
Linear Discriminant Functions

1

Linear discriminant functions and
decision surfaces

• Definition
It is a function that is a linear combination of the components of x

g(x) = wtx + w0 (1)
where w is the weight vector and w0 the bias

• A two-category classifier with a discriminant function of
the form (1) uses the following rule:
Decide ω1 if

g(x) > 0 and ω2 if g(x) < 0
⇔ Decide ω1 if

wtx > -w0 and ω2 otherwise
If g(x) = 0 ⇒ x is assigned to either class

2

3

– The equation g(x) = 0 defines the decision
surface that separates points assigned to the
category ω1 from points assigned to the
category ω2

– When g(x) is linear, the decision surface is a
hyperplane

– Algebraic measure of the distance from x to
the hyperplane (interesting result!)

4

5

– In conclusion, a linear discriminant function divides
the feature space by a hyperplane decision surface

– The orientation of the surface is determined by the
normal vector w and the location of the surface is
determined by the bias

!

x = xp +
rw

w

since g(xp) = 0 and wtw = w
2

g(x) = w
t
x + w0 " w

t
xp +

rw

w

$
%

&

'
(+ w0

= g(xp) + w
t
w

r

w

 " r =
g(x)

w

in particular d([0,0],H) =
w 0

w

H

w

x

xtw

r

xp

6

– The multi-category case

• We define c linear discriminant functions

and assign x to ωi if gi(x) > gj(x) ∀ j ≠ i; in case of ties, the classification
is undefined

• In this case, the classifier is a “linear machine”
• A linear machine divides the feature space into c decision regions, with

gi(x) being the largest discriminant if x is in the region Ri

• For a two contiguous regions Ri and Rj; the boundary that separates
them is a portion of hyperplane Hij defined by:

 gi(x) = gj(x)
⇔ (wi – wj)tx + (wi0 – wj0) = 0

• wi – wj is normal to Hij and

!

gi(x) = wi

t
x + wi0 i =1,...,c

ji

ji

ij
ww

gg
)H,x(d

!

!
=

7

8

Generalized Linear Discriminant Functions

• Decision boundaries which separate between classes
may not always be linear

• The complexity of the boundaries may sometimes
request the use of highly non-linear surfaces

• A popular approach to generalize the concept of linear
decision functions is to consider a generalized decision
function as:

g(x) = w1f1(x) + w2f2(x) + … + wNfN(x) + wN+1 (1)

where fi(x), 1 ≤ i ≤ N are scalar functions of the
pattern x, x ∈ Rn (Euclidean Space)

9

• Introducing fn+1(x) = 1 we get:

• This latter representation of g(x) implies that any
decision function defined by equation (1) can be treated
as linear in the (N + 1) dimensional space (N + 1 > n)

• g(x) maintains its non-linearity characteristics in Rn

!

g(x) = wi fi(x) = w
T
.y

i=1

N +1

"

where w = (w1,w2,...,wN ,wN +1)
T

and y = (f1(x), f2(x),..., fN (x), fN +1(x))
T

10

• The most commonly used generalized decision
function is g(x) for which fi(x) (1 ≤ i ≤N) are
polynomials

• Quadratic decision functions for a 2-dimensional
feature space

!

g(x) = w
0

+ wixi
i=1:N

" + # ijxi
j= 0

"
i=1:N

" x j + $ ijkxi
j=1:N

"
i=1:N

" x j

k=1:N

" xk +

!

g(x) = w1x1

2
+ w2x1x2 + w3x2

2
+ w4x1 + w5x2 + w6

here : w = (w1,w2,...,w6)
T

 and y = (x1

2
,x1x2,x2

2
,x1,x2,1)

T

11

• For patterns x ∈Rn, the most general quadratic decision
function is given by:

• The number of terms at the right-hand side is:

This is the total number of weights which are the free
parameters of the problem
– n = 3 => 10-dimensional
– n = 10 => 65-dimensional

!

g(x) = " ii xi
2

+ " ij xix j + wixi + wn+1
 (2)

i=1

n

#
j= i+1

n

#
i=1

n$1

#
i=1

n

#

!

l = N +1

= n +
n(n "1)

2
+ n +1

=
(n +1)(n + 2)

2

12

• In the case of polynomial decision functions of order m, a
typical fi(x) is given by:

– It is a polynomial with a degree between 0 and m. To avoid
repetitions, i1 ≤ i2 ≤ …≤ im

where gm(x) is the most general polynomial decision
function of order m

!

fi(x) = xi1
e1 xi2

e2 ...xim
em

where 1" i1,i2,...,im " n and ei,1" i " m is 0 or 1.

!

g
m
(x) = ... wi1i2 ...im

xi1 xi2 ...xim + g
m"1
(x)

im= im"1

n

#
i2= i1

n

#
i1=1

n

#

13

Example 1: Let n = 3 and m = 2 then:

Example 2: Let n = 2 and m = 3 then:

4332211

2

3333223

2

22231132112

2

111

3

ii

4332211iiii

3

1i

2

wxwxwxw

xwxxwxwxxwxxwx w

wxwxwxwxxw)x(g
12

2121

1

++++

+++++=

++++= !!
==

32211

2

2222112

2

111

2

ii

1

iiii

2

1i

2

23

2222

2

211222

2

1112

3

1111

2

ii

2

iiiiii

2

ii

2

1i

3

wxwxwxwxxwx w

)x(gxxw)x(gwhere

)x(gxwxxwxxwx w

)x(gxxxw)x(g

12

2121

1

23

321321

121

+++++=

+=

++++=

+=

!!

!!!

==

===

14

15

17

• Augmentation

• Incorporate labels into data

• Margin

18

Learning Linear Classifiers

20

Basic Ideas

Directly “fit” linear boundary in feature space.
• 1) Define an error function for classification

– Number of errors?
– Total distance of mislabeled points from boundary?
– Least squares error
– Within/between class scatter

• Optimize the error function on training data
– Gradient descent
– Modified gradient descent
– Various search proedures.
– How much data is needed?

21

Two-category case
• Given x1, x2,…, xn sample points, with true category labels:
α1, α2,…,αn

• Decision are made according to:

• Now these decisions are wrong when atxi is negative and
belongs to class ω1.
Let yi = αi xi Then yi >0 when correctly labelled,
negative otherwise.

!

if a
t
x
i
> 0 class "

1
 is chosen

if a
t
x
i
< 0 class "

2
 is chosen

!

"
i
=1

"
i
= #1

$
%
&

if point x
i
 is from class '1

if point x
i
 is from class '2

22

• Separating vector (Solution vector)
– Find a such that atyi>0 for all i.

• atyi=0 defines a hyperplane with a as normal

x2

x1

23

• Problem: solution not unique
• Add Additional constraints:
 Margin, the distance away from boundary atyi>b

24

Margins in data space

b

Larger margins promote uniqueness for
underconstrained problems

25

Finding a solution vector by
minimizing an error criterion

What error function?
How do we weight the points? All the points or

only error points?
Only error points:

!

Perceptron Criterion

JP (at) = "(at
yi

yi #Y

$) Y = {yi | at
yi < 0}

Perceptron Criterion with Margin

JP (at) = "(at
yi

yi #Y

$) Y = {yi | at
yi < b}

26

27

Minimizing Error via Gradient
Descent

28

• The min(max) problem:

• But we learned in calculus how to solve that
kind of question!

)(min xf
x

29

Motivation

• Not exactly,
• Functions:
• High order polynomials:

• What about function that don’t have an
analytic presentation: “Black Box”

 ! + ! x

1

6
x
3 1

120
x
5 1

5040
x
7

RRf n
!:

30

 := f ! (),x y
"

#
$$

%

&
''cos

1

2
x

"

#
$$

%

&
''cos

1

2
y x

31

Directional Derivatives:
first, the one dimension derivative:

!

32

x

yxf

!

!),(

y

yxf

!

!),(

Directional Derivatives :
Along the Axes…

33

v

yxf

!

!),(

2
Rv!

1=v

Directional Derivatives :
In general direction…

34

Directional
Derivatives

x

yxf

!

!),(

y

yxf

!

!),(

35

In the plane

2
R

RRf !
2

:

!!
"

#
$$
%

&

'

'

'

'
=(

y

f

x

f
yxf :),(

The Gradient: Definition in

36

!!
"

#
$$
%

&

'

'

'

'
=(

n

n
x

f

x

f
xxf ,...,:),...,(

1

1

RRf n
!:

The Gradient: Definition

37

The Gradient Properties
• The gradient defines (hyper) plane

approximating the function infinitesimally

y
y

f
x

x

f
z !"

#

#
+!"

#

#
=!

38

The Gradient properties
• Computing directional derivatives
• By the chain rule: (important for later use)

vfp
v

f
p ,)()(!=

"

"
1=v

Want rate of
change along ν, at
a point p

39

The Gradient properties

 is maximal choosing

 is minimal choosing

(intuition: the gradient points to the greatest change in direction)

v

f

!

!
p

p

f
f

v)(
)(

1
!"

!
=

p

p

f
f

v)(
)(

1
!"

!

#
=

40

The Gradient Properties

• Let be a smooth function
around P,

 if f has local minimum (maximum) at p
then,

(Necessary for local min(max))

!

f :R
n
" # " R

!

("f)p =
r
0

41

The Gradient Properties

Intuition

42

The Gradient Properties

Formally: for any
We get: }0{\nRv!

!

0 =
df (p + t " v)

dt
= (#f)p,v

$ (#f)p =
r
0

43

The Gradient Properties
• We found the best INFINITESIMAL

DIRECTION at each point,
• Looking for minimum using “blind man”

procedure
• How can get to the minimum using this

knowledge?

44

Steepest Descent

• Algorithm
Initialization:
loop while

compute search direction
update

end loop

n
Rx !

0

!

hi ="f (xi)

!

x
i+1 = x

i
" # $ h

i

!

"f (xi) > #

45

Setting the Learning Rate
Intelligently

Minimizing this approximation:

46

Minimizing Perceptron Criterion

!

Perceptron Criterion

JP (at) = "at
yi

yi #Y

$ Y = {yi | at
yi < 0}

%a JP (at)() =%a "at
yi

yi #Y

$

= "yi
yi #Y

$

Which gives the update rule :

a(j +1) = a(k) +&k yi
yi #Yk

$

Where Yk is the misclassified set at step k

47

Batch Perceptron Update

48

49

Simplest Case

50

When does perceptron rule
converge?

51

+

+

52

Different Error Functions Four learning criteria
as a function of
weights in a linear
classifier.

At the upper left is the total
number of patterns
misclassified, which is
piecewise constant and hence
unacceptable for gradient
descent procedures.

At the upper right is the
Perceptron criterion (Eq. 16),
which is piecewise linear and
acceptable for gradient
descent.

The lower left is squared
error (Eq. 32), which has nice
analytic properties and is
useful even when the
patterns are not linearly
separable.

The lower right is the square
error with margin. A designer
may adjust the margin b in
order to force the solution
vector to lie toward the
middle of the b = 0 solution
region in hopes of improving
generalization of the resulting
classifier.

53

Three Different issues

1) Class boundary
expressiveness

2) Error definition

3) Learning method

54

Fisher’s linear disc.

55

Fisher’s Linear Discriminant
Intuition

56

Write this in terms of w

We are looking for a good projection

So,

Next,

57

Define the scatter matrix:

Then,

Thus the denominator can be written:

58

Rayleigh Quotient
Maximizing equivalent to
solving:

With solution:

59

60

61

62

