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Introduction

• The sea bass/salmon example

– State of nature, prior

• State of nature is a random variable

• EXAMPLE PRIOR: The catch of salmon and sea bass is
equiprobable

– P(ω1) = P(ω2)   (uniform priors)

– P(ω1) + P( ω2) = 1 (exclusivity and exhaustivity)



• Decision rule with only the prior information
– Decide ω1 if P(ω1) > P(ω2) otherwise decide ω2

• Use of the class –conditional information

• P(x | ω1) and P(x | ω2) describe the difference in
lightness between populations of sea and salmon
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• Posterior, likelihood, evidence

– P(ωj | x) = P(x | ωj) . P (ωj) / P(x)

– Where in case of two categories

– Posterior = (Likelihood. Prior) / Evidence

! 

P(x) = P(x |" j )P(" j )
j=1

j= 2

#
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Example
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Need for Prior Info



10



11

Minimal Error Decisions

• Make the best guess in terms of error rate
given data and category probabilities



• Decision given the posterior probabilities

Given an observation X,  Decide (Guess):

if P(ω1 | x) > P(ω2 | x)    True state of nature = ω1
if P(ω1 | x) < P(ω2 | x)    True state of nature = ω2

Therefore:
 For a particular x, the probability of error is :

P(error | x) = P(ω1 | x) if we decide ω2
P(error | x) = P(ω2 | x) if we decide ω1

P(error | x) = min [P(ω1 | x), P(ω2 | x)]
                                  (Bayes decision)
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Decision Functions
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Bayesian Decision Theory –
Continuous Features

• Generalization of the preceding ideas

– Use of more than one feature
– Use more than two states of nature
– Allow for actions more general than deciding

the state of nature:
Introduce a loss (cost) function which is more general

than the probability of error (measure of the space of
outcomes).
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Bayesian Decisions



• {ω1, ω2,…, ωc}: the set of c states of nature
(“categories”)
• Let {α1, α2,…, αa} be the set of possible actions
• Let λ(αi | ωj) be the loss incurred for taking

action αi when the state of nature is ωj

Action

Space

State

Space Data

Costs



• The loss function encodes the relative cost of each
action.  (Negate the cost?  Gain function)

• Classification: Action = class choice.
– Allowing actions other than class choice includes data

rejection (e.g. unknown class).
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Decision Rules

• A decision rule is a mapping function from
feature space to the set of actions:

 g:   α= g(x)

 What is the optimal decision rule?
Minimize risk.



Overall risk:
R = Sum of all R(αi | x) for i = 1,…,a

Minimizing R           Minimizing R(αi | x) for i = 1,…, a

                                      for i = 1,…,a

Conditional risk

! 

R(" i | x) = #(" i |$ j )P($ j | x)
j=1

j= c

%

• Select the action αi for which R(αi | x) is minimum
Minimum(R(αi | x)) is called the Bayes risk:
The best performance that can be achieved!



• Two-category classification
α1 : deciding ω1

α2  : deciding ω2

λij  = λ(αi | ωj)

loss incurred for deciding ωi when the true state of nature is
ωj

Conditional risk:

R(α1 | x) =  λ11P(ω1 | x) + λ12P(ω2 | x)
R(α2 | x) =  λ21P(ω1 | x) + λ22P(ω2 | x)



Our rule is the following:
if R(α1 | x) < R(α2 | x)

action α1: “decide ω1” is taken

This results in the equivalent rule :
decide ω1 if:

(λ21- λ11) P(x | ω1) P(ω1) >
                      (λ12- λ22) P(x | ω2) P(ω2)

and decide ω2 otherwise



Likelihood ratio:

The preceding rule is equivalent to the following rule:

Then take action α1 (decide ω1)
Otherwise take action α2 (decide ω2)

! 

if 
P(x |"1)

P(x |"2)
>
#12 $ #22

#21 $ #11

.
P("2)

P("1)



Optimal decision property

“If the likelihood ratio exceeds a threshold
value independent of the input pattern x, we
can take optimal actions”



Exercise

Select the optimal decision where:
Ω = {ω1, ω2}

P(x | ω1)                            N(2, 0.5) (Normal distribution)
P(x | ω2)                            N(1.5, 0.2)

P(ω1) = 2/3
P(ω2) = 1/3
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Minimum-Error-Rate Classification

• Action: Choose class
If action αi is taken and the true state of nature is ωj then:
the decision is correct if i = j and in error if i ≠ j

• Seek a decision rule that minimizes the probability of
error which is the error rate



• Introduction of the zero-one loss function:

Therefore, the conditional risk is:

“The risk corresponding to this loss function is the average
probability error”
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• Minimize the risk requires maximize P(ωi | x)
(since R(αi | x) = 1 – P(ωi | x))

• For Minimum error rate

– Decide ωi if P (ωi | x) > P(ωj | x) ∀j ≠ i



• Regions of decision and zero-one loss function,
therefore:

• If λ is the zero-one loss function which means:
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Classifiers, Discriminant Functions
and Decision Surfaces

• The multi-category case

– Set of discriminant functions gi(x), i = 1,…, c

– The classifier assigns a feature vector x to class ωi
if:

gi(x) > gj(x) ∀j ≠ i





• Let gi(x) = - R(αi | x)
(max. discriminant corresponds to min. risk!)

• For the minimum error rate, we take
gi(x) = P(ωi | x)

(max. discrimination corresponds to max.
posterior!)

gi(x) ≡ P(x | ωi) P(ωi)

gi(x) = ln P(x | ωi) + ln P(ωi)
(ln: natural logarithm)



• Feature space divided into c decision regions

if gi(x) > gj(x) ∀j ≠ i then x is in Ri

(Ri means assign x to ωi)

• The two-category case
– A classifier is a “dichotomizer” that has two

discriminant functions g1 and g2

Let g(x) ≡ g1(x) – g2(x)

Decide ω1 if g(x) > 0 ; Otherwise decide ω2



– The computation of g(x)

! 

g(x) = lnP("1 | x) # lnP("2 | x)

         = ln
P(x |"1)P("1)

P(x)
# ln

P(x |"2)P("2)

P(x)

         = ln
P(x |"1)

P(x |"2)
+ ln

P("1)

P("2)

! 

g(x) = ln
P("1 | x)

P("2 | x)





The Normal Density
• Univariate density

– Density which is analytically tractable
– Continuous density
– A lot of processes are asymptotically Gaussian
– Handwritten characters, speech sounds are ideal or prototype corrupted

by random process (central limit theorem)

Where:
        µ = mean (or expected value) of x
        σ2 = expected squared deviation or variance
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• Multivariate density

– Multivariate normal density in d dimensions is:

where:
        x = (x1, x2, …, xd)t      (t stands for the transpose vector form)

            µ = (µ1, µ2, …, µd)t mean vector
        Σ = d*d covariance matrix

            |Σ| and Σ-1 are determinant and inverse respectively
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