Probability

Errors

X

* Pick w; when w, 1s
true.
— False Alarm (rate)

— False Positive (rate)

— Type I error

Probability

X

* Pick w,when w, 1s
true.
— Miss (rate)
— False Negative (rate)

— Type 1l error



Posterior pro bab dity

Scabkd probabilty
den sty

Indicator Variables
¢i(X) = 9

r

1 if g(x)>g,(x) Vi=j
\O otherwise

p(s1 | x)

¢,(x) = pa, | x)

dy(x)=p(& | X)
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.
(9

Observer model, d = a(x)
P(d | x)



Computing Expected Success

Choose :

P(OC- Ix) = ¢i(x) = 1(8i(x) > 8j(x) Vi j) e Decision Rule

Pla;lw,) = f]? Ix p(x lw;)dx * Expected success

R, ={ ¢( )>0} e Decision Region
R, ={ai(x)>g,(x) Vi=j}
P(o, lw)) = f p(x low,)dx * Expected success



ROC curves

e For two-state problems, the Bayes decision rule is: log %M > T
where T depends on the priors and the loss function.

(#|wz)
 The observer may use the correct log-likelihood ratio,
but have the wrong threshold.

e E.g. the observer’s loss function choice may incorrectly
penalize false negatives (trigger-shy) or false positives

(trigger-happy).
e The ROC curve plots the proportion of correct responses

(hits) against the false positives as the threshold T
changes.

 Requires altering the loss function of observers by
rewards (chocolate) and penalties (electric shocks).

e The ROC curve gives information which is independent
of the observer’s loss function.



ROC curves

Vary Criterion A m

d' =1 {lots of overlap) d' = 3 (not much overap)

d=1

Hits = 97.5%

False alarms = 84% ROC curves

Hits = 84% 0o 0.5 1.0
False alarms = 50% Falss alarms
Hits = 50%

False alarms = 16%




The Normal Density

e Univariate density

— Density which is analytically tractable
— Continuous density
— A lot of processes are asymptotically Gaussian

— Handwritten characters, speech sounds are i1deal or
prototype corrupted by random process (central limit

theorem)
i 5
P(x)=———exp —1("'”) ,

N2 o 2\ O

Where:
u = mean (or expected value) of x
o’ = expected squared deviation or variance



Learning Classifiers: Parametric
Approach

 Model class conditional densities using a
formula with unknown parameters
e [earn the parameters from data

e Apply Bayesian decision theory to do
subsequent classification.



pix)

p-20 p-o o pro p+e

FIGURE 2.7. A univariate normal distribution has roughly 95% of its area in the range
| — 1| < 20, as shown. The peak of the distribution has value p(u) = 1/y2xa. From:

Richard O. Duda, Peter E. Hart, and David G. Stork, Fattern Classification. Copyright
© 2001 by John Wiley & Sons, Inc.



Multivariate density

— Multivariate normal density in d dimensions is:

1

P(x) =
(2n)d/2‘2

1 .
‘1/2 CXp _E(X_ILL) 2 l(x_M)

where:
X =(x; X, ..., x;)' (tstands for the transpose vector form)
w=(u; W, ..., u;) mean vector
2’ = d*d covariance matrix
/2] and 2/ are determinant and inverse respectively



Discriminant Functions for the
Normal Density

e We saw that the minimum error-rate
classification can be achieved by the
discriminant function

g{(x) =IlnP(x |l w,)+ InPlw,)

e Case of multivariate normal

d

g.(x)= —%(x — ui)tZlfl(x - U,)— Eln2n — %ln‘Zi‘ +InP(w,)

10



Special case 2.=2.

g.(x)= —%(x — ui)tZ‘.lfl(x - U;) — gln2n - %ln‘Zi‘ +InP(w,)

g;(x)-g,;(x)>0
=—5(x—/,tl.)2 (x—ul.)—aanJt—Ean +InP(w,) -

_%(x_‘uj)tz—l(x _Mj)—gann—%an +lIlP((1)j)

Now (x—u) 2 (x-w)=xT"'x=2uZ"'x+uz'u

_ _ 1 _ 1 P(w.)
—u - x-—uxu + = ’

-1

5 2 u;+In
4 t

=W X=WX+W,=W,

11



e Case Zl = 0°.1 (I stands for the 1dentity matrix)

g.(x) =wx + w, (linear discriminant function)
where :

Y 1
. = , Wi = —
et Y 207 _
(w,, 1s called the threshold tfor the rth category!)

W u;u. +1InP(w.)

12



— A classifier that uses linear discriminant
functions 1s called “a linear machine”

— The decision surfaces for a linear machine are
pieces of hyperplanes defined by

g{x) = g(x)

gi(x)—gj(x)
t t
=wl.x+wi0 —ij+Wj0

t t)
=(wl. —wj)x+(wi0 —wjo)
t t )
=(wl. —wj)(x—xo)
For Identity covariance case :

= %(u - 1) )(x = x,)

13
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FIGURE 2.10. If the covariance matrices for two distributions are equal and proportional to the identity
malrix, then the distributions are spherical in d dimensions, and the boundary is a generalized hyperplane of
d =1 dimensions, perpendicular to the line separating the means. In these one-, two-, and three-dimensional
examples, we indicate p(x|w;) and the boundaries for the case P(w) = P(w;,). In the three-dimensional case,
the grid plane separates Ry from R;. From: Richard O. Duda, Peter E. Hart, and David C. Stork, Pattern
Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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— The hyperplane separating ;el and ;e]

o’ _In P(w,)
u’i_l'l‘jH P(w;)

1
x0=5(u,-+u,-)— (u;,—u;)

always orthogonal to the line linking the
means!

if P(w;)=P(w;) then x, =§(.ui+ﬂj)

15
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- Y =]

o =

FIGURE 2.11. As the priors are changed, the decision boundary shifts; for sufficiently
disparate priors the boundary will not lie between the means of these one-, two- and
three-dimensional spherical Gaussian distributions. From: Richard O. Duda, Peter E.
Hart, and David G. Stork, Fattern Classification. Copyright © 2001 by John Wiley &
Sons, Inc.
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* Case 2. = 2 (covariance of all classes are
1dentical but arbitrary!)

— Hyperplane separating Rl and Rj

m[P(w,)/ P(w,)]
(-1, )" (u,-p,)

1
x0=3(lui+uj)_ (.ui_l"j)

(the hyperplane separating Rl and Rj 1S
generally not orthogonal to the line between the

means!)
18
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FIGURE 2.12. Probability densities (indicated by the surfaces in two dimensions and
ellipsoidal surfaces in three dimensions) and decision regions for equal but asymmet-
ric Gaussian distributions. The decision hyperplanes need not be perpendicular to the
line connecting the means. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Fattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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e Case 2. = arbitrary

— The covariance matrices are different for each category

g(x)=xWx+wx=w,,

where
W, =25
2
wl = Zi—lul
1 .__, 1
Wi == S W —Eln‘Z,. +InP(w,)

(Hyperquadrics which are: hyperplanes, pairs of
hyperplanes, hyperspheres, hyperellipsoids,
hyperparaboloids, hyperhyperboloids)

21






FIGURE 2.14. Arbitrary Gaussian distributions lead to Bayes decision boundaries that
are general hyperquadrics. Conversely, given any hyperquadric, one can find two Gaus-
sian distributions whose Bayes decision boundary is that hyperquadric. These variances
are indicated by the contours of constant probability density. From: Richard O. Duda,
Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John
Wiley & Sons, Inc.
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Bayes Decision Theory — Discrete
Features

 Components of x are binary or integer valued, x can
take only one of m discrete values

Vi, Vo ooy Vo,

e (Case of independent binary features in 2 category
problem

Letx =[x, x,, ..., x, ] where each x; 1s either O or 1,
with probabilities:

p;=Px;=11w,)
q;=P(x,=11w,)

24



e The discriminant function in this case 1s:

d
g(x)=2wixi +Ww,
1=1

where :
wl—lnpi(l_qi) i=1,..,d
qi(l_pi)
and :

decidew, if g(x)>0and w, if g(x)<0

25



