Linear Discriminant Functions

Linear discriminant functions and decision surfaces

- Definition

It is a function that is a linear combination of the components of x

$$
\begin{equation*}
g(x)=w^{t} x+w_{0} \tag{1}
\end{equation*}
$$

where w is the weight vector and w_{0} the bias

- A two-category classifier with a discriminant function of the form (1) uses the following rule:
Decide ω_{1} if

$$
g(x)>0 \text { and } \omega_{2} \text { if } g(x)<0
$$

\Leftrightarrow Decide ω_{1} if

$$
w^{t} x>-w_{0} \text { and } \omega_{2} \text { otherwise }
$$

If $g(x)=0 \Rightarrow x$ is assigned to either class

FIGURE 5.1. A simple linear classifier having d input units, each corresponding to the values of the components of an input vector. Each input feature value x_{i} is multiplied by its corresponding weight w_{i}; the effective input at the output unit is the sum all these products, $\sum w_{i} x_{i}$. We show in each unit its effective input-output function. Thus each of the d input units is linear, emitting exactly the value of its corresponding feature value. The single bias unit unit always emits the constant value 1.0. The single output unit emits a +1 if $\mathbf{w}^{t} \mathbf{x}+w_{0}>0$ or a -1 otherwise. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright (c) 2001 by John Wiley \& Sons, Inc.

- The equation $g(x)=0$ defines the decision surface that separates points assigned to the category ω_{l} from points assigned to the category ω_{2}
- When $g(x)$ is linear, the decision surface is a hyperplane
- Algebraic measure of the distance from x to the hyperplane (interesting result!)

FIGURE 5.2. The linear decision boundary H, where $g(\mathbf{x})=\mathbf{w}^{\mathbf{t}} \mathbf{x}+w_{0}=0$, separates the feature space into two half-spaces \mathcal{R}_{1} (where $g(\mathbf{x})>0$) and \mathcal{R}_{2} (where $g(\mathbf{x})<0$). From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright (c) 2001 by John Wiley \& Sons, Inc.

$$
\mathbf{x}=\mathbf{x}_{\mathbf{p}}+\frac{r \mathbf{w}}{\|\mathbf{w}\|}
$$

$\sin c e \mathrm{~g}\left(\mathbf{x}_{\mathbf{p}}\right)=0$ and $\mathbf{w}^{\mathbf{t}} \mathbf{w}=\|\mathbf{w}\|^{2}$

$$
\begin{aligned}
g(\mathbf{x}) & =\mathbf{w}^{\mathrm{t}} \mathbf{x}+w_{0} \Rightarrow \mathbf{w}^{\mathrm{t}}\left(\mathbf{x}_{\mathbf{p}}+\frac{r \mathbf{w}}{\|\mathbf{w}\|}\right)+w_{0} \\
& =g\left(\mathbf{x}_{\mathbf{p}}\right)+\mathbf{w}^{\mathrm{t}} \mathbf{w} \frac{r}{\|\mathbf{w}\|} \\
\Rightarrow \mathrm{r} & =\frac{g(\mathbf{x})}{\|\mathbf{w}\|}
\end{aligned}
$$

in particular $\mathrm{d}([0,0], \mathrm{H})=\frac{\mathrm{w}_{0}}{\|\mathrm{w}\|}$

- In conclusion, a linear discriminant function divides the feature space by a hyperplane decision surface
- The orientation of the surface is determined by the normal vector w and the location of the surface is determined by the bias

- The multi-category case

- We define c linear discriminant functions

$$
g_{i}(x)=w_{i}^{t} x+w_{i 0} \quad \mathrm{i}=1, \ldots, \mathrm{c}
$$

and assign x to ω_{i} if $g_{i}(x)>g_{j}(x) \forall j \neq i$; in case of ties, the classification is undefined

- In this case, the classifier is a "linear machine"
- A linear machine divides the feature space into c decision regions, with $\mathrm{g}_{\mathrm{i}}(\mathrm{x})$ being the largest discriminant if x is in the region R_{i}
- For a two contiguous regions $\mathcal{R}_{\text {and }} \mathcal{R}_{\dot{j}}$ the boundary that separates them is a portion of hyperplane H_{ij} defined by:

$$
\begin{aligned}
g_{i}(x)=g_{j}(x) & \\
& \Leftrightarrow\left(w_{i}-w_{j}\right)^{t} x+\left(w_{i 0}-w_{j 0}\right)=0
\end{aligned}
$$

- $w_{i}-w_{j}$ is normal to $H_{i j}$ and

$$
d\left(x, H_{i j}\right)=\frac{g_{i}-g_{j}}{\left\|w_{i}-w_{j}\right\|}
$$

FIGURE 5.4. Decision boundaries produced by a linear machine for a three-class problem and a five-class problem. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright ©c 2001 by John Wiley \& Sons, Inc.

Generalized Linear Discriminant Functions

- Decision boundaries which separate between classes may not always be linear
- The complexity of the boundaries may sometimes request the use of highly non-linear surfaces
- A popular approach to generalize the concept of linear decision functions is to consider a generalized decision function as:

$$
\begin{equation*}
g(x)=w_{1} f_{1}(x)+w_{2} f_{2}(x)+\ldots+w_{N} f_{N}(x)+w_{N+1} \tag{1}
\end{equation*}
$$

where $f_{i}(x), l \leq i \leq N$ are scalar functions of the pattern $x, x \in R^{n}$ (Euclidean Space)

- Introducing $f_{n+1}(x)=1$ we get:

$$
\begin{aligned}
& g(x)=\sum_{i=1}^{N+1} w_{i} f_{i}(x)=\mathbf{w}^{\mathbf{T}} \cdot \mathbf{y} \\
& \text { where } \quad \mathbf{w}=\left(\mathrm{w}_{1}, w_{2}, \ldots, w_{N}, w_{N+1}\right)^{T} \\
& \text { and } \\
& \mathbf{y}=\left(f_{l}(x), f_{2}(x), \ldots, f_{N}(x), f_{N+1}(x)\right)^{T}
\end{aligned}
$$

- This latter representation of $g(x)$ implies that any decision function defined by equation (1) can be treated as linear in the $(N+1)$ dimensional space $(N+1>n)$
- $g(x)$ maintains its non-linearity characteristics in R^{n}
- The most commonly used generalized decision function is $g(x)$ for which $f_{i}(x)(1 \leq i \leq N)$ are polynomials

$$
g(x)=w_{0}+\sum_{i=1: N} w_{i} x_{i}+\sum_{i=1: N} \sum_{j=0} \alpha_{i j} x_{i} x_{j}+\sum_{k=1: N} \sum_{i=1: N} \sum_{j=1: N} \beta_{i j k} x_{i} x_{j} x_{k}+\ldots
$$

- Quadratic decision functions for a 2-dimensional feature space

$$
\begin{aligned}
& g(x)=w_{1} x_{1}^{2}+w_{2} x_{1} x_{2}+w_{3} x_{2}^{2}+w_{4} x_{1}+w_{5} x_{2}+w_{6} \\
& \text { here }: \mathbf{w}=\left(\mathrm{w}_{1}, w_{2}, \ldots, w_{6}\right)^{T} \text { and } \mathbf{y}=\left(\mathrm{x}_{1}^{2}, x_{1} x_{2}, x_{2}^{2}, x_{1}, x_{2}, 1\right)^{T}
\end{aligned}
$$

- For patterns $x \in R^{n}$, the most general quadratic decision function is given by:

$$
\begin{equation*}
g(x)=\sum_{i=1}^{n} \omega_{i i} x_{i}^{2}+\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{i j} x_{i} x_{j}+\sum_{i=1}^{n} w_{i} x_{i}+w_{n+1} \tag{2}
\end{equation*}
$$

- The number of terms at the right-hand side is:

$$
\begin{aligned}
l & =N+1 \\
& =n+\frac{n(n-1)}{2}+n+1 \\
& =\frac{(n+1)(n+2)}{2}
\end{aligned}
$$

This is the total number of weights which are the free parameters of the problem
$-\mathrm{n}=3 \quad=>$ 10-dimensional
$-\mathrm{n}=10 \quad=>65$-dimensional

- In the case of polynomial decision functions of order m , a typical $f_{i}(x)$ is given by:

$$
\begin{aligned}
& f_{i}(x)=x_{i_{1}}^{e_{1}} x_{i_{2}}^{e_{2}} \ldots x_{i_{m}}^{e_{m}} \\
& \text { where } 1 \leq i_{1}, i_{2}, \ldots, i_{m} \leq n \text { and } \mathrm{e}_{\mathrm{i}}, 1 \leq i \leq m \text { is } 0 \text { or } 1 .
\end{aligned}
$$

- It is a polynomial with a degree between 0 and m . To avoid repetitions, $i_{1} \leq i_{2} \leq \ldots \leq i_{m}$

$$
g^{m}(x)=\sum_{i_{1}=1}^{n} \sum_{i_{2}=i_{1}}^{n} \ldots \sum_{i_{m}=i_{m-1}}^{n} w_{i_{1} i_{2} \ldots i_{m}} x_{i_{1}} x_{i_{2}} \ldots x_{i_{m}}+g^{m-1}(x)
$$

where $g^{m}(x)$ is the most general polynomial decision function of order m

Example 1: Let $n=3$ and $m=2$ then:

$$
\begin{aligned}
g^{2}(x) & =\sum_{i_{1}=1}^{3} \sum_{i_{2}=i_{1}}^{3} w_{i_{1} i_{2}} x_{i_{1}} x_{i_{2}}+w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}+w_{4} \\
= & w_{11} x_{1}^{2}+w_{12} x_{1} x_{2}+w_{13} x_{1} x_{3}+w_{22} x_{2}^{2}+w_{23} x_{2} x_{3}+w_{33} x_{3}^{2} \\
& +w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}+w_{4}
\end{aligned}
$$

Example 2: Let $n=2$ and $m=3$ then:

$$
\begin{aligned}
g^{3}(x) & =\sum_{i_{1}=1}^{2} \sum_{i_{2}=i_{l}}^{2} \sum_{i_{3}=i_{2}}^{2} w_{i_{1} i_{2} i_{3}} x_{i_{1}} x_{i_{2}} x_{i_{3}}+g^{2}(x) \\
& =w_{111} x_{1}^{3}+w_{112} x_{1}^{2} x_{2}+w_{122} x_{1} x_{2}^{2}+w_{222} x_{2}^{3}+g^{2}(x)
\end{aligned}
$$

where $g^{2}(x)=\sum_{i_{1}=1}^{2} \sum_{i_{2}=i_{1}}^{2} w_{i_{1} i_{2}} x_{i_{1}} x_{i_{2}}+g^{1}(x)$

$$
=w_{11} x_{1}^{2}+w_{12} x_{1} x_{2}+w_{22} x_{2}^{2}+w_{1} x_{1}+w_{2} x_{2}+w_{3}
$$

Figure 5.5: The mapping $\mathbf{y}=\left(1, x, x^{2}\right)^{t}$ takes a line and transforms it to a parabola in three dimensions. A plane splits the resulting \mathbf{y} space into regions corresponding to two categories, and this in turn gives a non-simply connected decision region in the one-dimensional x space.

Figure 5.6: The two-dimensional input space x is mapped through a polynomial function f to \mathbf{y}. Here the mapping is $y_{1}=x_{1}, y_{2}=x_{2}$ and $y_{3} \propto x_{1} x_{2}$. A linear discriminant in this transformed space is a hyperplane, which cuts the surface. Points to the positive side of the hyperplane \hat{H} correspond to category ω_{1}, and those beneath it ω_{2}. Here, in terms of the \mathbf{x} space, \mathcal{R}_{1} is a not simply connected.

Figure 5.7: A three-dimensional augmented feature space \mathbf{y} and augmented weight vector a (at the origin). The set of points for which $\mathbf{a}^{t} \mathbf{y}=0$ is a plane (or more generally, a hyperplane) perpendicular to \mathbf{a} and passing through the origin of \mathbf{y} space, as indicated by the red disk. Such a plane need not pass through the origin of the two-dimensional x-space at the top, of course, as shown by the dashed line. Thus there exists an augmented weight vector a that will lead to any straight decision line in x -space.

- Augmentation
- Incorporate labels into data
- Margin

Figure 5.9: The effect of the margin on the solution region. At the left, the case of no margin $(b=0)$ equivalent to a case such as shown at the left in Fig. 5.8. At the right is the case $b>0$, shrinking the solution region by margins $b /\left\|\mathbf{y}_{i}\right\|$.

Learning Linear Classifiers

Basic Ideas

Directly "fit" linear boundary in feature space.

- 1) Define an error function for classification
- Number of errors?
- Total distance of mislabeled points from boundary?
- Least squares error
- Within/between class scatter
- Optimize the error function on training data
- Gradient descent
- Modified gradient descent
- Various search proedures.
- How much data is needed?

Two-category case

- Given $x_{1}, x_{2}, \ldots, x_{n}$ sample points, with true category labels: $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$

$$
\begin{aligned}
& \alpha_{i}=1 \\
& \left.\alpha_{i}=-1\right\} \text { if point } x_{i} \text { is from class } \omega_{1} \\
& \hline
\end{aligned}
$$

- Decision are made according to:

$$
\begin{array}{ll}
\text { if } \mathbf{a}^{\mathrm{t}} x_{\mathrm{i}}>0 & \text { class } \omega_{1} \text { is chosen } \\
\text { if } \mathbf{a}^{\mathrm{t}} x_{\mathrm{i}}<0 & \text { class } \omega_{2} \text { is chosen }
\end{array}
$$

- Now these decisions are wrong when $\mathbf{a}^{t} \mathbf{x}_{\mathbf{i}}$ is negative and belongs to class ω_{1}.
Let $y_{i}=\alpha_{i} x_{i} \quad$ Then $y_{i}>0$ when correctly labelled, negative otherwise.
- Separating vector (Solution vector)
- Find a such that $\mathbf{a}^{\mathbf{t}} \mathbf{y}_{\mathbf{i}}>0$ for all i.
- $\mathbf{a}^{\mathbf{t}} \mathbf{y}_{\mathbf{i}}=0$ defines a hyperplane with \mathbf{a} as normal

Figure 5.8: Four training samples (black for ω_{1}, red for ω_{2}) and the solution region in feature space. The figure on the left shows the raw data; the solution vectors leads to a plane that separates the patterns from the two categories. In the figure on the right, the red points have been "normalized" - i.e., changed in sign. Now the solution vector leads to a plane that places all "normalized" points on the same side.

- Problem: solution not unique
- Add Additional constraints:

Margin, the distance away from boundary $\mathbf{a}^{\mathbf{t}} \mathbf{y}_{\mathbf{i}}>b$

Figure 5.9: The effect of the margin on the solution region. At the left, the case of no margin $(b=0)$ equivalent to a case such as shown at the left in Fig. 5.8. At the right is the case $b>0$, shrinking the solution region by margins $b /\left\|\mathbf{y}_{i}\right\|$.

Margins in data space

(a) Larger margin

(b) Smaller margin

Larger margins promote uniqueness for underconstrained problems

Finding a solution vector by minimizing an error criterion

What error function?
How do we weight the points? All the points or only error points?
Only error points:
Perceptron Criterion

$$
J_{P}\left(\mathbf{a}^{\mathbf{t}}\right)=\sum_{y_{i} \in y}-\left(\mathbf{a}^{\mathbf{t}} y_{i}\right) \quad Y=\left\{y_{i} \mid \mathbf{a}^{\mathbf{t}} y_{i}<0\right\}
$$

Perceptron Criterion with Margin

$$
J_{P}\left(\mathbf{a}^{\mathbf{t}}\right)=\sum_{y_{i} \in y}-\left(\mathbf{a}^{\mathbf{t}} y_{i}\right) \quad \mathcal{Y}=\left\{y_{i} \mid \mathbf{a}^{\mathbf{t}} y_{i}<b\right\}_{25}
$$

- Generalization is not good in this case:

- But better if a margin (color) $x_{2} \uparrow$ is introduced:

Minimizing Error via Gradient Descent

$$
\mathbf{a}(k+1)=\mathbf{a}(k)-\eta(k) \nabla J(\mathbf{a}(k)),
$$

Algorithm 1 (Basic gradient descent)

$$
\begin{aligned}
& 1 \\
& \frac{\text { begin }}{\text { initialize }} \text { a, criterion } \theta, \eta(\cdot), k=0 \\
& 3 \quad \text { do } k \leftarrow k+1 \\
& 3 \leftarrow \mathbf{a}-\eta(k) \nabla J(\mathbf{a}) \\
& 4 \quad \underline{\text { until } \eta(k) \nabla J(\mathbf{a})<\theta} \\
& 5 \\
& 6 \\
& \underline{\text { return }} \mathbf{~ a}
\end{aligned}
$$

- The min(max) problem:

$\min f(x)$ x

- But we learned in calculus how to solve that kind of question!

Motivation

- Not exactly,
- Functions: $f: R^{n} \rightarrow R$
- High order polynomials:

$$
x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}
$$

- What about function that don't have an analytic presentation: "Black Box"

$$
f:=(x, y) \rightarrow \cos \left(\frac{1}{2} x\right) \cos \left(\frac{1}{2} y\right) x
$$

Directional Derivatives:

first, the one dimension derivative:

Directional Derivatives :
 Along the Axes...

Directional Derivatives : In general direction...

$v \in R^{2}$

$$
\|v\|=1
$$

$$
\frac{\partial f(x, y)}{\partial v}
$$

Directional Derivatives

The Gradient: Definition in R^{2}

$$
\begin{aligned}
& f: R^{2} \rightarrow R \\
& \nabla f(x, y):=\left(\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}
\end{array}\right) \\
&
\end{aligned}
$$

The Gradient: Definition

$$
\begin{aligned}
& f: R^{n} \rightarrow R \\
& \nabla f\left(x_{1}, \ldots, x_{n}\right):=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)
\end{aligned}
$$

The Gradient Properties

- The gradient defines (hyper) plane approximating the function infinitesimally

The Gradient properties

- Computing directional derivatives
- By the chain rule: (important for later use)

$$
\|v\|=1 \quad \frac{\partial f}{\partial v}(p)=\left\langle(\nabla f)_{p}, v\right\rangle
$$

Want rate of
change along v, at
a point p

The Gradient properties

(intuition: the gradient points to the greatest change in direction)

The Gradient Properties

- Let $f: R^{n} \longrightarrow R$ be a smooth function around P ,
if f has local minimum (maximum) at p then,

$$
(\nabla f)_{p}=\overrightarrow{0}
$$

(Necessary for local min(max))

The Gradient Properties

Intuition

The Gradient Properties

Formally: for any
We get:

$$
v \in R^{n} \backslash\{0\}
$$

$$
\begin{aligned}
& 0=\frac{d f(p+t \cdot v)}{d t}=\left\langle(\nabla f)_{p}, v\right\rangle \\
& \Rightarrow(\nabla f)_{p}=\overrightarrow{0}
\end{aligned}
$$

The Gradient Properties

- We found the best INFINITESIMAL DIRECTION at each point,
- Looking for minimum using "blind man" procedure
- How can get to the minimum using this knowledge?

Steepest Descent

- Algorithm

Initialization: $x_{0} \in R^{n}$
loop while $\nabla f\left(x_{i}\right)>\varepsilon$
compute search direction $h_{i}=\nabla f\left(x_{i}\right)$
update $x_{i+1}=x_{i}-\lambda \cdot h_{i}$
end loop

Setting the Learning Rate Intelligently

$$
J(\mathbf{a}) \simeq J(\mathbf{a}(k))+\boldsymbol{\nabla} J^{t}(\mathbf{a}-\mathbf{a}(k))+\frac{1}{2}(\mathbf{a}-\mathbf{a}(k))^{t} \mathbf{H}(\mathbf{a}-\mathbf{a}(k)),
$$

where \mathbf{H} is the Hessian matrix of second partial derivatives $\partial^{2} J / \partial a_{i} \partial a_{j}$ evaluated at $\mathbf{a}(k)$. Then, substituting $\mathbf{a}(k+1)$ from Eq. 12 into Eq. 13 we find:

$$
J(\mathbf{a}(k+1)) \simeq J(\mathbf{a}(k))-\eta(k)\|\nabla J\|^{2}+\frac{1}{2} \eta^{2}(k) \boldsymbol{\nabla} J^{t} \mathbf{H} \boldsymbol{\nabla} J .
$$

Minimizing this approximation:

$$
\eta(k)=\frac{\|\boldsymbol{\nabla} J\|^{2}}{\nabla J^{t} \mathbf{H} \nabla J}
$$

Minimizing Perceptron Criterion

Perceptron Criterion

$$
J_{P}\left(\mathbf{a}^{\mathbf{t}}\right)=\sum_{y_{i} \in y}-\mathbf{a}^{\mathbf{t}} y_{i} \quad \mathcal{Y}=\left\{y_{i} \mid \mathbf{a}^{\mathbf{t}} y_{i}<0\right\}
$$

$$
\begin{aligned}
\nabla_{\mathbf{a}}\left(J_{P}\left(\mathbf{a}^{\mathbf{t}}\right)\right) & =\nabla_{\mathbf{a}} \sum_{y_{i} \in y}-\mathbf{a}^{\mathbf{t}} y_{i} \\
& =\sum_{y_{i} \in y}-y_{i}
\end{aligned}
$$

Which gives the update rule:
$\mathbf{a}(j+1)=\mathbf{a}(k)+\eta_{\mathrm{k}} \sum_{y_{i} \in y_{k}} y_{i}$

Where \mathcal{Y}_{k} is the misclassified set at step k

Batch Perceptron Update

Algorithm 3 (Batch Perceptron)

Figure 5.12: The Perceptron criterion, J_{p} is plotted as a function of the weights a_{1} and a_{2} for a three-pattern problem. The weight vector begins at $\mathbf{0}$, and the algorithm sequentially adds to it vectors equal to the "normalized" misclassified patterns themselves. In the example shown, this sequence is $\mathbf{y}_{2}, \mathbf{y}_{3}, \mathbf{y}_{1}, \mathbf{y}_{3}$, at which time the vector lies in the solution region and iteration terminates. Note that the second update (by \mathbf{y}_{3}) takes the candidate vector farther from the solution region than after the first update (cf. Theorem 5.1. (In an alternate, batch method, all the misclassified points are added at each iteration step leading to a smoother trajectory in weight space.)

Simplest Case

$$
\begin{equation*}
\stackrel{\downarrow}{\mathbf{y}_{1}}, \quad \mathbf{y}_{2}, \stackrel{\downarrow}{\mathbf{y}} 3, \stackrel{\downarrow}{\mathbf{y}_{1}}, \stackrel{\downarrow}{\mathbf{y}} \mathbf{y}_{2}, \mathbf{y}_{3}, \mathbf{y}_{1}, \stackrel{\downarrow}{\mathbf{y}_{2}}, \ldots \tag{19}
\end{equation*}
$$

are misclassified, then the sequence $\mathbf{y}^{1}, \mathbf{y}^{2}, \mathbf{y}^{3}, \mathbf{y}^{4}, \mathbf{y}^{5}, \ldots$ denotes the sequence $\mathbf{y}_{1}, \mathbf{y}_{3}, \mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{2}, \ldots$ With this understanding, the fixed-increment rule for generating a sequence of weight vectors can be written as

$$
\left.\begin{array}{ll}
\mathbf{a}(1) & \text { arbitrary } \tag{20}\\
\mathbf{a}(k+1)=\mathbf{a}(k)+\mathbf{y}^{k} & k \geq 1
\end{array}\right\}
$$

where $\mathbf{a}^{t}(k) \mathbf{y}^{k} \leq 0$ for all k. If we let n denote the total number of patterns, the algorithm is:

Algorithm 4 (Fixed-increment single-sample Perceptron)

```
1 begin initialize \(\mathbf{a}, k=0\)
\(2 \quad\) do \(k \leftarrow(k+1) \bmod n\)
\(3 \quad \underline{\text { if }} \mathbf{y}_{k}\) is misclassified by a then \(\mathbf{a} \leftarrow \mathbf{a}-\mathbf{y}_{k}\)
4 until all patterns properly classified
5 return a
6 end
```


When does perceptron rule converge?

Theorem 5.1 (Perceptron Convergence) If training samples are linearly separable then the sequence of weight vectors given by Algorithm 4 will terminate at a solution vector.

$$
\left.\begin{array}{ll}
\mathbf{a}(1) & \text { arbitrary } \\
\mathbf{a}(k+1)=\mathbf{a}(k)+\eta(k) \mathbf{y}^{k} & k \geq 1,
\end{array}\right\}
$$

where now $\mathbf{a}^{t}(k) \mathbf{y}^{k} \leq b$ for all k. Thus for n patterns, our algorithm is:

Algorithm 5 (Variable increment Perceptron with margin)

1 begin initialize a, criterion θ, margin $b, \eta(\cdot), k=0$
$2 \quad$ do $k \leftarrow k+1$
$3 \quad$ if $\mathbf{a}^{t} \mathbf{y}_{k}+b<0$ then $\mathbf{a} \leftarrow \mathbf{a}+\eta(k) \mathbf{y}_{k}$
$4 \quad$ until $\mathbf{a}^{t} \mathbf{y}_{k}+b \leq 0$ for all k
5 return a
end

It can be shown that if the samples are linearly separable and if

$$
\begin{gathered}
\eta(k) \geq 0 \\
\lim _{m \rightarrow \infty} \sum_{k=1}^{m} \eta(k)=\infty
\end{gathered}
$$

Different Error Functions

Four learning criteria as a function of weights in a linear classifier.

At the upper left is the total number of patterns misclassified, which is piecewise constant and hence unacceptable for gradient descent procedures.

At the upper right is the Perceptron criterion (Eq. 16), which is piecewise linear and acceptable for gradient descent.

The lower left is squared error (Eq. 32), which has nice analytic properties and is useful even when the patterns are not linearly separable.

The lower right is the square error with margin. A designer may adjust the margin b in order to force the solution vector to lie toward the middle of the $b=0$ solution region in hopes of improving generalization of the resulting classifier.

Name	Criterion	Algorithm	Conditions					
Fixed Increment	$J_{p}=\sum_{\mathbf{a}^{t} \mathbf{y} \leq 0}\left(-\mathbf{a}^{t} \mathbf{y}\right)$	$\begin{gathered} \mathbf{a}(k+1)=\mathbf{a}(k)+\mathbf{y}^{k} \\ \left(\mathbf{a}^{t}(k) \mathbf{y}^{k} \leq 0\right) \end{gathered}$	-					
Variable Increment	$J_{p}^{\prime}=\sum_{\mathbf{a}^{t} \mathbf{y} \leq 0}-\left(\mathbf{a}^{t} \mathbf{y}-b\right)$	$\begin{gathered} \mathbf{a}(k+1)=\mathbf{a}(k)+\eta(k) \mathbf{y}^{k} \\ \left(\mathbf{a}^{t}(k) \mathbf{y}^{k} \leq b\right) \end{gathered}$	$\begin{aligned} & \eta(k) \geq 0 \\ & \sum \eta(k) \rightarrow \infty \\ & \frac{\sum \eta^{2}(k)}{\left(\sum \eta(k)\right)^{2}} \rightarrow 0 \end{aligned}$					
Relaxation	$J_{r}=\frac{1}{2} \sum_{a^{t} y \leq b} \frac{\left(a^{t} y-b\right)^{2}}{\\|y\\|^{2}}$	$\begin{gathered} \mathbf{a}(k+1)=\mathbf{a}(k)+\eta \frac{b-\mathbf{a}^{t}(k) \mathbf{y}^{k}}{\left\\|\mathbf{y}^{k}\right\\| \\|^{2}} \mathbf{y}^{k} \\ \left(\mathbf{a}^{t}(k) \mathbf{y}^{k} \leq b\right) \end{gathered}$	$0<\eta<2$					
$\begin{aligned} & \text { Widrow-Hoff } \\ & \text { (LMS) } \\ & \hline \end{aligned}$	$J_{s}=\sum_{i}\left(\mathbf{a}^{t} \mathbf{y}_{i}-b_{i}\right)^{2}$	$\begin{gathered} \mathbf{a}(k+1)= \\ \mathbf{a}(k)+\eta(k)\left(b_{k}-\mathbf{a}^{t}(k) \mathbf{y}^{k}\right) \mathbf{y}^{k} \end{gathered}$	$\begin{aligned} & \eta(k)>0 \\ & \eta(k) \rightarrow 0 \end{aligned}$					
Stochastic Approx.	$J_{m}=\mathcal{E}\left[\left(\mathbf{a}^{t} \mathbf{y}-z\right)^{2}\right]$	$\begin{gathered} \mathbf{a}(k+1)= \\ \mathbf{a}(k)+\eta(k)\left(z_{k}-\mathbf{a}^{t}(k) \mathbf{y}^{k}\right) \mathbf{y}^{k} \end{gathered}$	$\begin{gathered} \sum \eta(k) \rightarrow \infty \\ \sum \eta^{2}(k) \rightarrow L<\infty \end{gathered}$					
		$\begin{gathered} \mathbf{a}(k+1)= \\ \mathbf{a}(k)+\mathbf{R}(k)\left(z(k)-\mathbf{a}(k)^{t} \mathbf{y}^{k}\right) \mathbf{y}^{k} \end{gathered}$	$\mathbf{R}^{-1}(k+1)=\mathbf{R}^{-1}(k)+\mathbf{y}_{k} \mathbf{y}_{k}^{t}$					
Pseudoinverse	$J_{s}=\\|\mathbf{Y a}-\mathbf{b}\\|^{2}$	$\mathrm{a}=\mathbf{Y}^{\dagger} \mathrm{b}$	-					
Ho-Kashyap	$J_{s}=\\|\mathbf{Y a}-\mathbf{b}\\|^{2}$	$\begin{gathered} \mathbf{b}(k+1)=\mathbf{b}(k)+\eta(\mathbf{e}(k)+\|\mathbf{e}(k)\|) \\ \mathbf{e}(k)=\mathbf{Y a}(k)-\mathbf{b}(k) \\ \mathbf{a}(k)=\mathbf{Y}^{\dagger} \mathbf{b}(k) \end{gathered}$	$\begin{gathered} 0<\eta<1 \\ \mathbf{b}(1)>0 \end{gathered}$					
		$\begin{gathered} \mathbf{b}(k+1)=\mathbf{b}(k)+\eta(\mathbf{e}(k)+(\|\mathbf{e}(k)\|) \\ \mathbf{a}(k+1)=\mathbf{a}(k)+\eta \mathbf{R} \mathbf{Y}^{t}\|\mathbf{e}(k)\| \end{gathered}$						

Three Different issues

1) Class boundary expressiveness
2) Error definition
3) Learning method

Fisher's linear disc.

Figure 4.27: Projection of samples onto two different lines. The figure on the right shows greater separation between the red and black projected points.

Fisher's Linear Discriminant Intuition

What is the best discriminant?
The one for which the projected distributions are as wide apart as possible!

Wide apart, of course with respect to their

variances.
Seek a \mathbf{w} for which $\frac{\left(\mu_{1}-\mu_{2}\right)^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}$ is maximal

$$
J(\mathbf{w})=\frac{\left|\tilde{m}_{1}-\tilde{m}_{2}\right|^{2}}{\tilde{s}_{1}^{2}+\tilde{s}_{2}^{2}}
$$

We are looking for a good projection $\quad y=\mathbf{w}^{t} \mathbf{x}$
Write this in terms of w
$\tilde{m}_{i}=\frac{1}{n_{i}} \sum_{y \in \mathcal{Y}_{i}} y=\frac{1}{n_{i}} \sum_{y \in \mathcal{Y}_{i}} \mathbf{w}^{t} \mathbf{x}=\mathbf{w}^{t} \mathbf{m}_{i}$.
So, $\quad\left|\tilde{m}_{1}-\tilde{m}_{2}\right|=\left|\mathbf{w}^{t}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)\right|$,

Next,

$$
\tilde{s}_{i}^{2}=\sum_{y \in \mathcal{Y}_{i}}\left(y-\tilde{m}_{i}\right)^{2}
$$

Define the scatter matrix:

$$
\mathbf{S}_{i}=\sum_{\mathbf{x} \in \mathcal{D}_{i}}\left(\mathbf{x}-\mathbf{m}_{i}\right)\left(\mathbf{x}-\mathbf{m}_{i}\right)^{t}
$$

Then,

$$
\begin{aligned}
\tilde{s}_{i}^{2} & =\sum_{\mathbf{x} \in \mathcal{D}_{i}}\left(\mathbf{w}^{t} \mathbf{x}-\mathbf{w}^{t} \mathbf{m}_{i}\right)^{2} \\
& =\sum_{\mathbf{x} \in \mathcal{D}_{i}} \mathbf{w}^{t}\left(\mathbf{x}-\mathbf{m}_{i}\right)\left(\mathbf{x}-\mathbf{m}_{i}\right)^{t} \mathbf{w} \\
& =\mathbf{w}^{t} \mathbf{S}_{i} \mathbf{w}
\end{aligned}
$$

Thus the denominator can be written:

$$
\tilde{s}_{1}^{2}+\tilde{s}_{2}^{2}=\mathbf{w}^{t} \mathbf{S}_{W} \mathbf{w} . \quad \mathbf{S}_{W}=\mathbf{S}_{1}+\mathbf{S}_{2}
$$

Similarly, the separations of the projected means obeys

$$
\begin{aligned}
\left(\tilde{m}_{1}-\tilde{m}_{2}\right)^{2} & =\left(\mathbf{w}^{t} \mathbf{m}_{1}-\mathbf{w}^{t} \mathbf{m}_{2}\right)^{2} \\
& =\mathbf{w}^{t}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)^{t} \mathbf{w} \\
& =\mathbf{w}^{t} \mathbf{S}_{B} \mathbf{w}
\end{aligned}
$$

where

$$
\mathbf{S}_{B}=\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)^{t} .
$$

Rayleigh Quotient
Maximizing equivalent to solving:

$$
\mathbf{S}_{B} \mathbf{w}=\lambda \mathbf{S}_{W} \mathbf{w}
$$

$$
J(\mathbf{w})=\frac{\mathbf{w}^{t} \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{t} \mathbf{S}_{W} \mathbf{w}}
$$

With solution:

$$
\mathbf{S}_{W}^{-1} \mathbf{S}_{B} \mathbf{w}=\lambda \mathbf{w}
$$

$$
\mathbf{w}=\mathbf{S}_{W}^{-1}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)
$$

Fisher's criterion

Seek a w for which
$J_{F}=\frac{\left|\mathbf{w}^{T}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)\right|^{2}}{\mathbf{w}^{T} \mathbf{S}_{\boldsymbol{W}} \mathbf{w}}$ is maximum.
\mathbf{m}_{1} and \mathbf{m}_{2} are group means, and $\mathbf{S}_{\boldsymbol{W}}$ is the 'pooled within - class sample covariance matrix, given by :
$\frac{1}{n-2}\left(n_{1} \hat{\Sigma}_{1}+n_{2} \hat{\Sigma}_{2}\right)$
where $\hat{\Sigma}_{1}$ and $\hat{\Sigma}_{2}$ are the covariance matrices of the classes respectively. The solution can be found by differentiating J_{F} with respect to \mathbf{w} and put to zero. The solution is:
$\mathbf{w} \propto \mathbf{S}_{\boldsymbol{W}}^{-1}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)$

Fisher's criterion

But we still need a classification rule!
$\mathbf{w}^{T} \mathbf{x}+w_{0}>0$, but what is w_{0} ?
From previous work on normal distributions with equal covariance matrix :
$\mathbf{w}=\mathbf{S}_{\boldsymbol{W}}^{-1}\left(\mathbf{m}_{1}-\mathbf{m}_{\mathbf{2}}\right)$
$w_{0}=-\frac{1}{2}\left(\mathbf{m}_{1}+\mathbf{m}_{2}\right) \mathbf{S}_{W}^{-1}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)-\log \left(\frac{p\left(\omega_{2}\right)}{p\left(\omega_{1}\right)}\right)$
The optimality of the following rule is of course only guaranteed for: normal distributed data! Assign to ω_{1} if
$\left\{\mathbf{x}-\frac{1}{2}\left(\mathbf{m}_{1}+\mathbf{m}_{2}\right)\right\}^{T} \mathbf{w}>\log \left(\frac{p\left(\omega_{2}\right)}{p\left(\omega_{1}\right)}\right)$

Least mean squared error procedure

In the perceptron rule we only looked at the sign of $\mathbf{v}^{T} \mathbf{y}_{t}$.
In the LMS error procedure we assign a target value t_{t} to each sample.
The criterion is defined as :

$$
J_{S}=\|\mathbf{Y} \mathbf{v}-\mathbf{t}\|
$$

in which \mathbf{Y} is the matrix consisting of all \mathbf{y}_{i} ' s and \mathbf{t} the vector consisting of all t_{i} 's.

The solution is :

$$
\mathbf{v}=\left(\mathbf{Y}^{T} \mathbf{Y}\right)^{-1} \mathbf{Y}^{T} \mathbf{t}
$$

How well do we approximate the targets?

$$
\hat{\mathbf{t}}=\mathbf{Y} \mathbf{v}=\mathbf{Y}\left(\mathbf{Y}^{T} \mathbf{Y}\right)^{-1} \mathbf{Y}^{T} \mathbf{t} .
$$

Sum of squared errors :

$$
\|\hat{\mathbf{t}}-\mathbf{t}\|^{2}=\left\|\left\{\mathbf{Y}\left(\mathbf{Y}^{T} \mathbf{Y}\right)^{-1} \mathbf{Y}^{T}-\mathbf{I}\right\}\right\|^{2}
$$

Relationship to Fisher's discriminant

Assume that all samples of class ω_{1} get label t_{1}, and all samples from ω_{2} get label t_{2}. In that case the solution for w is :

$$
\mathbf{w}=\frac{\alpha}{n} \mathbf{S}_{W}^{-1}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right) .
$$

This is the same solution as Fisher's discriminant.

But how do we assign an unknown pattern \mathbf{x} ?
If $\mathbf{w}^{T} \mathbf{x}+w_{0}$ is closer to t_{1} than $-\left(\mathbf{w}^{T} \mathbf{x}+w_{0}\right)$ is to t_{2} then assign it to class ω_{1}. Or, assign to class ω_{1} if :

$$
\left(\mathbf{S}_{W}^{-1}\left(\mathrm{~m}_{1}-\mathrm{m}_{2}\right)\right)^{r}(\mathrm{x}-\mathrm{m})>\frac{t_{1}+t_{2}}{2} \frac{n_{2}-n_{1}}{\alpha}
$$

