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Errors

• Pick ω1 when ω0 is
true.
– False Alarm (rate)
– False Positive (rate)
– Type I error

• Pick ω0 when ω1 is
true.
– Miss (rate)
– False Negative (rate)
– Type II error
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Indicator Variables

! 

"i(x) =
1   if  gi(x) > g j (x) #i $ j

0   otherwise
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"i(x) = p(#1 | x)
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Graphical
(Generative)

Model for
Decision
Theory
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Computing Expected Success

• Decision Rule

• Expected success

• Decision Region

• Expected success

! 

Choose :

        p " i | x( ) = #i x( ) = 1 gi x( ) > g j x( )$ i % j( )

P(" i |& i) = p " i | x( )
'(

(

) p(x |& i)dx

*i = x :#i x( ) > 0{ }

        *i = gi x( ) > g j x( )$ i % j{ }

P("1 |&1) = p(x |&1)dx
*1

)
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ROC curves
• For two-state problems, the Bayes decision rule is:
where T depends on the priors and the loss function.
•   The observer may use the correct log-likelihood ratio,

but have the wrong threshold.
•   E.g. the observer’s loss function choice may incorrectly

penalize false negatives (trigger-shy) or false positives
(trigger-happy).

• The ROC curve plots the proportion of correct responses
(hits) against the false positives as the threshold T
changes.

•   Requires altering the loss function of observers by
rewards (chocolate) and penalties (electric shocks).

•   The ROC curve gives information which is independent
of the observer’s loss function.
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ROC curves
Vary Criterion



The Normal Density
• Univariate density

– Density which is analytically tractable
– Continuous density
– A lot of processes are asymptotically Gaussian
– Handwritten characters, speech sounds are ideal or

prototype corrupted by random process (central limit
theorem)

Where:
        µ = mean (or expected value) of x
        σ2 = expected squared deviation or variance
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Learning Classifiers: Parametric
Approach

• Model class conditional densities using a
formula with unknown parameters

• Learn the parameters from data
• Apply Bayesian decision theory to do

subsequent classification.





• Multivariate density

– Multivariate normal density in d dimensions is:

where:
        x = (x1, x2, …, xd)t      (t stands for the transpose vector form)

            µ = (µ1, µ2, …, µd)t mean vector
        Σ = d*d covariance matrix

            |Σ| and Σ-1 are determinant and inverse respectively! 

P(x) =
1

(2" )d / 2 #
1/ 2
exp $

1

2
(x $µ)t#$1(x $µ)
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Discriminant Functions for the
Normal Density

• We saw that the minimum error-rate
classification can be achieved by the
discriminant function

gi(x) = ln P(x | ωi) + ln P(ωi)

• Case of multivariate normal

! 

gi(x) = "
1

2
(x "µi)

t
#i

"1
(x "µi) "

d

2
ln2$ "

1

2
ln#i + lnP(% i)
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Special case Σi=Σ

! 

gi(x) = "
1

2
(x "µi)

t#i

"1
(x "µi) "

d

2
ln2$ "

1

2
ln#i + lnP(% i)

gi(x) " g j (x) > 0

= "
1

2
(x "µi)

t#"1
(x "µi) "

d

2
ln2$ "

1

2
ln# + lnP(% i) "
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1

2
(x "µ j )
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             Now    (x "µi)
t#"1

(x "µi) = x
t#"1

x " 2µi

t#"1
x + µi

t#"1µi

= µi

t#"1
x "µ j

t#"1
x "

1

2
µi

t#"1µi +
1

2
µ j

t#"1µ j + ln
P(% i)

P(% j )

= wi

t
x " w j

t
x + wi0 " w j 0
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• Case Σi = σ2.I    (I stands for the identity matrix)

  

! 

gi(x) = wi

t
x + wi0 (linear discriminant function)

where :

       wi =
µi

" 2
;  wi0 = #

1

2" 2
µi

tµi + lnP($ i)

($ i0 is called the threshold for the ith category!)
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– A classifier that uses linear discriminant
functions is called “a linear machine”

– The decision surfaces for a linear machine are
pieces of hyperplanes defined by

             gi(x) = gj(x)

! 

gi(x) " g j (x)

= wi

t
x + wi0 " w j

t
x + w j 0

= wi

t
" w j

t( )x + wi0 " w j 0( )
= wi

t
" w j

t( )(x " x0)

For Identity covariance case :

=
1

# 2
µi

t
"µ j

t( )(x " x0)
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– The hyperplane separating Ri and Rj

always orthogonal to the line linking the
means!
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• Case Σi = Σ (covariance of all classes are
identical but arbitrary!)

– Hyperplane separating Ri and Rj

(the hyperplane separating Ri and Rj is
generally not orthogonal to the line between the
means!)
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• Case Σi = arbitrary

– The covariance matrices are different for each category

(Hyperquadrics which are: hyperplanes, pairs of
hyperplanes, hyperspheres, hyperellipsoids,
hyperparaboloids, hyperhyperboloids)
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Bayes Decision Theory – Discrete
Features

• Components of x are binary or integer valued, x can
take only one of m discrete values

v1, v2, …, vm

• Case of independent binary features in 2 category
problem
Let x = [x1, x2, …, xd ]t where each xi is either 0 or 1,
with probabilities:

pi = P(xi = 1 | ω1)
qi = P(xi = 1 | ω2)
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• The discriminant function in this case is:

0g(x) if  and0 g(x) if  decide
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