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Matlab Intro

 “BASIC for people who like linear algebra™
e Full programming language
— Interpreted language (command)

— Scriptable
— Define functions (compilable)



Data

e Basic- Double precision arrays
A=[12345]
A=[12;34]
B = cat(3,A,A) %three dimensional array

Advanced- Cell arrays and structures
A(1l).name = ‘Paul’
A(2).name = ‘Harry’

A = {‘Paul’;’Harry’;’Jane’};
>> A{l} => Paul



Almost all commands Vectorized

e A=[12345]1;B=[23456]
- C=A+B
- C=A.*B
— C=A*B’
- C=[A;B]
—sin( C ), exp( C)



Usetul commands

e Colon operator
— Make vectors: a=1:0.9:10; ind =1:10
— Grab parts of a vector: a(1:10) = a(ind)
- A=[12;34]
— A(,2)

~AG)=[1
3
2
4]

Vectorwise logical expressions
a=[123151]
a== = [100101]
size( ), whos, help, lookfor
Is, cd, pwd,
Indices=find(a==1) => [146]



Stats Commands

Summary statistics, like

— Mean(), Std(), var(), cov(), corrcoef()
Distributions:

— normpdi(),
Random number generation

— P =mod(a*x+b,c)
rand(), randn(), binornd()

Analysis tools
— regress(), etc



Linear Algebra

* Need to know or learn
— How to compute inner products, outer products
— Multiply, transpose matrices
— Eigenvalues,eigenvectors

— Elements of linear transformations

e Rotations and scaling



some familiar equations:

Y1 = a1 + apdy+ o+ Aipn

Yo = A1T9 T A%y 1+ * T Aoply

—

ym Am1T9 -+ ((FOWD + -+ UrnnTn

write this as y = Az, where

Y1 ayy app ... Ay

U , Ayr Aoy ... Aoy

y= | A= |70 75 "
_ym_ _a‘ml Am - .. a’mn_

this defines a map from R" to R™; this map is linear; that is

Az +y) = Az + Ay
AAx) = NAx

forany .,y € R™ and any A € R.

xr




we also use linear equations to describe estimation problems;
y = Ax
e 1; is the ith measurement or sensor reading

e 1, is the jth parameter to be estimated or determined

e «;; is the sensitivity of the ith sensor to the jth parameter

sample problems
® given Y ese, find

e find all « that result in 0.
(i.e., all x consistent with measurements)



estimation interpretation via rows

write A in terms of its rows

‘ ; )
each row of A represents a sensor A = -

then

y= |-

bT T

_Um

e 1; is the scalar product of b; with «
e if b; is a unit vector, then vy; is the component of x in the direction b;

e think of A as acting on z to produce y



geometric interpretation of estimation
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Determinant

* Determinant: Volume of the parallelepiped
created by the vectors in the matrix.

A= | b det(A) = Z sgn(o) H Ai o)

¢ d o€ S, i1

- —

The sum 1s computed over all

permutations— of the numbers
{1,...,n} and sgn(o ) denotes the
signature of the permutation o: +1
1f 0— 1s an even permutation and -1

if 1t 1s odd.

has determinant

det(4) =ad - bc.



Symmetric eigenvalue decomposition

any matrix A € S™ can be written as

n

(Symmetric matrices of size n)

A=QAQT =" Nag]

i=1
where  A=AT

" A O

Q=g - qn], A= (:’ f\:‘z

i (.) (')

()
()

/\ n

e () = R""™is orthogonal (QTQ = QQT =1)

e A\ e R""" is diagonal




we have AQ) = QA, i.e.,
Algrae - @l = a1 @2 -~ an| A

e eigenvector q;, eigenvalue \; satisfy Aq; = \iq;

e eigenvalues are roots of characteristic polynomial

det(A] — A) =0
interpretation

lar, ..., qn} is an orthonormal basis for R", i.e.,

T )1 1=
%%_{05¢j
mapping y = Az in g;-coordinates (r = Qz.y = Qy):

l~ = Ar



Eigenvalues: Usetul Properties
some useful properties
o det A = H:l:] Ai

e Tr A=5"" a;=>,_,A (the trace of A)



Quadratic forms

a quadratic form is a function f : R" — R with

.f(r) — .I'Tfl.l‘ E ‘—12.]1':1']

examples:
o |Bz|* = rTBT By

n .0
® > ima(Tip1 — xi)



Ellipsoids

E={z|2TArz <1} (A=AT =QAQ" - 0)

is an ellipsoid in R", centered at 0

To )
|
1/2 ‘ 1/2
Ay / A21/2QQ A g
1/2 1/2
A i /’——\’\1 _/ T = QF _
1/2 1/2 1/2
A2 / /\1 /‘11 )\2 q9

eigenvectors determine directions,

eigenvalues determine lengths of semiaxes

e volume x ([T1; A) ™% = (det 4)~1/2



Probabllity

Foreach event A c S, we assume there is a number
P(A) called the probability of event A, satisfying the
conditions:

. 0<PA)<]
i. P(S)=1
i, 1fA, Ay A

.,... are mutually exclusive

J

(AN A =0, 1#]), then P(U A”]: iP(A”)

n=| n=I

Observe that

| =P(S)=P(A U A°)=P(A) + P(A°)
So

P(A¢) =1 —-P(A)



Law of Total Probability

If A\, A,. A,.... < S are mutually exclusive such that
AN A =0forizj,and S = OAi,
‘ i=l
then exactly one of the events A, will occur

(in other words, iP(A,): 1)
i=1

and for any event Bc S, P(B)= iP(Bm A)
i=l



Conditional Probabillity

Fortwo events A and B in S (A.B < S), the conditional
probability of A given B is the probability that A
occurs given that B has already occurred. Itis
denoted P(A|B) and satisfies

P(A4N B)
P(B)

P(4|B)=

Note: this makes sense only when P(B)> 0.



Independence

Two events A and Bin S (A.B < S) are independent if
P(A n B)=P(A) P(B)

Note that by the definition of conditional probability, if
events A and B are independent, then

P(A)P(B)
PB) P(A)

P(A| B)=

Two events that are not independent are said to be
dependent.



Bayes' Formula

Consider two events Aand Bin S (A.Bc S). Since B
and B¢ are mutually exclusive

P(A)=P(A mn B) + P(A m BY) (law of total probability)
= P(A|B)P(B) + P(A|B*)P(B*) (def. of conditional probability)

Then, for B,, B,
P(A)= 2. P(AnB)= 2 P(AB)P(B)

i=1 i=1

,,....B,, mutually exclusive with Ul B.=S

Suppose that event
A has occurred p(B! | ,1): PCI " B)
and we want to | P(4)
know whether B. P18, PB)

has occurred... - > pla)8)r(B)



Conditioning

P(ylx)=P(x,y)/P(x)
Marginalization

P(x)= Y P(x,y)



Random Variables

A random variable is a function that associates a (real)
number with each outcome in the sample space.

Y X | PLY)

> R} | 0

- [ 2 [/36

3| 2736

Example: ConsidepAtie roll of two fair dice. 4 | 3/36

roll of die #2 S | 4/36

2 3 4 5 6 o | 536

1 (L.} (1.2) (L.3) (L.4) (1.5) (1.6) 7 | 6/36

o 2 (@D 22 23) 24 @29 (2.6 T

of 3 [(3.1) (3.2) (3.3) (3.4) (3.5) (3.6) 5 e

de 4 |@1) (42) (43) (44) (4.5) (4.6) ™
#1 -

O [(5.1) (5.2) (5.3) (5.4) (5.5) (5.6) T 2736

6 1(6.1) (6.2) (6.3) (6.4) (6.5) (6.6) 2 | 1736

Let the random variable X equal their sum.



Probability Distribution Function

Given a random variable X, its cumulative distribution function
(CDF) is defined as

F(b) = P(X <b)
for any real number b, where -0 < b < o

Properties of the CDF include:
i.  F(bh)is a non-decreasing function of s
ii. lim,_, F(b)=F(x)=1
iii. lim,_,  F(b) = F(-o0) = ()

In general, all probability questions about X can be answered In
terms of the CDF. For example, fora < b

Pla< X<b)=F(b)— F(a)



Discrete Random Variables

A random variable is discrete if it can take on a countable number
of values. Example: X € {2. 3.4, ..., 12}

For a discrete random variable X, we define the probability mass
function as

pla) = P(X = a)

So the CDF for a discrete random variable satisfies

Fla) =P(X<sa)=2Z__ P(X=x) =2 __ p(x)

Consider the case where the possible values of X can be
enumerated by x,, x,,..., x,. Then,

p(x,) =0 fori=1.2,....n
plx) =10 for all other values of x

Z p(x, )= I
i=1

and



Important Discrete Random Variables

Bernoulli Random Variable with parameter (p) (where 0 < p <1)
X e {0.1} p(0)=P{X=0}=1-p
p(l)=P{X=1};=p

Binomial Random Variable with parameters (n,p) (where n=0, 0 < p <1)
\

n .
Xe {0.1.2,....n} pli) = 1-’{)( = 1': ;( . p'(] — p)’ '
]

\"/
Geometric Random Variable with parameter (p) (where 0 < p <1)
Xe {l1.23,...} pn)=P{X=n}=(l-py'p
Poisson Random Variable with parameter (/) (where 4 = 0)
| o LA
Xe{0.12,...} pli)=P{X =ifj=¢ " —

/!



Binomial Events

n=6,p=03 N=0;Dp=0.7
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FIGURE 2.3

Examples of the binomial distribution tor different success probabilities




Continuous Random Variables

A random variable is continuous if it can take on a continuum of
possible values. Example: X € [0.1]

For a continuous random variable, we define the probability density
function fix) for all real values -o < x <«

F(a)=P(X <a)= | f(x)dx

and more generally

b
Pla<X <b)= [f(x)dx
This definition implies the following:

P(X=a)= I,/ (x)dx=20 P(— X = 73_)= J.f(.\‘)d.\' =1

4 Fa)= f(a)

da
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This shows the probability density function on the left with the associated cumulative

distribution function on the right. Notice that the cumulative distribution function takes on
values between (0 and 1.



Important Continuous Random Variables

Uniform Random Variable with parameters («,[3)

J 1 0 a<a

: ) X < : a—o

J(x)= -« a<x<p Fla) =+ o a<x<fi
l 0 otherwise | azpf

Exponential Random Variable with parameter (/)

F(x) = J/.e_'b‘ x=(0
| 0

Fla)=1-¢™ a=(
x <)

Normal Random Variable with parameters (u, o°)

a

()_(I—.U)z 1"2(72 [‘~((l) - I
2no o N2no

)—(.1'—;1)2.-'202

¢ dx

f(x)=

Define V= (X-u)/o. If X ~ N(u, 6%), then Y ~ N(0,1) is known as the
standard (unit) random variable. ®(a)=P{Y < a}




Expected Value

The expected value of a random variable X is

E(X)= Z,\‘ plx) E(X)= j 1(x)dx

all x

(if X is discrete) (if X is continuous)

and is also known as the expectation, mean, or first moment of X.

Examples:
« Let X be Bernoulli with « Let Y be Uniform with
parameter p. parameters («, /).
B
V
X|=1(p)+0(1- ElY|= |—dy
ELX]=1(p)+0(1- p) 7] ,,I/? —~d
pr— °1}-
2f-a),
_pra

2

pa—



Expected Value for Functions of .X

Let ¢rX) be a function of the random variable X. Then,

Elg(X)]= Z g(x) plx) I:’[g( X )] = J.g(..\‘)./'(.\')dx
allx .
(if X' Is discrete) (if X'is continuous)

Consider the following important functions:
«  When gix)=X" then EfgrX)] is known as the m" moment of .X

ox

LI Xm] — me /7(\') EI»‘Y m-I — j xm | f‘(;\‘)é I

allx e

« Let u~FE/X] be the mean of the random variable X. When g(x)=x- 1 J)?,
then £/g(X)/ is known as the variance of .X

Var(X)=E[(X— )] Var(X) = E[(X = 1,)°]
- z%(x—/ux) ,)(\‘) — j(\. —_— / lx ')2 - f(\.) alx

« Ingeneral, £/(x- 1 )"] is kKnown as the m'" central moment of .\.



Jointly Distributed Random Variables

For any two random variables X and Y we define the joint
cumulative probability distribution function of X'and Y as

Ftab) = P(X<a Y<b) -wo<ab=<wx

In @ manner completely analogous to the case of a single random
variable, we define:

— Joint probability mass function: pix,y) (discrete case)
— Joint probability density function: fix,y) (continuous case)
— Expectation of jointly distributed random variables

Just as we speak of independence of events, we say that two
random variables X and Y are independent if

PIX=x, Y=y =P(X=x)P(Y=y)

By the definition of conditional probability, X and Y are independent
if and only if

PIX=x|Y=y =P(X=x)



Normal & Multivariate Normal

fix;u, X)

3=[0,20

00, ]

0.15

0.1

0.05

(2 13

l
cxp{ S(X-|) =% TR

2=[o0,* po,0,

2
po,0, O, |

0.2
0.15
0.1

0.05




