
Feature Selection/Extraction

Dimensionality Reduction



Feature Selection/Extraction
• Solution to a number of problems in Pattern Recognition can be

achieved by choosing a better feature space.
• Problems and Solutions:

– Curse of Dimensionality:
• #examples needed to train classifier function grows exponentially with

#dimensions.
• Overfitting and Generalization performance

– What features best characterize class?
• What words best characterize a document class
• Subregions characterize protein function?

– What features critical for performance?
– Subregions characterize protein function?

– Inefficiency
• Reduced complexity and run-time

– Can’t Visualize
• Allows ‘intuiting’ the nature of the problem solution.



Curse of Dimensionality
Same Number of examples
Fill more of the available space
When the dimensionality is low



Selection vs. Extraction
• Two general approaches for dimensionality reduction

– Feature extraction: Transforming the existing features into a lower dimensional space
– Feature selection: Selecting a subset of the existing features without a transformation

• Feature extraction
– PCA
– LDA (Fisher’s)

– Nonlinear PCA (kernel, other varieties
– 1st layer of many networks

Feature selection ( Feature Subset Selection )
 Although FS is a special case of feature extraction, in practice quite different

–  FSS searches for a subset that minimizes some cost function (e.g. test error)
– FSS has a unique set of methodologies



Feature Subset Selection
 Definition

 Given a feature set x={xi | i=1…N}
find a subset xM ={xi1, xi2, …, xiM}, with M<N, that

     optimizes an objective function J(Y),  e.g. P(correct classification)

Why Feature Selection?
• Why not use the more general feature extraction methods?

Feature Selection is necessary in a number of situations
• Features may be expensive to obtain

• Want to extract meaningful rules from your classifier

• When you transform or project, measurement units (length, weight, etc.) are
lost

• Features may not be numeric (e.g. strings)



Implementing Feature Selection



Objective Function

The objective function
evaluates candidate subsets
and returns a measure of
their “goodness”.

This feedback is used by the
search strategy to select new
candidates.

Simple Objective function:
Cross-validation error rate.
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Feature Extraction



In general, the optimal mapping y=f(x) will be a
non-linear function

• However, there is no systematic way to generate non-
linear transforms

• The selection of a particular subset of transforms is problem
dependent

• For this reason, feature extraction is commonly limited to
linear transforms: y=Wx
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PCA Derivation: Minimizing Reconstruction Error

Any point in Rn can
perfectly reconstructed
in a new Orthonormal
basis of size n.

Goal:  Find an
orthonormal basis of m
vectors, m<n that
minimizes
Reconstruction error.
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ˆ x = Umym + Udb = ˆ x (m) + ˆ x discard
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Define a reconstruction based on the
‘best’ m vectors x(m)ˆ
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Visualizing Reconstruction Error
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Solution involves finding
directions u which minimize
the perpendicular distances
and removing them



  

! 

"x(m) = x # ˆ x (m) = yi

r 
u i #

i=1:n

$ yi

r 
u i +

i=1:m

$ bi

r 
u i

i= (m +1):n

$
% 

& 
' ' 

( 

) 
* * = (yi # bi)

r 
u i

i= (m +1):n

$

Errrecon

2 = E "x(m)
2[ ] = E (y j # bj )

r 
u j (yi # bi)

r 
u i

i= (m +1):n

$
j=(m +1):n

$
+ 

, 
- 
- 

. 

/ 
0 
0 

= E (yi # bi)(y j # b j )
r 
u i

T r 
u j

i= (m +1):n

$
j=(m +1):n

$
+ 

, 
- 
- 

. 

/ 
0 
0 

= E (yi # bi)
2

i= (m +1):n

$
+ 

, 
- 

. 

/ 
0 = E (yi # bi)

2[ ]
i= (m +1):n

$

Goal:  Find basis vectors ui and constants bi minimize
reconstruction error
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Rewriting the
error….

Solving for b….

Therefore, replace the discarded dimensions yi’s by their expected value.
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Now rewrite the error replacing the bi 

C is the covariance matrix for x



Thus, finding the best basis ui involves minimizing the quadratic form,

subject to the constraint || ui ||=1
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Using Lagrangian Multipliers we form the constrained
error function:
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Which results in the following
Eigenvector problem
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Plugging back into the error:

Thus the solution is to discard the m-n smallest
eigenvalue eigenvectors.

PCA summary:
1) Compute data covariance
2) Eigenanalysis on covariance matrix
3) Throw out smallest eigenvalue eigenvectors

Problem:  How many to keep?
Many criteria.

e.g.   % total data variance:
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http://www-white.media.mit.edu/vismod/demos/facerec/basic.html

PCA on aligned face images



Extensions:  ICA
• Find the ‘best’ linear basis, minimizing the

statistical dependence between projected
components
Problem:
Find c hidden
ind. sources  xi

Observation
Model



ICA Problem statement:
Recover the source signals from the sensed signals. More specifically, we seek a real matrix W

such that z(t) is an estimate of x(t):



Solve via:



Depending on density assumptions, ICA can
have easy or hard solutions

• Gradient approach
• Kurtotic ICA:  Two lines matlab code.

– http://www.cs.toronto.edu/~roweis/kica.html
• yy are the mixed measurements (one per column)
• W is the unmixing matrix.

• % W = kica(yy);
• xx = sqrtm(inv(cov(yy')))*(yy-repmat(mean(yy,2),1,size(yy,2)));
• [W,ss,vv] = svd((repmat(sum(xx.*xx,1),size(xx,1),1).*xx)*xx');



Kernel PCA

• PCA after non-linear transformation



Using Non-linear components
• Principal Components Analysis (PCA) attempts to efficiently

represent the data by finding orthonormal axes which maximally
decorrelate the data

• Makes Following assumptions:
– · Sources are Gaussian
– · Sources are independent

and stationary (iid)



Extending PCA









Kernel PCA algorithm
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Probabilistic Clustering

EM, Mixtures of Gaussians, RBFs,
etc







But only if we are given the distributions and prior



















http://www.ncrg.aston.ac.uk/netlab/

* PCA
* Mixtures of probabilistic PCA
* Gaussian mixture model with EM training
* Linear and logistic regression with IRLS
* Multi-layer perceptron with linear, logistic and

  softmax outputs and error functions
* Radial basis function (RBF) networks with

  both Gaussian and non-local basis functions
* Optimisers, including quasi-Newton methods,

  conjugate gradients and scaled conj grad.
* Multi-layer perceptron with Gaussian mixture

  outputs (mixture density networks)
* Gaussian prior distributions over parameters

  for the MLP, RBF and GLM including multiple
  hyper-parameters

* Laplace approximation framework for
  Bayesian inference (evidence procedure)

* Automatic Relevance Determination for input
  selection

* Markov chain Monte-Carlo including simple
  Metropolis and hybrid Monte-Carlo

* K-nearest neighbour classifier
* K-means clustering
* Generative Topographic Map
* Neuroscale topographic projection
* Gaussian Processes
* Hinton diagrams for network weights
* Self-organising map



Data sampled from
Mixture of 3 Gaussians Spectral Clustering


