
Feature Selection/Extraction

Dimensionality Reduction

Feature Selection/Extraction
• Solution to a number of problems in Pattern Recognition can be

achieved by choosing a better feature space.
• Problems and Solutions:

– Curse of Dimensionality:
• #examples needed to train classifier function grows exponentially with

#dimensions.
• Overfitting and Generalization performance

– What features best characterize class?
• What words best characterize a document class
• Subregions characterize protein function?

– What features critical for performance?
– Subregions characterize protein function?

– Inefficiency
• Reduced complexity and run-time

– Can’t Visualize
• Allows ‘intuiting’ the nature of the problem solution.

Curse of Dimensionality
Same Number of examples
Fill more of the available space
When the dimensionality is low

Selection vs. Extraction
• Two general approaches for dimensionality reduction

– Feature extraction: Transforming the existing features into a lower dimensional space
– Feature selection: Selecting a subset of the existing features without a transformation

• Feature extraction
– PCA
– LDA (Fisher’s)

– Nonlinear PCA (kernel, other varieties
– 1st layer of many networks

Feature selection (Feature Subset Selection)
 Although FS is a special case of feature extraction, in practice quite different

– FSS searches for a subset that minimizes some cost function (e.g. test error)
– FSS has a unique set of methodologies

Feature Subset Selection
 Definition

 Given a feature set x={xi | i=1…N}
find a subset xM ={xi1, xi2, …, xiM}, with M<N, that

 optimizes an objective function J(Y), e.g. P(correct classification)

Why Feature Selection?
• Why not use the more general feature extraction methods?

Feature Selection is necessary in a number of situations
• Features may be expensive to obtain

• Want to extract meaningful rules from your classifier

• When you transform or project, measurement units (length, weight, etc.) are
lost

• Features may not be numeric (e.g. strings)

Implementing Feature Selection

Objective Function

The objective function
evaluates candidate subsets
and returns a measure of
their “goodness”.

This feedback is used by the
search strategy to select new
candidates.

Simple Objective function:
Cross-validation error rate.

x1

Feature Extraction

In general, the optimal mapping y=f(x) will be a
non-linear function

• However, there is no systematic way to generate non-
linear transforms

• The selection of a particular subset of transforms is problem
dependent

• For this reason, feature extraction is commonly limited to
linear transforms: y=Wx

!

x =Uy, such that UTU = I

x =
r
u

1

r
u

2
L

r
u n[]y = yi

r
u i

i=1:n

"

PCA Derivation: Minimizing Reconstruction Error

Any point in Rn can
perfectly reconstructed
in a new Orthonormal
basis of size n.

Goal: Find an
orthonormal basis of m
vectors, m<n that
minimizes
Reconstruction error.

!

ˆ x =
r
u

1

r
u

2
L

r
u m[]

y
1

M
ym

"

$
$

%

&

'
'
+

r
u m +1

r
u m +2

L
r
u n[]

ym +1

M
yn

"

$
$

%

&

'
'

ˆ x = Umym + Udb = ˆ x (m) + ˆ x discard

!

ˆ x (m) =
r
u

1

r
u

2
L

r
u m[]

y
1

M
ym

"

$
$

%

&

'
'

Define a reconstruction based on the
‘best’ m vectors x(m)ˆ

!

Errrecon
2 = x k" ˆ x k()

T
x k" ˆ x k()

k=1:Nsamples

#

Visualizing Reconstruction Error

x

Data scatter Data as 2D vectors

y

ugood

u

x

xt u

r

xp

ugood

Solution involves finding
directions u which minimize
the perpendicular distances
and removing them

!

"x(m) = x # ˆ x (m) = yi

r
u i #

i=1:n

$ yi

r
u i +

i=1:m

$ bi

r
u i

i= (m +1):n

$
%

&
' '

(

)
* * = (yi # bi)

r
u i

i= (m +1):n

$

Errrecon

2 = E "x(m)
2[] = E (y j # bj)

r
u j (yi # bi)

r
u i

i= (m +1):n

$
j=(m +1):n

$
+

,
-
-

.

/
0
0

= E (yi # bi)(y j # b j)
r
u i

T r
u j

i= (m +1):n

$
j=(m +1):n

$
+

,
-
-

.

/
0
0

= E (yi # bi)
2

i= (m +1):n

$
+

,
-

.

/
0 = E (yi # bi)

2[]
i= (m +1):n

$

Goal: Find basis vectors ui and constants bi minimize
reconstruction error

!

"Err

"bi
= 0 =

"

"bi
E (yi # bi)

2[] =
i= (m+1):n

$ 2(E yi[] # bi) % bi = E yi[]

Rewriting the
error….

Solving for b….

Therefore, replace the discarded dimensions yi’s by their expected value.

!

E (yi " E[yi])
2[]

i= (m +1):n

= E (x
T r
u i " E[x

T r
u i])

2[]
i= (m +1):n

#

= E (x
T r
u i " E[x

T r
u i])

T
(x

T r
u i " E[x

T r
u i])[]

i= (m +1):n

#

= E
r
u i

T
(x

T " E[x
T
])

T
(x

T " E[x
T
])

r
u i[]

i= (m +1):n

#

= E
r
u i

T
(x " E[x])(x " E[x])

T r
u i[]

i= (m +1):n

#

=
r
u i

T
E (x " E[x])(x " E[x])

T[]
r
u i

i= (m +1):n

#

=
r
u i

T
C

r
u i

i= (m +1):n

#

Now rewrite the error replacing the bi

C is the covariance matrix for x

Thus, finding the best basis ui involves minimizing the quadratic form,

subject to the constraint || ui ||=1

!

Err =
r
u

i

T
C

r
u

i

i= (m +1):n

"

Using Lagrangian Multipliers we form the constrained
error function:

!

Err =
r
u

i

T
C

r
u

i

i= (m +1):n

" + #
i
1$

r
u

i

T
r
u

i()

%Err

%
r
u

i

=
%

%
r
u

i

r
u

i

T
C

r
u

i

i= (m +1):n

" + #
i
1$

r
u

i

T
r
u

i() = 0

=
%

%
r
u

i

r
u

i

T
C

r
u

i
+ #

i
1$

r
u

i

T
r
u

i()() = 2C
r
u

i
$ 2#

i

r
u

i
= 0

!

C
r
u

i
= "

i

r
u

i

Which results in the following
Eigenvector problem

!

Err =
r
u

i

T
C

r
u

i

i= (m +1):n

" + #
i
1$

r
u

i

T
r
u

i()

Err =
r
u

i

T #
i

r
u

i()
i= (m +1):n

" + 0 = #
i

i= (m +1):n

"

Plugging back into the error:

Thus the solution is to discard the m-n smallest
eigenvalue eigenvectors.

PCA summary:
1) Compute data covariance
2) Eigenanalysis on covariance matrix
3) Throw out smallest eigenvalue eigenvectors

Problem: How many to keep?
Many criteria.

e.g. % total data variance:

!

max(m) "

#
i

i= (m+1):n

$

#
i

i=1:n

$
< %

http://www-white.media.mit.edu/vismod/demos/facerec/basic.html

PCA on aligned face images

Extensions: ICA
• Find the ‘best’ linear basis, minimizing the

statistical dependence between projected
components
Problem:
Find c hidden
ind. sources xi

Observation
Model

ICA Problem statement:
Recover the source signals from the sensed signals. More specifically, we seek a real matrix W

such that z(t) is an estimate of x(t):

Solve via:

Depending on density assumptions, ICA can
have easy or hard solutions

• Gradient approach
• Kurtotic ICA: Two lines matlab code.

– http://www.cs.toronto.edu/~roweis/kica.html
• yy are the mixed measurements (one per column)
• W is the unmixing matrix.

• % W = kica(yy);
• xx = sqrtm(inv(cov(yy')))*(yy-repmat(mean(yy,2),1,size(yy,2)));
• [W,ss,vv] = svd((repmat(sum(xx.*xx,1),size(xx,1),1).*xx)*xx');

Kernel PCA

• PCA after non-linear transformation

Using Non-linear components
• Principal Components Analysis (PCA) attempts to efficiently

represent the data by finding orthonormal axes which maximally
decorrelate the data

• Makes Following assumptions:
– · Sources are Gaussian
– · Sources are independent

and stationary (iid)

Extending PCA

Kernel PCA algorithm

!

Kij = k(xi,x j)

Eigenanalysis

(m")
r
= K

r

K = A$A%1

Enforce

"n
r
n

2

=1

Compute Projections

yn = # i

j
k(xi,x)

i=1

m

&

Probabilistic Clustering

EM, Mixtures of Gaussians, RBFs,
etc

But only if we are given the distributions and prior

http://www.ncrg.aston.ac.uk/netlab/

* PCA
* Mixtures of probabilistic PCA
* Gaussian mixture model with EM training
* Linear and logistic regression with IRLS
* Multi-layer perceptron with linear, logistic and

 softmax outputs and error functions
* Radial basis function (RBF) networks with

 both Gaussian and non-local basis functions
* Optimisers, including quasi-Newton methods,

 conjugate gradients and scaled conj grad.
* Multi-layer perceptron with Gaussian mixture

 outputs (mixture density networks)
* Gaussian prior distributions over parameters

 for the MLP, RBF and GLM including multiple
 hyper-parameters

* Laplace approximation framework for
 Bayesian inference (evidence procedure)

* Automatic Relevance Determination for input
 selection

* Markov chain Monte-Carlo including simple
 Metropolis and hybrid Monte-Carlo

* K-nearest neighbour classifier
* K-means clustering
* Generative Topographic Map
* Neuroscale topographic projection
* Gaussian Processes
* Hinton diagrams for network weights
* Self-organising map

Data sampled from
Mixture of 3 Gaussians Spectral Clustering

