
CSCI 5521 Pattern Recognition, Prof. Paul Schrater, Fall 2005



CSCI 5521 Pattern Recognition, Prof. Paul Schrater, Fall 2005

Answers and expectations

For a function f(x) and distribution P(x), the expectation of f with respect

to P is

The expectation is the average of f, when x is drawn from the probability

distribution P

! 

EP(x ) f (x)[ ] = f (x)P(x)
x

"
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The Monte Carlo principle

The expectation of f with respect to P can be approximated by

   where the xi are sampled from P(x)

Example 1: the average # of spots on a die roll

! 

EP(x ) f (x)[ ] "
1

n
f (xi)

i=1

n

#
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The Monte Carlo principle

! 

EP(x ) f (x)[ ] " f (xi)
i=1

n

#
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The law of large numbers
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More formally…

! 

µ = EP(x ) f (x)[ ] "
1

n
f (xi)

i=1

n

# = µMC

µMC is consistent, (µMC - µ) → 0 a.s. as n → ∞
µMC is unbiased, with E[µMC ] = µ
µMC is asymptotically normal, with

! 

m (µMC "µ)# N(0,$MC

2
) in distribution

$MC

2 = EP (x ) ( f (x) " EP(x )[ f (x)])
2[ ]
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When simple Monte Carlo fails

• Efficient algorithms for sampling only exist for a
relatively small number of distributions
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Inverse cumulative distribution

(requires CDF be invertible)

! 

p(x)dx
0

x

"

0

1
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Rejection sampling

f(x)
Rejection sampling
Want to sample from:

Rejection sampling uses an easy to
sample from density s(θ)
Requirement: g(θ) /s(θ) is (upper)
bounded by A.

! 

f (") = g(") / g(")d"#

Rejection sampling algorithm
For each sample
Do until one θ is accepted
1. sample a point θ from the known distribution s(θ) ;
2. sample y from the uniform distribution on [0, 1];
3. if A y ≤ g(θ) /s(θ) then break and accept θ; 
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When simple Monte Carlo fails

• Efficient algorithms for sampling only exist for a
relatively small number of distributions

• Sampling from distributions over large discrete state
spaces is computationally expensive
– mixture model with n observations and k components, HMM

with n observations and k states, kn possibilities

• Sometimes we want to sample from distributions for
which we only know the probability of each state up to a
multiplicative constant
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Why Bayesian inference is hard

! 

P(h | d) =
P(d | h)P(h)

P(d | " h )P( " h )
" h #H

$

Evaluating the posterior probability of a hypothesis
requires summing over all hypotheses

(statistical physics: computing partition function)
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Modern Monte Carlo methods

• Sampling schemes for distributions with large state
spaces known up to a multiplicative constant

• Two example approaches:
– importance sampling
– Markov chain Monte Carlo
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Importance sampling

   Basic idea: generate from the wrong distribution, assign
weights to samples to correct for this

! 

Ep(x ) f (x)[ ] = f (x)p(x)dx"

! 

= f (x)
p(x)

q(x)
q(x)" dx

! 

"
1

n
f (xi

i=1

n

# )
p(xi)

q(xi)
for xi ~ q(x)
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Importance sampling

works when sampling from proposal is easy, target is hard
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An alternative scheme…

! 

Ep(x ) f (x)[ ] "
1

n
f (xi

i=1

n

# )
p(xi)

q(xi)
for xi ~ q(x)

! 

Ep(x ) f (x)[ ] "
f (xi

i=1

n

# )
p(xi)

q(xi)

p(xi)

q(xi)i=1

n

#
for xi ~ q(x)

works when p(x) is known up to a multiplicative constant 
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More formally…

µIS is consistent, (µIS - µ) → 0 a.s. as n → ∞
µIS is asymptotically normal, with

µIS is biased, with

! 

" IS

2
= Ep(x ) ( f (x) # Ep(x )[ f (x)])

2 p(x)

q(x)

$ 

% 
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( 
) 

! 

µIS "µ =
1

n
Ep(x )[ f (x)]Ep(x )

p(x)

q(x)

# 
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Optimal importance sampling

• Asymptotic variance is

• This is minimized by

! 

" IS

2
= Ep(x ) ( f (x) # Ep(x )[ f (x)])

2 p(x)

q(x)

$ 

% 
& 

' 

( 
) 

! 

q(x)" f (x) # Ep(x )[ f (x)] p(x)
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Optimal importance sampling
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Likelihood weighting

• A particularly simple form of importance sampling
for posterior distributions

• Use the prior as the proposal distribution
• Weights:

! 

p(" |D)

p(")
=
p(D |")p(")

p(D)p(")
=
p(D |")

p(D)
# p(D |")
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Likelihood weighting

• Generate samples of all variables except
observed variables

• Assign weights proportional to probability of
observed data given values in sample

X1 X2

X3X4
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Importance sampling

• A general scheme for sampling from complex
distributions that have simpler relatives

• Simple methods for sampling from posterior
distributions in some cases (easy to sample from prior,
prior and posterior are close)

• Can be more efficient than simple Monte Carlo
– particularly for, e.g., tail probabilities

• Also provides a solution to the question of how we can
update beliefs as data come in…
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Particle filtering

d1 d2 d3 d4

s1 s2 s3 s4

We want to generate samples from P(s4|d1, …, d4)

! 

P(s4 | d1,...,d4 )"P(d4 | s4 )P(s4 | d1,...,d3)

= P(d4 | s4 ) P(s4 | s3)P(s3 | d1,...,d3)
s3

#

We can use likelihood weighting if we can sample
from P(s4|s3) and P(s3|d1, …, d3)
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Particle filtering

! 

P(s4 | d1,...,d4 )"P(d4 | s4 ) P(s4 | s3)P(s3 | d1,...,d3)
s3

#

samples from 
P(s3|d1,…,d3)

samples from 
P(s4|d1,…,d3)

sample from
P(s4|s3)

weight by
P(d4|s4)

weighted atoms
P(s4|d1,…,d4)

samples from
P(s4|d1,…,d4)
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Tweaks and variations

• If we can enumerate values of s4, can sample from

• No need to resample at every step, since we can
accumulate weights over multiple observations
– resampling reduces diversity in samples
– only necessary when variance of weights is large

• Stratification and clever resampling schemes reduce
variance (Fearnhead, 2001)

! 

P(s4 | d1,...,d4 )"P(d4 | s4 ) P(s4 | s3
(i)
)

i=1

n

#
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The promise of particle filters

• People need to be able to update probability
distributions over large hypothesis spaces as more data
become available

• Particle filters provide a way to do this with limited
computing resources…
– maintain a fixed finite number of samples

• Not just for dynamic models
– can work with a fixed set of hypotheses, although this

requires some further tricks for maintaining diversity
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Markov chain Monte Carlo

• Basic idea: construct a Markov chain that will converge
to the target distribution, and draw samples from that
chain

• Just uses something proportional to the target
distribution (good for Bayesian inference!)

• Can work in state spaces of arbitrary (including
unbounded) size (good for nonparametric Bayes)
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   Variables x(t+1) independent of all previous variables
given immediate predecessor x(t)

Markov chains

x x x x x x x x

Transition matrix
T = P(x(t+1)|x(t))
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An example: card shuffling

• Each state x(t) is a permutation of a deck of cards (there
are 52! permutations)

• Transition matrix T indicates how likely one permutation will
become another

• The transition probabilities are determined by the shuffling
procedure
– riffle shuffle
– overhand
– one card
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Convergence of Markov chains

• Why do we shuffle cards?
• Convergence to a uniform distribution takes only 7

riffle shuffles…
• Other Markov chains will also converge to a

stationary distribution, if certain simple conditions are
satisfied (called “ergodicity”)
– e.g. every state can be reached in some number of steps

from every other state
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Markov chain Monte Carlo

• States of chain are variables of interest

• Transition matrix chosen to give target
distribution as stationary distribution

x x x x x x x x

Transition matrix
T = P(x(t+1)|x(t))
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Metropolis-Hastings algorithm

• Transitions have two parts:
– proposal distribution: Q(x(t+1)|x(t))

– acceptance: take proposals with probability

     A(x(t),x(t+1)) = min( 1,                            )
P(x(t+1)) Q(x(t)|x(t+1))
P(x(t)) Q(x(t+1)|x(t))
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Metropolis-Hastings algorithm

p(x)
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Metropolis-Hastings algorithm

p(x)
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Metropolis-Hastings algorithm

p(x)
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Metropolis-Hastings algorithm

A(x(t), x(t+1)) = 0.5

p(x)
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Metropolis-Hastings algorithm

p(x)
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Metropolis-Hastings algorithm

A(x(t), x(t+1)) = 1

p(x)
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Metropolis-Hastings in a slide
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Metropolis-Hastings algorithm

• For right stationary distribution, we want

• Sufficient condition is detailed balance:
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Metropolis-Hastings algorithm

This is symmetric in (x,y) and thus satisfies detailed balance


