from trial to trial, so we calculate the total probability of error which is determined by 
the specific values where signal states and decisions don ’t agree:

p(error)=∑i≠ j psi, , sj =∑i≠ j∫psi, , sj x p(x) ⅆx=∑i≠ j∫psi, x p(sj x) p(x) ⅆx
Because the MAP rule ensures that psi, , sj x is the minimum for each x, the integral over all x mini-
mizes the total probability of error.

Exercise: Show that MAP minimizes the probability of error for classification

p(error)=∑i≠ j psi, , sj =∑i≠ j∫psi, , sj x p(x) ⅆx=∑i≠ j∫psi, x p(sj x) p(x) ⅆx

Let s
^*⋆

 be the MAP choice, and the error using the MAP choice is, 

p(error*)=∑i≠ j psi
^*⋆, sj =∑i≠ j∫psi

^*⋆, sj x p(x) ⅆx=∑i≠ j∫psi
^*⋆ x p(sj x) p(x) ⅆx

We want to show that: p(error) - p(error*)≥0. 

Exercise: Show that MAP minimizes the probability of error for estimation

Show that R(d;x) is the average error rate for observation x,over all s. Then show that the risk R(α𝛼) is 
the expected number of errors over all x,when using the decision rule α𝛼(x).

Appendices

SDT in a graphical nutshell

This section shows the common structure shared by three types of inference: detection, classification, 
and estimation.
Decisions can be right or wrong regarding a discrete hypothesis (detection, classification), or have 
some metric distance from an hypothesis along a continuous dimensions (estimation). Each decision or 
estimation has an associated loss function. There is a common graphical structure to each type of 
inference.

Hypothesis inference: Three types

Detection
Let the hypothesis variable d, be represented by s, which can take on two values.
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loss function for yes/no task

Classification

 MAP rule: argmax
i

{p(Si x)}.
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Continous estimation

 argmax
S

{p(S x}}

One can show that L(d,s) = -(d-s)^2 produces an estimator that finds the mean, L(d,s) = -δ𝛿(d-s), does 
MAP (i.e. finds the mode), and L(d,s) = 1 is equivalent to marginalization (integrating out s).

Graphical models for inference, synthesis, learning

Three types of nodes in a graphical model: known, unknown to be estimated, 
unknown to be integrated out (marginalized)
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Three types of nodes in a graphical model: known, unknown to be estimated, 
unknown to be integrated out (marginalized)

We have three basic states for nodes in a graphical model: 
-- known
-- unknown to be estimated
-- unknown to be integrated out (marginalization). 
We have causal state of the world S, that gets mapped to some image data I, perhaps through 

some intermediate parameters L, i.e. S->L->I. 
As above, we will use a color code for nodes in our graphs: green means unknown and we'd like 

to estimate its value. Black means "known" (either through a measurement or other source of 
knowledge).

Three main types of inference

In general, we are interested in how images are generated, how we can inference the causes of 
images, and how can we learn the relationship between causes and images. All three problems can be 
treated as decisions about, given the joint probability of image (I), causes (S) and intermediate variables 
(L),  what to condition on and what to integrate out. 

Image  data  inference:  synthesis  

Image synthesis (forward, generative model): We want to model I through p(I|S). In our example, we 
want to specify "Bill", and then p(I|S="Bill") can be implemented as an algorithm to spit out images of 
Bill. If there is an intermediate variable, L, it gets integrated out.

Hypothesis  ("inverse")  inference
Hypothesis inference: we want to model samples for S: p(S|I). Given an image,we want to spit out likely 
object identities,so that we can minimize risk, or for example, do MAP classification for accurate object 
identification. Again there is an intermediate variable, L, it gets integrated out. 
(Although we didnt' set up our SDT examples with dots and grating patterns to require explicit integrat-
ing out of the noise variables, it could be done that way.)

Learning (parameter inference)

Learning can also be viewed as estimation: we want to model L: p(L|I,S), to learn how the intermediate 
variables are distributed. Given lots of samples of objects and their images, we want to learn the map-
ping parameters between them.
(E.g. consider a neural network in which an input S gets mapped to an output I through intermediate 
variables L. We can think of L as representing synaptic weights to be learned.)
Two basic examples in standard statistics are:
Regression: estimating parameters that provide a good fit to data. E.g. slope and intercept for a straight 
line through points {xi,yi}.
Density estimation: Regression on a probability density functions, with the added condition that the area 
under the fitted curve must sum to one.
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Marginalization and conditioning: A small dimensional example using list 
manipulation in Mathematica 

A discrete joint probability
All of our knowledge regarding the signal discrimination problem can be described in terms of the joint 
probability of the hypotheses, H and the possible data measurements, x. The probability function 
assigns a number to all possible combinations:

p[H, x]

That is, we are assuming that both the hypotheses and the data are discrete random variables.

H =  S1
S2

x ϵ {1, 2, ...}

Let's assume that x can only take on one of three values, 1, 2, or 3. And suppose the joint probability is:

p = 
1

12
,

1

12
,
1

6
, 

1

3
,
1

6
,
1

6


1
12

1
12

1
6

1
3

1
6

1
6

TableForm[p, TableHeadings -−> {{"H=S1", "H=S2"}, {"x=1", "x=2", "x=3"}}]

x=1 x=2 x=3
H=S1 1

12
1
12

1
6

H=S2 1
3

1
6

1
6

The total probability should sum up to one. Let's test to make sure. We first turn the list of lists into a 
singel list of scalars using Flatten[]. And then we can sum either with Apply[Plus,Flatten[p]].

Plus @@ Flatten[p]

1

We can pull out the first row of p like this:

p[[1]]


1

12
,
1

12
,
1

6


Is this the probability of x? No. For a start, the numbers don't sum to one. But we can get it through the 
two processes of marginalization and conditioning.

Marginalizing
What are the probabilities of the data, p(x)? To find out, we use the sum rule to sum over the columns:
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px = Apply[Plus, p]


5

12
,
1

4
,
1

3


"Summing over "is also called marginalization or "integrating out".  Note that marginalization turns a 
probability function with higher degrees of freedom into one of lower degrees of freedom. 

What are the prior probabilities? p(H)? To find out, we sum over the rows:

pH = Apply[Plus, Transpose[p]]


1

3
,
2

3


Conditioning
Now that we have the marginals, we can get use the product rule to obtain the conditional probability 
through conditioning of the joint:

p[ x H] =
p[H, x]

p[H]

In the Exercises, you can see how to use Mathematica to do the division for conditioning. The syntax is 
simple:

pxH = p /∕ pH

1
4

1
4

1
2

1
2

1
4

1
4

Note that the probability of x conditional on H sums up to 1 over x, i.e. each row adds up to 1. But, the 
columns do not. p[x|H] is a probability function of x, but a likelihood function of H. The posterior 
probability is obtained by conditioning on x:

p[H x] =
p[H, x]

p[x]

Syntax here is a bit more complicated, because the number of columns of px don't match the number of 
rows of p. We use Transpose[] to exchange the columns and rows of p before dividing, and then use 
Transpose again to get back the 2x3 form:

pHx = Transpose[Transpose[p] /∕ px]

1
5

1
3

1
2

4
5

2
3

1
2

Plotting the joint
The following BarChart[] graphics function requires in add-in package (<< Graphics`Graphics`), which 
is specified at the top of the notebook. You could also use ListDensityPlot[].

BarChart[p〚1〛, p〚2〛]
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Using Mathematica lists to manipulate discrete priors, likelihoods, and posteriors

A note on list arithmetic
We haven't done standard matrix/vector operations above to do conditioning. We've take advantage of 
how  Mathematica divides a 2x3 array by a 2-element vector:

M=Array[m,{2,3}]
X = Array[x,{2}]


m(1, 1) m(1, 2) m(1, 3)
m(2, 1) m(2, 2) m(2, 3) 

{x(1), x(2)}

M/∕X

m(1,1)
x(1)

m(1,2)
x(1)

m(1,3)
x(1)

m(2,1)
x(2)

m(2,2)
x(2)

m(2,3)
x(2)

Putting the probabilities back together again to get the joint

Transpose[Transpose[pHx] px]

1
12

1
12

1
6

1
3

1
6

1
6

pxH pH

1
12

1
12

1
6

1
3

1
6

1
6

Getting the posterior from the priors and likelihoods:
One reason Bayes' theorem is so useful is that it is often easier to formulate the likelihoods (e.g. from a 
causal or generativemodel of how the data could have occurred), and the priors (often from heuristics, 
or in computational vision empirically testable models of the external visual world). So let's use Mathe-
matica to derive p(H|x) from p(x|H) and p(H) , (i.e. pHx from pxH and pH ).

px2 = Plus @@ (pxH pH)


5

12
,
1

4
,
1

3


Transpose[Transpose[(pxH pH)] /∕ Plus @@ (pxH pH)]

1
5

1
3

1
2

4
5

2
3

1
2
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Show that this joint probability has a uniform prior (i.e. both priors equal). 

p = {{1 /∕ 8, 1 /∕ 8, 1 /∕ 4}, {1 /∕ 4, 1 /∕ 8, 1 /∕ 8}}

1
8

1
8

1
4

1
4

1
8

1
8

Figure code

Projection ambiguity and the estimation of pose (slant) and object dimensions (aspect ratio).

GraphicsRow[{Graphics3D[{EdgeForm[], Cylinder[{{0, 0, 0}, {.01, .01, .001}}, 1]},
ImageSize → Tiny, Boxed → False, AspectRatio → 1],

Graphics3D[{EdgeForm[], Cylinder[{{0, 0, 0}, {.01, .01, .001}}, 1]},
ImageSize → Tiny, Boxed → False, AspectRatio → 1 /∕ 2]}]

x = 0.2`; y = 0.8`;
Plot[t x + (1 -− t) y, {t, 0, 1}, AxesLabel → {t, "p(error"}]

0.20.40.60.8 1 t
0.3
0.4
0.5
0.6
0.7
0.8
pHerror
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