CSCI 5521: Pattern Recognition

Prof. Paul Schrater

Lecture 2: Mathematical and Matlab preliminaries

Business

- Course web page:
http://gandalf.psych.umn.edu/~schrater/schrater lab/courses /PattRecog05/PattRecog.html

Matlab Intro

- "BASIC for people who like linear algebra"
- Full programming language
- Interpreted language (command)
- Scriptable
- Define functions (compilable)

Data

- Basic- Double precision arrays
$\mathrm{A}=\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right.$ 5]
$\mathrm{A}=[12 ; 34]$
$B=\operatorname{cat}(3, A, A) \%$ three dimensional array

Advanced- Cell arrays and structures
$\mathrm{A}(1)$.name $=$ 'Paul'
A(2).name = 'Harry'

A = \{'Paul';'Harry';'Jane'\};
>> A\{1\} => Paul

Almost all commands Vectorized

$$
\left.\begin{array}{l}
-\mathrm{A}=\left[\begin{array}{llll}
1 & 2 & 3 & 4
\end{array} 5\right] ; \mathrm{B}=\left[\begin{array}{llll}
2 & 3 & 4 & 5
\end{array}\right]
\end{array}\right] \begin{aligned}
& -\mathrm{C}=\mathrm{A}+\mathrm{B} \\
& -\mathrm{C}=\mathrm{A} \cdot * \mathrm{~B} \\
& -\mathrm{C}=\mathrm{A} * \mathrm{~B} \\
& -\mathrm{C}=[\mathrm{A} ; \mathrm{B}] \\
& -\sin (\mathrm{C}), \exp (\mathrm{C})
\end{aligned}
$$

Useful commands

- Colon operator
- Make vectors: $a=1: 0.9: 10 ;$ ind $=1: 10$
- Grab parts of a vector: $\mathrm{a}(1: 10)=\mathrm{a}$ (ind)
- $\mathrm{A}=[12 ; 34]$
- A(:,2)
$-\mathrm{A}(:)=[1$
3
2
4]
Vectorwise logical expressions

$$
\begin{aligned}
& a=\left[\begin{array}{lllllll}
1 & 2 & 3 & 1 & 5 & 1
\end{array}\right] \\
& a==1
\end{aligned} \quad \Rightarrow \quad\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 1
\end{array}\right]
$$

size(), whos, help, lookfor
ls, cd, pwd,
Indices $=$ find $(a==1)=>[146]$

Stats Commands

- Summary statistics, like
- Mean(), Std(), var(), $\operatorname{cov}(), \operatorname{corrcoef()}$
- Distributions:
- normpdf(),
- Random number generation
$-\mathrm{P}=\bmod \left(\mathrm{a}^{*} \mathrm{x}+\mathrm{b}, \mathrm{c}\right)$ rand(), $\operatorname{randn(),~binornd()~}$
- Analysis tools
- regress(), etc

Linear Algebra

- Need to know or learn
- How to compute inner products, outer products
- Multiply, transpose matrices
- Eigenvalues,eigenvectors
- Elements of linear transformations
- Rotations and scaling
some familiar equations:

$$
\begin{aligned}
& y_{1}=a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \\
& y_{2}=a_{21} x_{2}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \\
& \quad \vdots \\
& y_{m}=a_{m 1} x_{2}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}
\end{aligned}
$$

write this as $y=A x$, where

$$
y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right] \quad A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right] \quad x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

this defines a map from \mathbb{R}^{n} to \mathbb{R}^{m}; this map is linear; that is

$$
\begin{aligned}
A(x+y) & =A x+A y \\
A(\lambda x) & =\lambda A x
\end{aligned}
$$

for any $x, y \in \mathbb{R}^{n}$ and any $\lambda \in \mathbb{R}$.
we also use linear equations to describe estimation problems;

$$
y=A x
$$

- y_{i} is the i th measurement or sensor reading
- x_{j} is the j th parameter to be estimated or determined
- $a_{i j}$ is the sensitivity of the i th sensor to the j th parameter
sample problems
- given $y_{\text {meas }}$, find x
- find all x that result in $y_{\text {meas }}$
(i.e., all x consistent with measurements)

estimation interpretation via rows

write A in terms of its rows
each row of A represents a sensor

$$
A=\left[\begin{array}{c}
b_{1}^{T} \\
b_{2}^{T} \\
\vdots \\
b_{m}^{T}
\end{array}\right]
$$

then

$$
y=\left[\begin{array}{c}
b_{1}^{T} x \\
b_{2}^{T} x \\
\vdots \\
b_{m}^{T} x
\end{array}\right]
$$

- y_{i} is the scalar product of b_{i} with x
- if b_{i} is a unit vector, then y_{i} is the component of x in the direction b_{i}
- think of A as acting on x to produce y
geometric interpretation of estimation

$$
b_{i}^{T} x=\text { constant }
$$

is a (hyper-) plane in \mathbb{R}^{n} normal to b_{i}.
if $A x=y$ then x is on intersection of hyperplanes $b_{i}^{T} x=y_{i}$
example:

$$
\begin{aligned}
A & =\left[\begin{array}{rr}
2 & 1 \\
-1 & 1
\end{array}\right] \\
x & =\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
y & =\left[\begin{array}{l}
4 \\
1
\end{array}\right]
\end{aligned}
$$

Determinant

a

- Determinant: Volume of the parallelepiped created by the vectors in the matrix.

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \operatorname{det}(A)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

has determinant
$\operatorname{det}(A)=a d-b c$.
The sum is computed over all permutations- of the numbers $\{1, \ldots, n\}$ and $\operatorname{sgn}(\sigma)$ denotes the signature of the permutation $\sigma:+1$ if $\sigma-$ is an even permutation and -1 if it is odd.

Symmetric eigenvalue decomposition

any matrix $A \in \mathbf{S}^{n}$ can be written as (Symmetric matrices of size n)

$$
A=Q \Lambda Q^{T}=\sum_{i=1}^{n} \lambda_{i} q_{i} q_{i}^{T}
$$

where $\quad A=A^{T}$

$$
Q=\left[\begin{array}{lll}
q_{1} & \cdots & q_{n}
\end{array}\right], \quad \Lambda=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

- $Q \in \mathbf{R}^{n \times n}$ is orthogonal $\left(Q^{T} Q=Q Q^{T}=I\right)$
- $\Lambda \in \mathbf{R}^{n \times n}$ is diagonal
we have $A Q=Q \Lambda$, i.e.,

$$
A\left[\begin{array}{llll}
q_{1} & q_{2} & \cdots & q_{n}
\end{array}\right]=\left[\begin{array}{llll}
q_{1} & q_{2} & \cdots & q_{n}
\end{array}\right] \Lambda
$$

- eigenvector q_{i}, eigenvalue λ_{i} satisfy $A q_{i}=\lambda_{i} q_{i}$
- eigenvalues are roots of characteristic polynomial

$$
\operatorname{det}(\lambda I-A)=0
$$

interpretation

$\left\{q_{1}, \ldots, q_{n}\right\}$ is an orthonormal basis for \mathbf{R}^{n}, i.e.,

$$
q_{i}^{T} q_{j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

mapping $y=A x$ in q_{i}-coordinates $(x=Q \tilde{x}, y=Q \tilde{y})$:

$$
\tilde{y}=\Lambda \tilde{x}
$$

Eigenvalues: Useful Properties

some useful properties

- $\operatorname{det} A=\prod_{i=1}^{n} \lambda_{i}$
- $\operatorname{Tr} A=\sum_{i=1}^{n} a_{i i}=\sum_{i=1}^{n} \lambda_{i}($ the trace of $A)$

Quadratic forms

a quadratic form is a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ with

$$
f(x)=x^{T} A x=\sum_{i, j=1}^{n} A_{i j} x_{i} x_{j}
$$

examples:

- $\|B x\|^{2}=x^{T} B^{T} B x$
- $\sum_{i=2}^{n}\left(x_{i+1}-x_{i}\right)^{2}$

Ellipsoids

$$
\mathcal{E}=\left\{x \mid x^{T} A x \leq 1\right\} \quad\left(A=A^{T}=Q \Lambda Q^{T} \succ 0\right)
$$

is an ellipsoid in \mathbf{R}^{n}, centered at 0

eigenvectors determine directions,
eigenvalues determine lengths of semiaxes

- volume $\propto\left(\prod_{i=1}^{n} \lambda_{i}\right)^{-1 / 2}=(\operatorname{det} A)^{-1 / 2}$

Probability

For each event $\mathrm{A} \subseteq \mathrm{S}$, we assume there is a number $P(A)$ called the probability of event A, satisfying the conditions:
i. $0 \leq \mathrm{P}(\mathrm{A}) \leq 1$
ii. $\quad \mathrm{P}(\mathrm{S})=1$
iii. If $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots$ are mutually exclusive

$$
\left(\mathrm{A}_{\mathrm{i}} \cap \mathrm{~A}_{\mathrm{j}}=\varnothing, \mathrm{i} \neq \mathrm{j}\right) \text {, then } P\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} P\left(A_{n}\right)
$$

Observe that

$$
1=\mathrm{P}(\mathrm{~S})=\mathrm{P}\left(\mathrm{~A} \cup \mathrm{~A}^{\mathrm{c}}\right)=\mathrm{P}(\mathrm{~A})+\mathrm{P}\left(\mathrm{~A}^{\mathrm{c}}\right)
$$

So

$$
\mathrm{P}\left(\mathrm{~A}^{\mathrm{c}}\right)=1-\mathrm{P}(\mathrm{~A})
$$

Law of Total Probability

If $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots \subseteq \mathrm{~S}$ are mutually exclusive such that

$$
\mathrm{A}_{\mathrm{i}} \cap \mathrm{~A}_{\mathrm{j}}=\varnothing \text { for } \mathrm{i} \neq \mathrm{j} \text {, and } \mathrm{S}=\bigcup_{i=1}^{\infty} \mathrm{A}_{\mathrm{i}},
$$

then exactly one of the events A_{i} will occur
(in other words, $\sum_{i=1}^{\infty} P\left(A_{i}\right)=1$)
and for any event $\mathrm{B} \subseteq \mathrm{S}, P(B)=\sum_{i=1}^{\infty} P\left(B \cap A_{i}\right)$

Conditional Probability

For two events A and B in $\mathrm{S}(\mathrm{A}, \mathrm{B} \subseteq \mathrm{S})$, the conditional probability of A given B is the probability that A occurs given that B has already occurred. It is denoted $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ and satisfies

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Note: this makes sense only when $\mathrm{P}(\mathrm{B})>0$.

Independence

Two events A and B in $\mathrm{S}(\mathrm{A}, \mathrm{B} \subseteq \mathrm{S})$ are independent if

$$
\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B})
$$

Note that by the definition of conditional probability, if events A and B are independent, then

$$
P(A \mid B)=\frac{P(A) P(B)}{P(B)}=P(A)
$$

Two events that are not independent are said to be dependent.

Bayes' Formula

Consider two events A and B in $\mathrm{S}(\mathrm{A}, \mathrm{B} \subseteq \mathrm{S})$. Since B and B^{c} are mutually exclusive

$$
\begin{array}{rlr}
\mathrm{P}(\mathrm{~A}) & =\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})+\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~B}^{\mathrm{c}}\right) \quad \text { (law of total probability) } \\
& =\mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \mathrm{P}(\mathrm{~B})+\mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}^{\mathrm{c}}\right) \mathrm{P}\left(\mathrm{~B}^{\mathrm{c}}\right) \quad \text { (def. of conditional probability) }
\end{array}
$$

Then, for $B_{1}, B_{2}, \ldots, B_{n}$ mutually exclusive with $\bigcup_{i=1}^{n} B_{i}=S$

$$
\mathrm{P}(\mathrm{~A})=\sum_{i=1}^{n} \mathrm{P}\left(\mathrm{~A} \cap \mathrm{~B}_{\mathrm{i}}\right)=\sum_{i=1}^{n} \mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{~B}_{\mathrm{i}}\right)
$$

Suppose that event
A has occurred and we want to know whether B_{j} has occurred...

$$
\begin{aligned}
P\left(B_{j} \mid A\right) & =\frac{P\left(A \cap B_{j}\right)}{P(A)} \\
& =\frac{P\left(A \mid B_{j}\right) P\left(B_{j}\right)}{\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)}
\end{aligned}
$$

Conditioning

$$
P(y \mid x)=P(x, y) / P(x)
$$

Marginalization

$$
P(x)=\sum_{y} P(x, y)
$$

Random Variables

A random variable is a function that associates a (real) number with each outcome in the sample space.

Let the random variable X equal their sum.

Probability Distribution Function

Given a random variable X, its cumulative distribution function
(CDF) is defined as

$$
F(b)=P(X \leq b)
$$

for any real number b, where $-\infty<b<\infty$.

Properties of the CDF include:
i. $\quad F(b)$ is a non-decreasing function of b
ii. $\quad \lim _{b \rightarrow \infty} F(b)=F(\infty)=1$
iii. $\lim _{b \rightarrow \infty} F(b)=F(-\infty)=0$

In general, all probability questions about X can be answered in terms of the CDF. For example, for $a<b$

$$
P(a<X \leq b)=F(b)-F(a)
$$

Discrete Random Variables

A random variable is discrete if it can take on a countable number of values. Example: $X \in\{2,3,4, \ldots, 12\}$
For a discrete random variable X, we define the probability mass function as

$$
p(a)=P(X=a)
$$

So the CDF for a discrete random variable satisfies

$$
F(a)=P(X \leq a)=\sum_{x \leq a} P(X=x)=\sum_{x \leq a} p(x)
$$

Consider the case where the possible values of X can be enumerated by $x_{1}, x_{2}, \ldots, x_{n}$. Then,

$$
\begin{array}{ll}
p\left(x_{i}\right)>0 & \text { for } i=1,2, \ldots, n \\
p(x)=0 & \text { for all other values of } x
\end{array}
$$

and

$$
\sum_{i=1}^{n} p\left(x_{i}\right)=1
$$

Important Discrete Random Variables

Bernoulli Random Variable with parameter (p) (where $0 \leq p \leq 1$)

$$
X \in\{0,1\} \quad \begin{aligned}
& p(0)=P\{X=0\}=1-p \\
& p(1)=P\{X=1\}=p
\end{aligned}
$$

Binomial Random Variable with parameters (n, p) (where $n \geq 0,0 \leq p \leq 1$)

$$
X \in\{0,1,2, \ldots, \mathrm{n}\} \quad p(i)=P\{X=i\}=\binom{n}{i} p^{i}(1-p)^{n-i}
$$

Geometric Random Variable with parameter (p)
(where $0 \leq p \leq 1$)

$$
X \in\{1,2,3, \ldots\} \quad p(n)=P\{X=n\}=(1-p)^{n-1} p
$$

Poisson Random Variable with parameter (λ)

$$
X \in\{0,1,2, \ldots\} \quad p(i)=P\{X=i\}=e^{-\lambda} \frac{\lambda^{i}}{i!}
$$

Binomial Events

FIGURE 2.3
Examples of the binomial distribution for different success probabilities.

Continuous Random Variables

A random variable is continuous if it can take on a continuum of possible values. Example: $X \in[0,1]$

For a continuous random variable, we define the probability density function $f(x)$ for all real values $-\infty<x<\infty$

$$
F(a)=P(X \leq a)=\int_{-\infty}^{a} f(x) d x
$$

and more generally

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

This definition implies the following:

$$
\begin{gathered}
P(X=a)=\int_{a}^{a} f(x) d x=0 \quad P(-\infty \leq X \leq \infty)=\int_{-\infty}^{\infty} f(x) d x=1 \\
\frac{d}{d a} F(a)=f(a)
\end{gathered}
$$

FIGURE 2.2
This shows the probability density function on the left with the associated cumulative distribution function on the right. Notice that the cumulative distribution function takes on values between 0 and 1 .

Important Continuous Random Variables

Uniform Random Variable with parameters (α, β)

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{\beta-\alpha} & \alpha<x<\beta \\
0 & \text { otherwise }
\end{array} \quad F(a)=\left\{\begin{array}{cc}
0 & a \leq \alpha \\
\frac{a-\alpha}{\beta-\alpha} & \alpha<x<\beta \\
1 & a \geq \beta
\end{array}\right.\right.
$$

Exponential Random Variable with parameter (λ)

$$
f(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & \mathrm{x}<0
\end{array} \quad F(a)=1-e^{-\lambda a} \quad a \geq 0\right.
$$

Normal Random Variable with parameters $\left(\mu, \sigma^{2}\right)$

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}} \quad F(a)=\int_{-\infty}^{a} \frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x
$$

Define $Y=(X-\mu) / \sigma$. If $X \sim N\left(\mu, \sigma^{2}\right)$, then $Y \sim N(0,1)$ is known as the standard (unit) random variable. $\Phi(a)=P\{Y \leq a\}$

Expected Value

The expected value of a random variable X is

$$
\begin{array}{rr}
E(X)=\sum_{\text {all } x} x p(x) & E(X)=\int_{-\infty}^{\infty} x f(x) d x \\
\text { (if } X \text { is discrete) } & \text { (if } X \text { is continuous) }
\end{array}
$$ and is also known as the expectation, mean, or first moment of X.

Examples:

- Let X be Bernoulli with parameter p.

$$
\begin{aligned}
E[X] & =1(p)+0(1-p) \\
& =p
\end{aligned}
$$

- Let Y be Uniform with parameters (α, β).

$$
\begin{aligned}
E[Y] & =\int_{\alpha}^{\beta} \frac{y}{\beta-\alpha} d y \\
& =\left[\frac{y^{2}}{2(\beta-\alpha)}\right]_{\alpha}^{\beta} \\
& =\frac{\beta+\alpha}{2}
\end{aligned}
$$

Expected Value for Functions of X

Let $g(X)$ be a function of the random variable X. Then,

$$
\begin{array}{cr}
E[g(X)]=\sum_{\text {all } x} g(x) p(x) & E[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) d x \\
\text { (if } X \text { is discrete) } & \text { (if } X \text { is continuous) }
\end{array}
$$

Consider the following important functions:

- When $g(x)=X^{m}$, then $E[g(X)]$ is known as the $\mathrm{m}^{\text {th }}$ moment of X

$$
E\left[X^{m}\right]=\sum_{\text {allx }} x^{m} p(x) \quad E\left[X^{m}\right]=\int_{-\infty}^{\infty} x^{m} f(x) d x
$$

- Let $\mu_{x}=E[X]$ be the mean of the random variable X. When $g(x)=\left(x-\mu_{x}\right)^{2}$, then $E[g(X)]$ is known as the variance of X

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[\left(X-\mu_{x}\right)^{2}\right] & \operatorname{Var}(X) & =E\left[\left(X-\mu_{x}\right)^{2}\right] \\
& =\sum_{\text {all } x}\left(x-\mu_{x}\right)^{2} p(x) & & =\int_{-\infty}^{\infty}\left(x-\mu_{x}\right)^{2} f(x) d x
\end{aligned}
$$

- In general, $E\left[\left(x-\mu_{x}\right)^{m}\right]$ is known as the $\mathrm{m}^{\text {th }}$ central moment of X.

Jointly Distributed Random Variables

For any two random variables X and Y we define the joint cumulative probability distribution function of X and Y as

$$
F(a, b)=P(X \leq a, Y \leq b) \quad-\infty \leq a, b \leq \infty
$$

In a manner completely analogous to the case of a single random variable, we define:

- Joint probability mass function: $p(x, y) \quad$ (discrete case)
- Joint probability density function: $f(x, y)$ (continuous case)
- Expectation of jointly distributed random variables

Just as we speak of independence of events, we say that two random variables X and Y are independent if

$$
P(X \leq x, Y \leq y)=P(X \leq x) P(Y \leq y)
$$

By the definition of conditional probability, X and Y are independent if and only if

$$
P(X \leq x \mid Y \leq y)=P(X \leq x)
$$

Normal \& Multivariate Normal

$$
f(x ; \mu, \Sigma)=\frac{1}{(2 \pi)^{\alpha-2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(x-\mu)^{t} \Sigma^{-1}(x-\mu)\right\} .
$$

$$
\Sigma=\left[\sigma_{x}^{2} 0\right.
$$

$$
\Sigma=\left[\begin{array}{ll}
\sigma_{x}^{2} & \rho \sigma_{x} \sigma_{y}
\end{array}\right.
$$

$$
\left.0 \sigma_{\mathrm{y}}{ }^{2}\right]
$$

$$
\left.\rho \sigma_{\mathrm{x}} \sigma_{\mathrm{y}} \quad \sigma_{\mathrm{y}}^{2}\right]
$$

