Application: Can we tell what people are
looking at from their brain activity (in ‘real
time)?

- /V\ m /-\\ (Gaussian Spatial Smooth




The Data

* Block Paradigm (six runs per
subject)
* Three Categories of Objects
(counterbalanced across runs)
— Chairs, Faces and Houses
— Phase scrambled control stimulus

» Two Tasks
— Delayed matching
— Passive Viewing
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Patterns of Activation

* Activity Space
— voxels are
considered as axes

In a high dimensional
space

— Every brain
response can be
represented as a
point in the
multidimensional
activity space
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Discriminant Functions for the Normal

Density
« We saw that the minimum error-rate classification can

be achieved by the discriminant function
gi(x) = In P(x | @) + In P(w)

« (Case of multivariate normal

d

gi(%) = —%(x - 1) 2 (¥ = ) =~ In27 —%ln\zi\ +InP(w,)
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Special case X,=>
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+ Case 2= ¢?. (I stands for the identity matrix)
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— A classifier that uses linear discriminant functions is
called “a linear machine”

— The decision surfaces for a linear machine are
pieces of hyperplanes defined by

gi(x) = gi(%)

For Identity covariance case :

= %(‘ulf — M?)(x - X,)
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FIGURE 2.10. If the covariance matrices for two distributions are equal and proportional to the identity
malrix, then the distributions are spherical in d dimensions, and the boundary is a generalized hyperplane of
d =1 dimensions, perpendicular to the line separating the means. In these one-, two-, and three-dimensional
examples, we indicate p(x|w;) and the boundaries for the case P(w) = P(w;,). In the three-dimensional case,
the grid plane separates Ry from R;. From: Richard O. Duda, Peter E. Hart, and David C. Stork, Pattern
Classification. Copyright @© 2001 by John Wiley & Sons, Inc.
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~ The hyperplane separating K and &

always orthogonal to the line linking the means!
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FIGURE 2.11. As the priors are changed, the decision boundary shifts; for sufficiently
disparate priors the boundary will not lie between the means of these one-, two- and
three-dimensional spherical Gaussian distributions. From: Richard O. Duda, Peter E.
Hart, and David G. Stork, Fattern Classification. Copyright © 2001 by John Wiley &
Sons, Inc.

CSCI 5521 Pattern Recognition, Prof. Paul Schrater, Fall 2005



» (Case 2, = X (covariance of all classes are
identical but arbitrary!)

— Hyperplane separating R« and 21

m[P(w,)/ P(w,)]
(W—w, ) (u-p,;)

1
xo=5(ﬂi+ﬂj)— (W, —u;)

(the hyperplane separating Ri and R, Is generally not
orthogonal to the line between the means!)
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FIGURE 2.12. Probability densities (indicated by the surfaces in two dimensions and
ellipsoidal surfaces in three dimensions) and decision regions for equal but asymmet-
ric Gaussian distributions. The decision hyperplanes need not be perpendicular to the
line connecting the means. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Fattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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 Case X, = arbitrary

— The covariance matrices are different for each category

(Hyperquadrics which are: hyperplanes, pairs of hyperplanes, hyperspheres,
hyperellipsoids, hyperparaboloids, hyperhyperboloids)
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FIGURE 2.14. Arbitrary Gaussian distributions lead to Bayes decision boundaries that
are general hyperquadrics. Conversely, given any hyperquadric, one can find two Gaus-
sian distributions whose Bayes decision boundary is that hyperquadric. These variances
are indicated by the contours of constant probability density. From: Richard O. Duda,
Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John
Wiley & Sons, Inc.
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Estimating model parameters
Given Class-conditional, parametric density P (X | w:;, H)

1
Example: Plxlo.6) = (27)" 2|

1/2 exp(—%(x - Mi)tzzl(x - Mz))
where 0. = {Ml.,Zl.}
* Plug in estimates: Use procedure to get Mean
and Covariance. Plug these values in.
— Maximum likelihood
— Maximum A posteriori
— Overfits training data

 Bayesian estimates:

— Take into account the reliability of your mean and
covariance estimates to get better generalization.
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« Bayesian Estimation (Bayesian learning
in pattern classification problems)
— MLE: 6 presumed fixed
— BE: 6 random variable (ignorant of value)

— The computation of posterior probabilities
P(w, | xX) lies at the heart of Bayesian

classification
— Goal: compute P(w, | x, D)
Given the sample D, Bayes formula can be

written P(xlw,).P(w, D)

P(w, 1 x,D) = —
EP(X lw ).P(w,; D)
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« Maximum-Likelihood Estimation

* Has good convergence properties as the sample size
Increases

« Simpler than any other alternative techniques
— General principle

« Assume we have ¢ classes and
P(x | w) ~N(w, Z)

P(x | wy) =P (x| w, 6;) where:

0=u;2)= (‘ulj,‘ui,...,GIJ.I,G?,COV(XT,X’;)...)
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* ML Problem Statement

- LetD={x,, x,, ..., X}

For independent feature values,
P(Xy,..., X, 1 6) = IL,_y, P(x, | 6);

Our goal is to determine 6
0 = argmax P(x,,---,x, 10)
0
(value of 6 that makes this sample the most representative!)
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* Use the training samples to estimate:
0=(0,,0,,..,0,),
each 0, (i=1, 2, ..., ¢) is associated with each category
Suppose that D contains n samples, X4, Xo,..., X,
k=n
P(D|0) = k111P(Xk | 6) = F(6)

P(D | 0) is called the likelihood of 6 w.r.t. the set of samples)

N

O - ML estimate of 0 is, by definition the value that maximizes P(D | 6)
“It is the value of O that best agrees with the observed training sample”
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FIGURE 3.1. The top graph shows several training points in one dimension, known or
assumed to be drawn from a Gaussian of a particular variance, but unknown mean.
Four of the infinite number of candidate source distributions are shown in dashed
lines. The middle figure shows the likelihood p(D|#) as a function of the mean. If we
had a very large number of training points, this likelihood would be very narrow. The
value that maximizes the likelihood is marked #; it also maximizes the logarithm of
the likelihood-—that is, the log-likelihood /(#), shown at the bottom. Note that even
though they look similar, the likelihood p(D]#) is shown as a function of # whereas the
conditional density p(x|#) is shown as a function of x. Furthermore, as a function of 4,
the likelihood p(D)#) is not a probability density function and its area has no signifi-
cance. From: Richard O. Duda, Peter E. Hart, and David G. Stork, FPattern Classification.
Copyright © 2001 by John Wiley & Sons, Inc.



* Optimal estimation

- Let6 =(6,, 0,, ..., 6,)'and let V, be the gradient operator

B
90, 90,

Ve=

J

0

00

p-

— We define I(0) as the log-likelihood function

(6) = In P(D | 6)

— Find 6 that maximizes the log-likelihood

P o\ N

0 = arg meax |(0)
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Set of necessary conditions for an optimum is:

(Vol = S:Ve InP(x, | 0))
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» Example of a specific case: unknown u

- P(Xi | M) ~ N(M, Z) (Samples from a multivariate normal dist.)

InP(x, | u)= —%ln[(Zn)d‘Z‘] - %(xk - w)' 2 (x, - u)

and V , InP(x, )= Z‘l(xk — U)

— 0 = u therefore:
The ML estimate for u must satisfy:

}jz*uk - ) =0
- Z'IE(xk =0

Exk—nu 0 = u=— Exk
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» Multiplying by X and rearranging, we obtain:

Just the arithmetic average of the samples of the
training samples!

Conclusion:

P | o) (=1,2, ..., c)isaGaussianina d-
dimensional feature space

Then we can estimate the vector
0=(0,,0,, ..., 0,)!and perform classification!
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« ML Estimation:

— Gaussian Case: unknown u and o
6= (64, 6y) = (u, 09)

1 1
[ =InP(x, 16) =~ In2mf, =~ (x, - )
[ J
2 (InP(x, 10))

2
)
v,i=| % -0
? (InP(x,16
\0"62( (X, )))

L -y

0, 0
1 =0 o

20, 26,
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Summation:

r

ii(xk—81)=0 (1)
1 0,

B WEI C 52902 0 ()

k=1 62 k=1

Combining (1) and (2), one obtains:

u=y=t i ot==)(x-w’
k=1 n nk=1
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« Bias
— ML estimate for o2 is biased

13 | n-1
E|-Y(x,-%)?|="—0" =0’
= | n

— An elementary unbiased estimator for X is:

1 < w
C=— ) (x, - w(x, — )
n-1+<

. J/
h'd

Sample covariance matrix
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Problems with using the ML estimate as a Plug-in estimate

Population
Distribution

Repeated sampling m

N(w;; Z;) = P(x;| @)

D,

A\




« Bayesian Estimation (Bayesian learning
to pattern classification problems)
—In MLE 6 is presumed fixed
—In BE 6 is a random variable

— The computation of posterior probabilities
P(w, | xX) lies at the heart of Bayesian

classification
— Goal: compute P(w, | x, D)
Given the sample D, Bayes formula can be

written
P(w. x.D) = CP(x lw,).P(w, D)

EP(x | ,).P(w, D)
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Problem: Find
P(xlw,) Given P(xlél.), (but él. unknown)

Solution: Learn p@®,ID) from data
then

P(xlw)= ... [ P(x16)P(6,1D)do,

and

P(w,) = P(w, ID) (Training sample provides this!)
Thus :

P(w, 1 x,D) = CP(x lw,).P(w,)

Y P(xlw)Pw))
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« Bayesian Parameter Estimation: Gaussian Case

Goal: Estimate 6 using the a-posteriori density
P(6 | D)

— The univariate case: P(u | D)
u is the only unknown parameter

P(x | w) ~ N(u,0°)
P(u) ~N(uq,05)

(uo, and o, are known!)
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P(D1w).P(w
J PO1w.P(wdy

=af [P 1P

— Gaussian is a Reproducing density

P(uID) ~ N(u,.0.) (2)
|ldentifying (1) and (2) yields:

no;, | . o’
lun = lun + lu()

P(ulD) =

(1)

no;+o’ no, +o’
, 0.0
and 0, =————
no; +o
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FIGURE 3.2. Bayesian learning of the mean of normal distributions in one and two dimensions. The posterior
distribution estimates are labeled by the number of training samples used in the estimation. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, FPattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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— The univariate case P(x | D)
* P(u | D) computed
* P(x | D) remains to be computed!

P(x|D) = [P(x | u).P(ux | D)du is Gaussian

It provides:
P(x |D) ~N(u,,0” + 07)

(Desired class-conditional density P(x | D;, w))
Therefore: P(x | D;, w;) together with P(w)
And using Bayes formula, we obtain the
Bayesian classification rule:

rr(})axP(a)j Ix,D) = II(})?[X[P(X lw;).P(w, IDJ.)]
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« Bayesian Parameter Estimation:
General Theory

— P(x | D) computation can be applied to any
situation in which the unknown density can
be parametrized: the basic assumptions
are:

* The form of P(x | 8) is assumed known, but the
value of 0 is not known exactly

« Our (pre-data) knowledge about 6 is assumed
to be contained in a known prior density P(0)

* The rest of our knowledge 0 is contained in a

set D of n random variables x,, X, ..., X, that
follows P(x | 6)
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The basic problem is:
“Compute the posterior density P(6 | D)’

then “Derive P(x | D)”

Using Bayes formula, we have:

P(D | 0).P(0)

POID) - (P(D |6).P(6)d’

And by independence assumption:

P(D 6) = [] P(x, | )
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Plug-in vs. BE example

ML estimate Q\* p(x10,D)

0.8

p(D| 3): 2 | p(x D)

0.2

0 X argmax p(x,0 | D)

pxOldata) "
Y g I

fos | p(x1D)

0.8

0.6

0.4

0.2




* Problems of Dimensionality

— Problems involving 50 or 100 features
(binary valued)

« Classification accuracy depends upon the
dimensionality and the amount of training data

» Case of two classes multivariate normal with the

same covariance

1 ® 2
P(error)=— (e du
( ) 27T r{z
where : r? = (- py) =7 (g —uy)

limP(error) =0

rF—o00
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* |f features are independent then:
: 2 2 2
2 =diag(o;,05,...,0;)
Simple Feature Selection possible for ind. features

* Most useful features are the ones for which the
difference between the means is large relative to the

standard deviation p 0

2 E luil;tuﬂ

=1 l

* |t has frequently been observed in practice that, beyond
a certain point, the inclusion of additional features leads
to worse rather than better performance: i.e. we have

the wrong model
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Case where original features axes
cannot be selected (pruned)
without performance loss

‘ J

X,

FIGURE 3.3. Two three-dimensional distributions have nonoverlapping densities, and
thus in three dimensions the Bayes error vanishes. When projected to a subspace—here,
the two-dimensional x; — x; subspace or a one-dimensional x; subspace-—there can
be greater overlap of the projected distributions, and hence greater Bayes error. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright

© 2001 by John Wiley & Sons, Inc.



™

¥ b
R L

Background

)

¥
tors)

h 4
Clusters
iscrimina

(_ Example images

-
N
‘

(_ BestD

A

5

-
=

Target

o

R
SR ey

NIl Sl 4 AALLVLILL L\V\/U&lllllull, 4 1UVl. 1 AUl Jviill vl g 1 ULl VUV y



