Bayesian Decision Theory

Introduction
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In Bayesian decision theory, we are concerned with the last three steps in the big ellipse
assuming that the observables are given and features are selected.



Introduction

e The sea bass/salmon example

— State of nature, prior

o State of nature is a random variable

o EXAMPLE PRIOR: The catch of salmon and sea bass is
equiprobable

— P(w,;) = P(w,) (uniform priors)

— P(w,;) + P( w,) = I (exclusivity and exhaustivity)



* Decision rule with only the prior information

— Decide w, if P(w;) > P(w,) otherwise decide w,

e Use of the class —conditional information

* P(x| w;)and P(x | w,) describe the difference in
lightness between populations of sea and salmon
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FIGURE 2.1. Hypothetical class-conditional probability density functions show the
probability density of measuring a particular feature value x given the pattern is in
category w;. If x represents the lightness of a fish, the two curves might describe the
difference in lightness of populations of two types of fish. Density functions are normal-
ized, and thus the area under each curve is 1.0. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Fattern Classification. Copyright © 2001 by John Wiley & Sons,
Inc.



Bayes theorem

P(x,y) = P(x]y) P(y)
SO

P(x|y) P(y) = P(y|x) P(x)
and

P(x]y) = PT(y|X) P(x) / I;(y)

The parameters you SURT _ Constant w.r.t.
o [Likelithood
want to estimate . ) parameters X.
function

What you observe Prior probability



e Posterior, likelihood, evidence
- P(w; 1 x) = P(x | ) . P (w) / P(x)

— Where in case of two categories

P(x) = SP(X lw ))P(w ;)

— Posterior = (Likelihood. Prior) / Evidence
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FIGURE 2.2. Posterior probabilities for the particular priors P(w,) = 2/3 and P(w;)
= 1/3 for the class-conditional probability densities shown in Fig. 2.1. Thus in this
case, given that a pattern is measured to have feature value x = 14, the probability it is
in category @, is roughly 0.08, and that it is in @, is 0.92. At every x, the posteriors sum
to 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright © 2001 by John Wiley & Sons, Inc.



Figure 2.4 A typical image (left) and the ground truth segmentation (right). courtesy of K. Bowyer at
U. South Florida.




Need for Prior Info

Figure 2.6 The edge estimated on the glove image by ML with the filter at scale 0 (left), filter at
scale 1 (centre), and filter with scales 0,1,2.4 (right). Observe that ML significantly overestimates
the number of edges in this image.
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Figure 2.5 Empirical distributions for a gradient filter response on boundaries (left) and off boundaries

(right).
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Minimal Error Decisions

 Make the best guess 1n terms of error rate
given data and category probabilities
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* Decision given the posterior probabilities

Given an observation X, Decide (Guess):

if P(w, 1 x) > P(w, | x) ——>  True state of nature = W,
it P(w; | x) < P(w, | x) > True state of nature = W,

Therefore:

For a particular x, the probability of error 1s :

P(error
P(error

P(error

x) = P(w, | x) if we decide w,

x) = P(w, | x) if we decide w;,

x) =min [P(w; | x), P(w, | x)]
(Bayes decision)
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Decision Functions
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Bayesian Decision Theory —
Continuous Features

e Generalization of the preceding ideas

— Use of more than one feature
— Use more than two states of nature
— Allow for actions more general than deciding

the state of nature:

Introduce a loss (cost) function which 1s more general
than the probability of error (measure of the space of
outcomes).



Bayesian Decisions

statistical risk/cost Decision
Inference p(w|x) minimization ot(X)

Two probability tables: A risk/cost function
a). Prior p(w) (is a two-way table)
b). Likelihood p(x|w) Ao | W)
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* {w, w,..., w.}. the set of ¢ states of nature

(“categories’)
e Let{a,, a,,..., ot be the set of possible actions

* Let A(q; | w) be the loss incurred for taking
action ¢; when the state of nature 1s o,




e The loss function encodes the relative cost of each
action. (Negate the cost? Gain function)

e (Classification: Action = class choice.

— Allowing actions other than class choice includes data
rejection (e.g. unknown class).



Decision Rules

* A decision rule 1s a mapping function from
feature space to the set of actions:

g o= g(x)

What 1s the optimal decision rule?
Minimize risk.
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Overall risk:

R=SumofallR(a; | x)fori=1,...,a
H‘/

Conditional risk

Minimizing R{——> Minimizing R(¢t; | x) fori=1,..., a
j=c
R(o, 1 x) = E)\.(Oli lw )P(w; | x)
i=1

fori=1,...,a

* Select the action O.; for which R(@; | x) 1s minimum

Minimum(R(Q; | x)) is called the Bayes risk:

The best performance that can be achieved!



Two-category classification
Qa; : deciding w,
Q, : deciding w,
)Lij = Aa; | w;)

loss incurred for deciding w; when the true state of nature 1s

w;

Conditional risk:

R(a; 1 x)= A, ,P(w; 1 x) + A,,P(w, | x)
R(a, 1 x) = A,;P(w; | x) + A,,P(w, | x)



Our rule 1s the following:
it R(a; | x)<R(a, | x)

action @;: “decide w,” 1s taken

This results 1n the equivalent rule :
decide w, 1f:

(Ay;- App) P(x | ) P(w;) >
(A1- Ay) P(x | 0,) P(w,)

and decide w, otherwise



[Likelihood ratio:

The preceding rule 1s equivalent to the following rule:

P(x lw)) )52 A, P(w,)

4 P(x |O()2) )\11 P(()()1

Then take action «; (decide w,)
Otherwise take action o, (decide w,)



Optimal decision property

“If the likelihood ratio exceeds a threshold
value independent of the input pattern x, we
can take optimal actions™



Exercise

Select the optimal decision where:

Q={w,;, w,}
N(u, 0)
P(x!| w,) —  N(2, 0.5) (Normal distribution)
P(x | w,) —  N(1.5,0.2)
P(w;) = 2/3

-1 2_
P(w,) = 1/3 A= 3 4



Minimum-Error-Rate Classification

e Action: Choose class
If action ¢ 1s taken and the true state of nature 1s w, then:
the decision is correct1if i = j and in error if i =

e Seek a decision rule that minimizes the probability of
error which 1s the error rate



* Introduction of the zero-one loss function:

0i=j
A(a,.,cuj)={ S i jml,e

1 i=j
Therefore, the conditional risk is:

R(c, |x)=SA(a,. |lw; )P(w;|x)

=2P(a)j|x)=1—P(wi|x)

J=1

“The risk corresponding to this loss function is the average
probability error”



 Minimize the risk requires maximize P(w; | x)
(since R(a; 1 x) = 1 — P(w, | x))

e For Minimum error rate

— Decide w; if P (w; | x) > P(w; | x) Vj =i



* Regions of decision and zero-one loss function,

therefore:
Let A=Ay .P(a)z) =0, thendecide , if : Plxlo,) >0,
Ay—A,;, Plw,) P(x|w,)

o If A is the zero-one loss function which means:

(i
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FIGURE 2.3. The likelihood ratio p(x|en)/p(x|ex) for the distributions shown in
Fig. 2.1. If we employ a zero-one or classification loss, our decision boundaries are
determined by the threshold 6,. If our loss function penalizes miscategorizing w; as e
patterns more than the converse, we get the larger threshold 6, and hence R, becomes
smaller. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Fattern Classifica-

tion. Copyright © 2001 by John Wiley & Sons, Inc.



Classifiers, Discriminant Functions
and Decision Surfaces

 The multi-category case

— Set of discriminant functions g.(x), i = 1,..., ¢

— The classifier assigns a feature vector x to class
1f:
gi(x) > gix) Vj =i



action

COSIS

discriminant
functions

input

FIGURE 2.5. The functional structure of a general statistical pattern classifier which
includes d inputs and ¢ discriminant functions g;(x). A subsequent step determines
which of the discriminant values is the maximum, and categorizes the input pattern
accordingly. The arrows show the direction of the flow of information, though frequently
the arrows are omitted when the direction of flow is self-evident. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by
John Wiley & Sons, Inc.



e Letg(x)=-R(a;|x)
(max. discriminant corresponds to min. risk!)

e For the minimum error rate, we take
g(x) = Plw; | x)

(max. discrimination corresponds to max.
posterior!)

g(x) =P(x| w,) P(w,)

g(x)=InPx|lw)+ InPlw)

(In: natural logarithm)



* Feature space divided into ¢ decision regions
if gi(x) > g(x) Vj =ithen xisin EI

(E,- means assign x to w;)

* The two-category case

— A classifier 1s a “dichotomizer” that has two
discriminant functions g; and g,

Let g(x) = g;(x) — g5(x)

Decide w, if g(x) > 0 ; Otherwise decide w,



— The computation of g(x) o(x)=In P(w, | x)

/ P((UZ | X)

g(x)=InP(w, | x) -InP(w, | x)
nP()c lw,)P(w,) _lnP(x lw,)P(w,)

=

P(x) P(x)

_1n P(xlw,) 1n P(w,)
P(xlw,) P(w,)
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FIGURE 2.6. In this two-dimensional two-category classifier, the probability densities
are Gaussian, the decision boundary consists of two hyperbolas, and thus the decision
region R; is not simply connected. The ellipses mark where the density is 1/e times
that at the peak of the distribution. From: Richard O. Duda, Peter E. Hart, and David C.
Stork, Fattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.



The Normal Density
Univariate density

— Density which is analytically tractable
— Continuous density
— A lot of processes are asymptotically Gaussian

— Handwritten characters, speech sounds are ideal or prototype corrupted
by random process (central limit theorem)

P(x)= ! exp —l(x_u) ’

N2 O 2\ O

Where:
u = mean (or expected value) of x
o’ = expected squared deviation or variance
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FIGURE 2.7. A univariate normal distribution has roughly 95% of its area in the range
| — 1| < 20, as shown. The peak of the distribution has value p(u) = 1/y2xa. From:

Richard O. Duda, Peter E. Hart, and David G. Stork, Fattern Classification. Copyright
© 2001 by John Wiley & Sons, Inc.



Multivariate density

— Multivariate normal density in d dimensions is:

] 1
Py = |~ (v ) T (v )
(27 )""?|x 2

where:

X =(x; X, ..., x;)' (tstands for the transpose vector form)
w=(u; W, ..., u;) mean vector

2’ = d*d covariance matrix
|21 and X'/ are determinant and inverse respectively



