Feature Selection/Extraction

Dimensionality Reduction



Feature Selection/Extraction

* Solution to a number of problems in Pattern Recognition can be
achieved by choosing a better feature space.

e Problems and Solutions:

— Curse of Dimensionality:

e #examples needed to train classifier function grows exponentially with
#dimensions.

e Overfitting and Generalization performance

— What features best characterize class?
e What words best characterize a document class
e Subregions characterize protein function?

— What features critical for performance?
— Subregions characterize protein function?

— Inefficiency

e Reduced complexity and run-time

— Can’t Visualize
e Allows ‘intuiting’ the nature of the problem solution.



Curse of Dimensionality

Same Number of examples
e | ¢ Fill more of the available space
o When the dimensionality is low %

m Implications of the curse of dimensionality

e Exponential growth with dimensionality in the number of examples
required to accurately estimate a function

m In practice, the curse of dimensionality means that

e For a given sample size, there is a maximum number of features above
which the performance of our classifier will degrade rather than improve

m In most cases, the information s
that was lost by discarding some
features is compensated by a
more accurate mapping in lower-
dimensional space

performance

»
dimensionality



Selection vs. Extraction
« Two general approaches for dimensionality reduction

— Feature extraction: Transforming the existing features into a lower dimensional space
— Feature selection: Selecting a subset of the existing features without a transformation
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« Feature extraction
- PCA
— LDA (Fisher’s)

— Nonlinear PCA (kernel, other varieties
— 1st layer of many networks

Feature selection ( Feature Subset Selection )

Although FS is a special case of feature extraction, in practice quite different
FSS searches for a subset that minimizes some cost function (e.g. test error)
— FSS has a unique set of methodologies



Feature Subset Selection

Definition

Given a feature set x={x; | i=1...N}

find a subset xy; ={x,;, X;5, ..., X;,}, With M<N, that
optimizes an objective function J(Y), e.g. P(correct classification)

Why Feature Selection?

Why not use the more general feature extraction methods?

Feature Selection is necessary in a number of situations

Features may be expensive to obtain
Want to extract meaningful rules from your classifier

When you transform or project, measurement units (length, weight, etc.) are
lost

Features may not be numeric (e.g. strings)



Implementing Feature Selection
m Feature Subset Selection requires

e A search strategy to select candidate subsets
e An objective function to evaluate these candidates
m Search Strategy (N)

e EXxhaustive evaluation of feature subsets involves | M

combinations for a fixed value of M, and 2N combinations
If M must be optimized as well

m [ his number of combinations is unfeasible, even for moderate

values of M and N, so a search procedure must be used in
practice

m For example, exhaustive evaluation of 10 out of 20 features
involves 184,756 feature subsets; exhaustive evaluation of 10

out of 20 involves more than 10" feature subsets
e A search strategy is therefore needed to direct the FSS

process as it explores the space of all possible
combination of features



Objective Function (_Training ceta )

Complete feature set

The objective function
evaluates candidate subsets Feature Subset Selection
and returns a measure of
their “goodness”.

Search

Feature

subset “Goodness”
This feedback is used by the
search strategy to select new [ C;Sg]ecctrlté\:]e ]
candidates.
Slmple Objective function: Final feature subset

algorithm

Cross-validation error rate. [ R J




Naive sequential feature selection

s One may be tempted to evaluate each individual feature separately and select

those M features with the highest scores

+« Unfortunately, this strategy will VERY RARELY work since it does not account for feature

dependence
s An example will help illustrate the poor performance
that can be expected from this naive approach

+ The figures show a 4-dimensional pattern recognition problem
with 5 classes. Features are shown in pairs of 2D scatter plots

+ The objective is to select the best subset of 2 features using the

naive sequential feature selection procedure

+ Any reasonable objective function will rank features according
to this sequence: J(x,)>J(X,)=J(X;)>J(X,)

m X, is, without a doubt, the best feature. It clearly separates ,, ®,, o,

and {w,, o}
m X, and X, have similar performance, separating classes in three
groups
m X, is the worst feature since it can only separate , from oy, the rest
of the classes having a heavy overlap
+ The optimal feature subset turns out to be {x,, x,}, because x,
provides the only information that x, needs: discrimination
between classes ®, and o,
+ However, if we were to choose features according to the
individual scores J(x,), we would choose X;and either x, or X,
leaving classes ®, and . non separable

m This naive strategy fails because it does not take into account the
interaction between features

X3




Sequential Forward Selection (SFS)

m Sequential Forward Selection is the simplest greedy search algorithm

+ Starting from the empty set, sequentially add the feature x* that results in the highest objective
function J(Y +x*) when combined with the features Y, that have already been selected

. Algorlthm Empty feature set
1. Start with the empty set Y={}
2. Select the next best feature x* = argmax[J(Y, +x)]
3. Update Y,, =Y, +X; k=k+1 XeX Y
4. Goto2

m Notes

+ SFS performs best when the optimal subset has a small number of
features

m  When the search is near the empty set, a large number of states can be
potentially evaluated

m Towards the full set, the region examined by SFS is narrower since most of the
features have already been selected

+ The search space is drawn like an ellipse to emphasize the fact that there Full feature set
are fewer states towards the full or empty sets
m  As an example, the state space for 4 features
is shown. Notice that the number of states is 1070 0100 0020 0001
larger in the middle of the search tree
m The main disadvantage of SFS is that it is unable
to remove features that become obsolete after the R B Rl e
addition of other features
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Feature Extraction

= Two approaches are available to perform dimensionality reduction
e Feature extraction: creating a subset of new features by combinations of the existing
features
e Feature selection: choosing a subset of all the features (the ones more informative)
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= The problem of feature extraction can be stated as
¢ Given a feature space x,eRN find a mapping y=f(x):RN—RM with M<N such that the
transformed feature vector y,eRM preserves (most of) the information or structure in RN.
¢ An optimal mapping y=f(x) will be one that results in no increase in the minimum

probability of error
» This is, a Bayes decision rule applied to the initial space RN and to the reduced space RM yield the
same classification rate



In general, the optimal mapping y=f(x) will be a

non-linear function

e However, there is no systematic way to generate non-

linear transforms

e The selection of a particular subset of transforms is problem

dependent

e For this reason, feature extraction is commonly limited to
linear transforms: y=Wx

linear feature extraction

Id
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Signal representation versus classification

m The selection of the feature extraction mapping y=f(x) is guided by an
objective function that we seek to maximize (or minimize)

= Depending on the criteria used by the objective function, feature
extraction techniques are grouped into two categories:
¢ Signal representation: The goal of the feature extraction mapping is to represent
the samples accurately in a lower-dimensional space
e Classification: The goal of the feature extraction mapping is to enhance the
class-discriminatory information in the lower-dimensional space
s Within the realm of linear feature s
extraction, two techniques are
commonly used
¢ Principal Components Analysis (PCA) 14 11 2222
m uses a signal representation criterion i
e Linear Discriminant Analysis (LDA)
m uses a signal classification criterion

Feature 2

Feature 1



PCA Derivation: Minimizing Reconstruction Error

Any pointin R" can x = Uy, suchthat U'U=I
perfectly reconstructed L ~
in a new Orthonormal X = [”1"/‘2" Cl, Y = Eyiui
basis of sizen. =l
9 Define a reconstruction based on the

x(m) =i, | fa, ]|
-ym-

‘best’ m vectors x(m)

o yl o -)’n.m-
X [ul‘quum] : +[um+1 :

. Uy io iin]
Goal: Find an y

orthonormal basis of m
vectors, m<n that

e A T A
minimizes Err’ = E(Xk_xk) (x,~-X,)
Reconstruction error.

-y]’l -

X

Umym + Udb = ﬁ(m) + ﬁdiscard

k=1:Nsamples



Visualizing Reconstruction Error

Data scatter Data as 2D vectors
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Solution involves finding
directions u which minimize
the perpendicular distances
and removing them




Goal: Find basis vectors i, and constants b, minimize

reconstruction error
Ax(m) =X -X(m) = Eyiﬁi —(Eyftﬁ Ebiﬁi)= E(yl.—bi)iil.
Rewriting the i=l:n i=Lm i=(m+1)yn i=(m+1)n
error.... ] .
Errriwn =FE HAX(m)H ]= E (y;=b, )u E(yl b.)u.
) | j=(m+1)n i=(m+1)n
-E E N (3i=b)(y; b, )*T*
| j=(m+1)ni=(m+l)n
S o7
Solving for b"" | i=(m+1):n i=(m+l):n
obrr_ N E[(y,-b)*]|=2(E[y,]-b) = b =E[y,]
abl é’b ] l l l

1 i=(m+1):n

Therefore, replace the discarded dimensions y,’s by their expected value.



Now rewrite the error replacing the b,

YE|(y,-ElyD*|= ) E[("i,— Ex"ii,])’]

i=(m+1)n i=(m+1)n
E E:(XTﬁl. - E[x'u)) x'u, - E[XTﬁl.])]
i=(m+1)n
EE:ZiiT(XT - ExX' D' (x" - E[XT])ﬁi]
i=(m+1):n
E EZilT (x - E[x])(x - E[x])" ﬁi]
i=(m+1)n
E ftlTE[(X - E[x])(x - E[X])T]ﬁl.
i=(m+1)n

—>T — . . .
E u; Cu, C is the covariance matrix for x

i=(m+1).n




Thus, finding the best basis 1, involves minimizing the quadratic form,
Err = E i, Cu,

i=(m+l):n

subject to the constraint || z¢, [|="1

Using Lagrangian Multipliers we form the constrained
error function: g, _ S Cii,+ 2,(1- i i)

i=(m+1)n

oErr 0 ~ o
di, dull(gl)nrcbtm( i) =0
J — (@ Cii, + A(1- ] ii,)) = 2Cii, - 2A,di; = 0
&u

Which results in the following Cii m )L m
Eigenvector problem



Plugging back into the error:
Err = E_»TCM + A, (1 i; *l.)

i=(m+1):n
—»T —
Err = Eui (A 4,)+0= 2)\.i
i=(m+1):n i=(m+1):n

Thus the solution is to discard the m-n smallest
eigenvalue eigenvectors.

PCA summary:

1) Compute data covariance

2) Eigenanalysis on covariance matrix

3) Throw out smallest eigenvalue eigenvectors
Problem: How many to keep? E A

Many criteria. max(m) 3

e.g. % total data variance: E A,
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= In this example we have a three-dimensional
Gaussian distribution with the following
parameters

25 -1 7
u=[052"and 2= -1 4 -4
7 -4 10

» The three pairs of principal component
projections are shown below

¢ Notice that the first projection has the largest
variance, followed by the second projection

¢ Also notice that the PCA proiections de-correlates
the axis X2 X1




s This example shows a projection of a three-dimensional data set into two dimensions
e |Initially, except for the elongation of the cloud, there is no apparent structure in the set of points

e Choosing an appropriate rotation allows us to unveil the underlying structure. (You can think of this rotation
as "walking around" the three-dimensional set, looking for the best viewpoint)

s PCA can help find such underlying structure. It selects a rotation such that most of the
variability within the data set is represented in the first few dimensions of the rotated data
e Inour three-dimensional case, this may seem of little use

e However, when the data is highly multidimensional (10’s of dimensions), this analysis is quite powerful
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Input Image
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http://www-white.media.mit.edu/vismod/demos/facerec/basic.html




Extensions: ICA

* Find the ‘best’ linear basis, minimizing the
statistical dependence between projected
components

Problem: .

Find c hidden  p(x(¢)) = H p(x; (1)),

ind. sources x; i=1
Suppose that a d-dimensional data (or sensor) vector
1s observed at each moment.

Observation yv(t) = Ax(1).
Model

where A 1s a ¢ x d scalar matrix, and below we shall require d = ¢.
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ICA Problem statement:

Recover the source signals from the sensed signals. More specifically, we seek a real matrix W
such that z(t) is an estimate of x(t):

z(l) = Wy(t) = WAX(1).



We approach the determination of A by maximum-likelihood techniques. We use
an estimate of the density. parameterized by a p(y: a) and seek the parameter vector
a that minimizes the diffrerence between the source distribution and the estimate.
That i1s, a is the basis vectors of A and thus p(y: a) is an estimate of the p(y).

This difference can be quantified by the Kullback-Liebler divergence:

Dip(y).ply: a))

The log-likelihood is

Solve via:

D{p(y)|lp(y:
/ p(y)log A »

ply: a)
H(y) - / p(y)logh(y; a)dy (04)

a))

dy



Depending on density assumptions, ICA can
have easy or hard solutions

e Gradient approach

e Kurtotic ICA: Two lines matlab code.
— http://www.cs.toronto.edu/~roweis/kica.html

. yy are the mixed measurements (one per column)
- w Is the unmixing matrix.

% W = kica(yy);
xx = sqrtm(inv(cov(yy’))*(yy-repmat(mean(yy,2),1,size(yy,2)));
[W,ss,vv] = svd((repmat(sum(xx.*xx,1),size(xx,1),1).*xx)*xx");



Kernel PCA

[54.

linear PCA

kernel ECA
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Using Non-linear components

Principal Components Analysis (PCA) attempts to efficiently
represent the data by finding orthonormal axes which maximally
decorrelate the data
Makes Following assumptions:
— - Sources are Gaussian
— - Sources are independent
and stationary (iid)
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Extending PCA

Rewriting PCA in terms of dot products

First, we need to remember that the eigenvectors lie in the span of
x1 ...x, Proof: Substituting equation 4 into 5, we get

m

Cv mz:z,ja, UV = \V

Thus,

m
v = m)\Z :LJ:L v

— m>\ Zm ( ):Ej



( 12101 + 12202 + ... + L1TM UM \

To2T1V1 + 22202 + ... + X2X M UM

EMTIVL 4+ TAT2V2 + ..+ TMENMUM )

Show that (zx!)v = (z-v)x
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If we first send the data into another space,

X —-H,x— D(x)

Then, assuming we can center the data (i.e., >, ®(x) = 0 — this
is shown in the appendix), we can write the covariance matrix

1 m
C=_— > D) P(xs)"
71=1

Which can be diagonalized with nonnegative eigenvalues satisfying

AV =CV



m

Cv=M = )\Zaﬁb(xi)
i=1

Substituting

m

YJ y: CY](I)<CI,Z)K(JJZCLJ) = mA\ Z osz)(a:i)
1=1

i=1 j=1

where K (x;,2;) is an inner-product kernel defined by

AT :
To express the relationship entirely in terms of the inner-product

kernel, we premultiply both sides by ®(x;)" and
rewrite the expression as the eigenvalue problem

Ko = )\x



Kernel PCA algorithm
K, =k(x;x;)
Eigenanalysis
(mA)a =Ko
K = AAA™
Enforce

A

n

—n

2
ol =1

Compute Projections

Y = E’:aijk(xi, X)



Toy Example with Gaussian Kernel

k(z.2) = exp (|2 - fL"IHQ)




Comparison of Different Algorithms

kernel PCA

4 PCs

nomnlineal
autoencoder

Principa
Curves

linear PCA
1 PC




Denoising of USPS Digits

(Faussian noise

‘speckle’ noise

orig.
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Another application: face modeling [46].

limnear PCA
reconstruction

kernel PCA
reconstruction



Probabilistic Clustering

EM, Mixtures of Gaussians, RBFs,
elC



Multi-variate density estimation

e A mixture of Gaussians model

X|‘9 Z PP Xl:ujq )

where 6 = {p1, ..., Pr,s i1y -y flks 21, - - -, 2k} coONtains all
the parameters of the mixture model. {p;} are known as
mixing proportions or coefficients.




Mixture density

e Data generation process:

P(y) 2 %%w%& :
o
y=1 y=2 1% S
12,
x|y=1 (X]y=2
p(x|0) = Z P(y -p(x|y =j) (generic mixture)
71=1,2

Z Pj - X\/tg, ) (mixture of Gaussians)
7=1,2

e Any data point x could have been generated in two ways



Mixture density

e [f we are given just x we don't know which mixture
component this example came from

p(x0) = Y pip(x|p,E))

71=1,2

e We can evaluate the posterior probability that an observed
X was generated from the first mixture component

Ply=1) p(xly = 1)
Zj:1,2 Ply=j) p(xly =J)
p1p(x|p, X1)
Ej:l@ pj p(X| g, 2j)
But only if we are given the distributions and prior

Py =1|x,0) =

e This solves a credit assignment problem



Mixture density estimation

e Suppose we want to estimate a two component mixture of
Gaussians model.

p(x|0) = p1p(x|pe1, X1) + p2 p(x|p2, X2)

e |f each example x; in the training set were labeled y; =
1,2 according to which mixture component (1 or 2) had
generated it, then the estimation would be easy.

e Labeled examples = no credit assighment problem



Mixture density estimation

When examples are already N I S

aSS|gned to mixture ms&_{&
%ﬁ%}‘c? I

components (labeled), we

. . 1 o o y

can estimate each Gaussian <= +%.

. ‘oo‘p% ’i?c

independently R ST

o If n; is the number of examples labeled j, then for each
j=1.2 we set

pj — —

X 1
Hi < = § : Xi
14

VYi=]

2 1 o o
Xj — Z (i — i) (xi — fij)"

vYi=]



Mixture density estimation: credit assignment

e Of course we don't have such labels ... but we can guess what
the labels might be based on our current mixture distribution

e We get soft labels or posterior -
probabilities of which Gaussian
generated which example:

pljli) — Ply; = j|xi.0) oo}
where > ., o p(ji) =1 for all °
i=1,..., n. gl

e When the Gaussians are almost identical (as in the figure),
p(1]7) =~ p(2|i) for almost any available point x;.

Even slight differences can help us determine how we should
modify the Gaussians.



The EM algorithm

E-step: softly assign examples to mixture components

p(jlz) — Ply; = jlx;.#0). forall j=1.2andi=1..... n

M-step: re-estimate the parameters (separately for the two
Gaussians) based on the soft assignments.

n; < Z})(ﬂi) — Soft # of examples labeled j

i—1
. 'flj
P n
1 — )
i = o Z_; p(j]i)
1 T
Lj =~ p(jli) (xi — fuj)(xi — /'-«l'j)l



Mixture density estimation: example
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Mixture density estimation

2 r v v v 2




Mixture density estimation

2 v T r v 2

2 8
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The EM-algorithm

e Each iteration of the EM-algorithm monotonically increases
the (log-)likelihood of the n training examples x;.. ... >

p(x;|0)

log p( data |#) = Z log (1)1 p(Xilper, X1) + p2 p(xi|pe. Zg))

=1

where 6 = {py. pa. jt1. 1o, 221. 29} contains all the parameters
of the mixture model.
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ETLAB

http://www.ncrg.aston.ac.uk/netlab/

Neural Networks for
Pattern Recognition

T t

| +Ir;gn T NaBEEg '
\ 0

WINETLAB
Algorithms for
Pattern} ;

| Recognition

Carcsopae M. Dodep

ab2 ‘ 1.000000 Sampling from a Gaussian prior

N | _
a2 ‘ 1,000000

N | >
ab1 ‘ 0.100000

N | >

awl ’ 0.010000

N -

PCA

Mixtures of probabilistic PCA

Gaussian mixture model with EM training

Linear and logistic regression with IRLS

Multi-layer perceptron with linear, logistic and
softmax outputs and error functions

Radial basis function (RBF) networks with
both Gaussian and non-local basis functions

Optimisers, including quasi-Newton methods,
conjugate gradients and scaled conj grad.

Multi-layer perceptron with Gaussian mixture
outputs (mixture density networks)

Gaussian prior distributions over parameters
for the MLP, RBF and GLM including multiple
hyper-parameters

Laplace approximation framework for
Bayesian inference (evidence procedure)

Automatic Relevance Determination for input
selection

Markov chain Monte-Carlo including simple
Metropolis and hybrid Monte-Carlo

K-nearest neighbour classifier

K-means clustering

Generative Topographic Map

Neuroscale topographic projection

Gaussian Processes

Hinton diagrams for network weights

Self-organising map



Data sampled from
Mixture of 3 Gaussi

ans

Spectral Clustering
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