Nomenclature

- Given $x_{1}, x_{2}, \ldots, x_{n}$ sample points, with true category labels:

$$
\left.\begin{array}{r}
y_{1}, y_{2}, \ldots, y_{n} \\
y_{i}=1 \\
y_{i}=-1
\end{array}\right\} \text { if point } x_{i} \text { is from class } \omega_{1} \text { is from class } \omega_{2}
$$

- Decision are made according to:

$$
\begin{array}{ll}
\text { if } \mathbf{w}^{\mathbf{t}} x_{\mathbf{i}}^{\prime}=w^{\mathbf{t}} x_{i}+b>0 & \text { class } \omega_{1} \text { is chosen } \\
\text { if } \mathbf{w}^{\mathbf{t}} x_{\mathbf{i}}^{\prime}=w^{\mathbf{t}} x_{i}+b<0 & \text { class } \omega_{2} \text { is chosen }
\end{array}
$$

- Now these decisions are wrong when $\mathbf{w}^{\mathbf{t}} \mathbf{x}_{\mathbf{i}}$ is negative and belongs to class ω_{1}.
Let $z_{i}=\alpha_{i} x_{i} \quad$ Then $z_{i}>0$ when correctly labelled, negative otherwise.

Support Vector Machines

- Support vector machines differ from standard linear machines in three ways.
- Discriminant function flexibility
- Linear
- But with nonlinear preprocessing possible
- efficient evaluation via kernel trick
- Error function
- Max margin, constrained by misclassification errors
- Optimization
- Choice of error function allows global solution
- Nature of solution focuses on points on points on margin (the support vectors)

$$
\begin{aligned}
& \mathbf{x}=\mathbf{x}_{\mathbf{p}}+\frac{r \mathbf{w}}{\|\mathbf{w}\|} \\
& \begin{array}{l}
\sin c e \operatorname{g}\left(\mathbf{x}_{\mathbf{p}}\right)=0 \text { and } \mathbf{w}^{\mathbf{t}} \mathbf{w}=\|w\|^{2} \\
g(\mathbf{x})=\mathbf{w}^{\mathbf{t}} \mathbf{x}+w_{0} \Rightarrow \mathbf{w}^{\mathrm{t}}\left(\mathbf{x}_{\mathbf{p}}+\frac{r \mathbf{w}}{\|\mathbf{w}\|}\right)+w_{0} \\
\quad=g\left(\mathbf{x}_{\mathbf{p}}\right)+\mathbf{w}^{\mathrm{t}} \mathbf{w} \frac{r}{\|\mathbf{w}\|} \\
\Rightarrow \mathrm{r}=\frac{g(x)}{\|w\|}
\end{array}
\end{aligned}
$$

in particular $\mathrm{d}([0,0], \mathrm{H})=\frac{\mathrm{w}_{0}}{\|\mathrm{w}\|}$

- In conclusion, a linear discriminant function divides the feature space by a hyperplane decision surface
- The orientation of the surface is determined by the normal vector w and the location of the surface is determined by the bias

FIGURE 5.2. The linear decision boundary H, where $g(\mathbf{x})=\mathbf{w}^{\mathbf{t}} \mathbf{x}+w_{0}=0$, separates the feature space into two half-spaces \mathcal{R}_{1} (where $g(\mathbf{x})>0$) and \mathcal{R}_{2} (where $g(\mathbf{x})<0$). From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright (c) 2001 by John Wiley \& Sons, Inc.

Support vector machines

We assign a value $y \in\{+1,-1\}$ to each point in the training set and seek a \mathbf{w} for which $y_{i}\left(\mathbf{w}^{T} \mathbf{x}+w_{0}\right)>0$ for all i.

We want to have a margin, so : $y_{i}\left(\mathbf{w}^{T} \mathbf{x}+w_{0}\right) \geq b$.
If we scale $|\mathbf{w}|, w_{0}$ and b, nothing changes, so we set $b=1$.

We get two hyperplanes:
$H_{1}: \mathbf{w}^{T} \mathbf{x}+w_{0}=+1$
$H_{2}: \mathbf{w}^{T} \mathbf{x}+w_{0}=-1$.
The size of the margin is $1 /|\mathbf{w}|$
The points that lie on the hyperplanes are called
support vectors.

Margins in data space

(a) Larger margin

(b) Smaller margin

Larger margins promote uniqueness for underconstrained problems

- Therefore, the problem of maximizing the margin is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & J(w)=\frac{1}{2}\|w\|^{2} \\
\text { subject to } & y_{i}\left(w^{\top} x_{i}+b\right) \geq 1 \forall i
\end{array}
$$

- Notice that $\mathrm{J}(\mathrm{w})$ is a quadratic function, which means that there exists a single global minimum and no local minima
- To solve this problem, we will use classical Lagrangian optimization techniques
- We first present the Kuhn-Tucker Theorem, which provides an essential result for the interpretation of Support Vector Machines

(Kuhn-Tucker Theorem)

- Given an optimization problem with convex domain $\Omega \subseteq R^{N}$

$$
\begin{array}{lll}
\operatorname{minimize} & f(z) & z \in \Omega \\
\text { subject to } & g_{i}(z) \leq 0 & i=1, \ldots, k \\
& h_{i}(z)=0 & i=1, \ldots, m
\end{array}
$$

- with $f \in \mathrm{C}^{1}$ convex and $\mathrm{g}_{\mathrm{i}}, \mathrm{h}_{\mathrm{i}}$ affine, necessary and sufficient conditions for a normal point z^{*} to be an optimum are the existence of α^{*}, β^{*} such that

$$
\begin{array}{ll}
\frac{\partial L\left(z^{*}, a^{*}, \beta^{*}\right)}{\partial z}=0 & \\
\frac{\partial L\left(z^{*}, a^{*}, \beta^{*}\right)}{\partial \beta}=0 & \\
a_{i}{ }^{*} \mathrm{~g}_{i}\left(\mathrm{z}^{*}\right)=0 & \mathrm{i}=1, \ldots, k \\
\mathrm{~g}_{\mathrm{i}}\left(\mathrm{z}^{*}\right) \leq 0 & \mathrm{i}=1, \ldots, \mathrm{k} \\
\mathrm{i}_{\mathrm{i}}{ }^{*} \geq 0 & \mathrm{i}=1, \ldots, \mathrm{k}
\end{array}
$$

- $L(z, \alpha, \beta)$ is known as a generalized Lagrangian function
- The third condition is know as the Karush-Kuhn-Tucker (KKT) complementary condition. It implies that for active constraints $\alpha_{i} \geq 0$; and for inactive constraints $\alpha_{i}=0$
- As we will see in a minute, the KKT condition allows us to identify the training examples that define the largest margin hyperplane. These examples will be known as Support Vectors.

Constrained Optimization Problems

Minimize enforcing Equality Constraints
Find: $\vec{X}^{*}=\vec{x}_{\min }$ such that $h\left(\vec{x}^{*}\right)=0$

Lagrange Multiplier

$$
\min f\left(x_{1}, x_{2}\right) \quad \text { s.t. } h\left(x_{1}, x_{2}\right)=0
$$

$$
L\left(x_{1}, x_{2}, v\right)=f\left(x_{1}, x_{2}\right)+v h\left(x_{1}, x_{2}\right) \longleftarrow\binom{L: \text { Lagrange func }}{v: \text { Lagrange multiplier }}
$$

$$
\frac{\partial L\left(x_{1}^{*}{ }^{*}, x_{2}{ }^{*}\right)}{\partial x_{1}}=\frac{\partial f\left(x_{1}{ }^{*}, x_{2}^{*}\right)}{\partial x_{1}}+v \frac{\partial f\left(x_{1}^{*}, x_{2}{ }^{*}\right)}{\partial x_{1}}=0
$$

$$
\frac{\partial L\left(x_{1}^{*}, x_{2}{ }^{*}\right)}{\partial x_{2}}=\frac{\partial f\left(x_{1}{ }^{*}, x_{2}^{*}\right)}{\partial x_{2}}+v \frac{\partial f\left(x_{1}^{*}, x_{2}{ }^{*}\right)}{\partial x_{2}}=0
$$

$$
\begin{aligned}
\nabla L\left(x^{*}\right) & =\nabla f\left(x^{*}\right)+v \nabla h\left(x^{*}\right)=\underline{0} \\
\nabla f\left(x^{*}\right) & =-v \nabla h\left(x^{*}\right) \longrightarrow \text { geometrical meaning }
\end{aligned}
$$

At the candidate minimum point, gradients of the cost and constraint func are along the same line.
(In other words, ∇f is a linear combination of ∇h

$$
L(x, v)=f(x)+v^{T} h(x)
$$

Therefore constrained optimization is converted to unconstrained optimization.

$$
\nabla L\left(x^{*}, v^{*}\right)=0
$$

- The "Milkmaid problem"
- It's milking time at the farm, and the milkmaid has been sent to the field to get the day's milk. She is in quite a hurry, because she has a date, so she wants to finish her job as quickly as possible. However, before she gathers the milk, she has to rinse out her bucket in the nearby river.
- Just when she reaches point M, our heroine spots the cow, at point C. She is in a hurry, so she wants to take the shortest possible path from where she is to the river and then to the cow. If the near bank of the river is a curve satisfying the function $g(x, y)=0$, what is the shortest path for the milkmaid to take? (Assume that the field is flat and uniform and that all points on the river bank are equally good.)
- Problem:
- Minimize $f(P)=d(M, P)+d(P, C)$,
- such that $\mathrm{g}(\mathrm{P})=0$.

Constrained Optimization

Instead of solving

$$
\left(\frac{\partial f(\mathbf{w})}{\partial w_{1}}, \frac{\partial f(\mathbf{w})}{\partial w_{2}}\right)=(0,0)
$$

deal with Lagrangian

$$
L(\mathbf{w}, \alpha, \beta)=f(\mathbf{w})+\alpha \cdot g(\mathbf{w})+\beta \cdot h(\mathbf{w})
$$

and solve the dual problem by reasoning about the dual variables α, β.

Primal problem:

minimize $\quad f(\mathbf{w})$
subject to $g(\mathbf{w}) \leq 0, \quad h(\mathbf{w})=0$

Dual problem:
$\theta(\alpha, \beta)$ is minimal value of
$L(\mathbf{w}, \alpha, \beta)=f(\mathbf{w})+\alpha \cdot g(\mathbf{w})+\beta \cdot h(\mathbf{w})$
w.r.t. w
$\underline{\text { maximize }} \quad \theta(\alpha, \beta)$
subject to $\quad \alpha \geq 0$

Kuhn-Tucker Example

Consider the problem

$$
\min \left\{f(\vec{x})=\left(x_{1}-4\right)^{2}+\left(x_{2}-4\right)^{2}\right\}
$$

such that

$$
\begin{aligned}
& g_{1}(\vec{x})=x_{1}+x_{2} \leq 6 \quad \text { and } \\
& g_{2}(\vec{x})=x_{1}+3 x_{2} \leq 4
\end{aligned}
$$

We form a new function for minimization:
$L(\vec{x})=f(\vec{x})+v_{1} g_{1}(\vec{x})+v_{2} g_{2}(\vec{x})$
$L(\vec{x})=\left(x_{1}-4\right)^{2}+\left(x_{2}-4\right)^{2}+v_{1}\left(x_{1}+x_{2}-6\right)+v_{2}\left(x_{1}+3 x_{2}-4\right)$
The Kuhn - Tucker conditions are :

$$
\nabla L(\vec{x})=0, \quad v_{i} \geq 0, \quad v_{i} g_{i}(\vec{x})=0
$$

What do the multipliers do?

Adding constraint shifts $L(x)$ in direction of constraint normal

$$
\text { Circles: } L(x)=c
$$

$\nabla L(\vec{x})=\left[\begin{array}{c}\text { Kuhn-Tucker conditions: } \\ {\left[\begin{array}{c}\frac{\partial L(\vec{x})}{\partial x_{1}}=2\left(x_{1}-4\right)+v_{1}+v_{2}=0 \\ \frac{\partial L(\vec{x})}{\partial x_{2}}=2\left(x_{2}-4\right)+v_{1}+3 v_{2}=0 \\ \frac{\partial L(\vec{x})}{\partial v_{1}}=\left(x_{1}+x_{2}-6\right) \leq 0 \\ \frac{\partial L(\vec{x})}{\partial v_{2}}\end{array}\right]\left(x_{1}+3 x_{2}-4\right) \leq 0}\end{array}\right]$.

Solve for x in terms of $\boldsymbol{v}_{1}, \nu_{2}$ Then substitute and solve for $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$

$$
x_{1}=-\left(v_{1}+v_{2}\right) / 2+4
$$

$$
x_{2}=-\left(v_{1}+3 v_{2}\right) / 2+4
$$

Plugging in :

$$
\begin{aligned}
v_{1}\left(-\left(v_{1}+\right.\right. & \left.v_{2}\right) / 2+4+ \\
& \left.-\left(v_{1}+3 v_{2}\right) / 2+4-6\right)=0 \\
\Rightarrow v_{1}= & 0 \quad \text { or } \quad v_{1}=2-2 v_{2}
\end{aligned}
$$

$$
v_{2}\left(-\left(v_{1}+v_{2}\right) / 2+4+\right.
$$

$$
\left.3\left(-\left(v_{1}+3 v_{2}\right) / 2+4\right)-4\right)=0
$$

$$
v_{2}=0, \quad v_{1}=\left(12-5 v_{2}\right) / 2
$$

$$
\text { if } \quad v_{1}=0
$$

$$
v_{2}=12 / 5
$$

$$
\text { if } \quad v_{1}=2-2 v_{2}
$$

$$
v_{2}=8
$$

but if $\boldsymbol{v}_{2}=0$
$\Rightarrow v_{1}=2$

Support Vectors

Now solve SVM problem

Maximizing the margin means minimizing $|\mathbf{w}|$.
But, subject to the inequality constraints:
$C 1: \quad y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}\right) \geq 1 \quad i=1, \ldots, n$.

This is constrained optimization and Khun - Tucker gives
$L_{P}(\mathbf{w}, \boldsymbol{a})=\frac{1}{2} \mathbf{w}^{T} \mathbf{w}-\sum_{i=1}^{n} \alpha_{\mathrm{i}}\left(y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}\right)-1\right)$.

Taking the derivatives with respect to $w_{0}, w_{1}, \ldots, w_{p}$ and set to zero :

Now solve SVM problem

$$
\begin{aligned}
& \frac{\partial L_{p}}{\partial w_{j}}=\frac{\partial}{\partial w_{j}}\left[\frac{1}{2} \mathbf{w}^{T} \mathbf{w}-\sum_{t=1}^{n} \alpha_{i}\left(y_{t}\left(\mathbf{w}^{T} \mathbf{x}_{t}+w_{0}\right)-1\right)\right]=0 \quad \text { gives } \\
& \sum_{t=1}^{n} \alpha_{1} y_{t}=0, \longleftarrow\left(\frac{\partial L}{\partial w_{0}}\right) \\
& w_{1}-\sum_{t=1}^{n} \alpha_{\mathrm{i}} y_{t} x_{1, s}=0 \\
& \left.w_{2}-\sum_{t=1}^{n} \alpha_{\mathrm{i}} y_{t} x_{2, t}=0\right\} \mathbf{w}=\sum_{t=1}^{n} \alpha_{\mathrm{i}} y_{t} x_{t} \\
& w_{p}-\sum_{t=1}^{n} \alpha_{i} y_{t} x_{p, t}=0
\end{aligned}
$$

Kernel trick

All we need is inner products!

this quadratic function of $\boldsymbol{\alpha}$ has to be maximized subject to: $\alpha_{\mathrm{i}} \geq 0 \quad \sum_{t=1}^{n} \alpha_{\mathrm{i}} y_{t}=0$.
Actual optimization is done by standard general purpose quadratic programmning package.

A point is not allowed to lie within the margin :
$y_{t}\left(\mathbf{w}^{T} \mathbf{x}_{t}+w_{0}\right)-1 \geq 0 \quad i=1, \ldots, n$.

In the optimal situation we have:
$\alpha_{\mathrm{i}}\left(y_{t}\left(\mathbf{w}^{T} \mathbf{x}_{t}+w_{0}\right)-1\right)=0 \quad i=1, \ldots, n$.

The Lagrange multipliers α_{i} are non-negative, so :
if
$y_{t}\left(\mathbf{w}^{T} \mathbf{x}_{t}+w_{0}\right)-1=0 \quad$ (point on the margin)
then $\alpha_{\mathrm{i}} \geq 0$, (active constraint) otherwise
$\alpha_{\mathrm{i}}=0$ (inactive constraint).
Points with $\alpha_{\mathrm{i}} \geq 0$ are called support vector's

Classification with support vector machines

Once the α_{i} 's have been determined the value of \mathbf{w} can be determined
$\mathbf{w}=\sum_{t=1}^{n} \alpha_{\mathrm{i}} y_{t} \mathbf{x}_{t}=\sum_{i \in S V} \alpha_{\mathrm{i}} y_{t} \mathbf{x}_{t}$
and the value of w_{0} can be determined from
$\alpha_{\mathrm{i}} y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{t}+w_{0}\right)-1=0 \quad$ for any i as support ve ctor or as
the average :
$n_{s w} w_{0}+\mathbf{w}^{T} \sum_{t \in S V} \mathbf{x}_{t}=\sum_{i \in S V} y_{t}$

A new pattern is classified according to the sign of
$\mathbf{w}^{T} \mathbf{x}+w_{0}$.
Substituti $\mathrm{ng} \mathbf{w}$ and w_{0} gives : assign \mathbf{x} to class ω_{1} if
$\sum_{t \in S V} \alpha_{\mathrm{i}} y_{t} \mathbf{x}_{t}^{T} \mathbf{x}-\frac{1}{n_{s v}} \sum_{k \in S V} \sum_{j \in S V} \alpha_{\mathrm{i}} y_{t} \mathbf{x}_{t}^{T} \mathbf{x}_{j}+\frac{1}{n_{s v}} \sum_{t \in S V} y_{t}>0$
note : only first term depends on new data pattern \mathbf{x} !

Why it is Good to Have Few SVs

Leave out an example that does not become $\mathrm{SV} \longrightarrow$ same solution.
Theorem [66]: Denote \#SV (m) the number of SVs obtained by training on m examples randomly drawn from $\mathrm{P}(\mathbf{x}, y)$, and \mathbf{E} the expectation. Then

$$
\mathrm{E}[\operatorname{Prob}(\text { test error })] \leq \frac{E[\# S V(m)]}{m}
$$

Here, Prob(test error) refers to the expected value of the risk, where the expectation is taken over training the SVM on samples of size $m-1$.

Nonlinear support vector machines

We seek a discriminant function
$g(\mathbf{x})=\mathbf{w}^{T} \phi(\mathbf{x})+w_{0}$
with decision rule:
$\mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x})+w_{0}\left\{\begin{array}{l}>0 \\ <0\end{array} \Rightarrow \mathbf{x} \in\left\{\begin{array}{l}\omega_{1} \text { with corresponding value } y_{1}=+1 \\ \omega_{2} \text { with corresponding value } y_{1}=-1\end{array}\right.\right.$
The dual form of the Lagrangian now becomes:
$L_{D}=\sum_{i=1}^{n} \alpha_{\mathrm{i}}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{\mathrm{i}} \alpha_{\mathrm{j}} y_{t} y_{j} \boldsymbol{\phi}^{T}\left(\mathbf{x}_{t}\right) \boldsymbol{\phi}\left(\mathbf{x}_{j}\right)$
solution (expressed in support vectors):
$\mathbf{w}=\sum_{l \in S V} \alpha_{\mathrm{i}} y_{t} \boldsymbol{\phi}\left(\mathbf{x}_{t}\right)$

Figure 5.5: The mapping $\mathbf{y}=\left(1, x, x^{2}\right)^{t}$ takes a line and transforms it to a parabola in three dimensions. A plane splits the resulting \mathbf{y} space into regions corresponding to two categories, and this in turn gives a non-simply connected decision region in the one-dimensional x space.

Figure 5.6: The two-dimensional input space x is mapped through a polynomial function f to \mathbf{y}. Here the mapping is $y_{1}=x_{1}, y_{2}=x_{2}$ and $y_{3} \propto x_{1} x_{2}$. A linear discriminant in this transformed space is a hyperplane, which cuts the surface. Points to the positive side of the hyperplane \hat{H} correspond to category ω_{1}, and those beneath it ω_{2}. Here, in terms of the \mathbf{x} space, \mathcal{R}_{1} is a not simply connected.

Kernels and Feature Spaces

Preprocess the data with

$$
\begin{aligned}
\Phi: \mathcal{X} & \rightarrow \mathcal{H} \\
x & \mapsto \Phi(x)
\end{aligned}
$$

where \mathcal{H} is a dot product space, and learn the mapping from $\Phi(x)$ to y.

- usually, $\operatorname{dim}(\mathcal{X}) \ll \operatorname{dim}(\mathcal{H})$
- "Curse of Dimensionality"?
- crucial issue: capacity, not dimensionality

Example: All Degree 2 Monomials

General Product Feature Space

How about patterns $x \in \mathbb{R}^{N}$ and product features of order d ?
Here, $\operatorname{dim}(\mathcal{H})$ grows like N^{d}.
E.g. $N=16 \times 16$, and $d=5 \longrightarrow$ dimension 10^{10}

The Kernel Trick, $\mathrm{N}=2$, $\mathrm{d}=2$

$$
\begin{aligned}
& \Phi(\vec{x})=\left[x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right] \\
& \begin{aligned}
(<x, z>)^{2} & =\left(x_{1} z_{1}+x_{2} z_{2}\right)^{2} \\
& =\left(x_{1}^{2} z_{1}^{2}+2 x_{1} z_{1} x_{2} z_{2}+x_{2}^{2} z_{2}^{2}\right) \\
& =\left\langle\left[x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right],\left[z_{1}^{2}, \sqrt{2} z_{1} z_{2}, z_{2}^{2}\right]\right\rangle \\
& =\langle\Phi(\vec{x}), \Phi(\vec{z})\rangle \\
& =K(\vec{x}, \vec{z})
\end{aligned}
\end{aligned}
$$

- Thus the dot product in the non-linear feature space can be computed in \mathfrak{R}^{2} via the kernel function.

The Kernel Trick, II

More generally: $x, x^{\prime} \in \mathbb{R}^{N}, d \in \mathbb{N}$:

$$
\begin{aligned}
\left\langle x, x^{\prime}\right\rangle^{d} & =\left(\sum_{j=1}^{N} x_{j} \cdot x_{j}^{\prime}\right)^{d} \\
& =\sum_{j_{1}, \ldots, j_{d}=1}^{N} x_{j_{1}} \cdots \cdots x_{j_{d}} \cdot x_{j_{1}}^{\prime} \cdots \cdots x_{j_{d}}^{\prime}=\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle,
\end{aligned}
$$

where Φ maps into the space spanned by all ordered products of d input directions

The Kernel Trick - Summary

- any algorithm that only depends on dot products can benefit from the kernel trick
- this way, we can apply linear methods to vectorial as well as non-vectorial data
- think of the kernel as a nonlinear similarity measure
- examples of common kernels:

$$
\begin{aligned}
\text { Polynomial } k\left(x, x^{\prime}\right) & =\left(\left\langle x, x^{\prime}\right\rangle+c\right)^{d} \\
\text { Sigmoid } k\left(x, x^{\prime}\right) & =\tanh \left(\kappa\left\langle x, x^{\prime}\right\rangle+\Theta\right) \\
\text { Gaussian } k\left(x, x^{\prime}\right) & =\exp \left(-\left\|x-x^{\prime}\right\|^{2} /\left(2 \sigma^{2}\right)\right)
\end{aligned}
$$

- Kernel are studied also in the Gaussian Process prediction community (covariance functions) [71, 68, 72, 40] course

The SVM Architecture

Classification

A new pattern is classified according to the sign of
$\mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x})+w_{0}$.
Substituting \mathbf{w} gives:
$g(\mathbf{x})=\sum_{i \in S V} \alpha_{i} y_{i} \phi^{T}\left(\mathbf{x}_{i}\right) \phi(\mathbf{x})+w_{0}$, in which
$w_{0}=\frac{1}{N_{\tilde{s} V}}\left\{\sum_{i \in S V} y_{i}-\sum_{i \in S V, j \in S V} \alpha_{i} y_{i} \boldsymbol{\phi}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\phi}\left(\mathbf{x}_{j}\right)\right\}$.
Note that classification depends only on inner products of transformed feature vectors $\boldsymbol{\phi}(\mathbf{x})$.
Some feature spaces come with a kernel \mathbf{K} (or vice versa) such that:
$K(\mathbf{x}, \mathbf{y})=\boldsymbol{\phi}^{T}(\mathbf{x}) \boldsymbol{\phi}(\mathbf{y})$.

Toy Example with Gaussian Kernel

$$
k\left(x, x^{\prime}\right)=\exp \left(-\left\|x-x^{\prime}\right\|^{2}\right)
$$

Simple example (XOR problem)

$$
\begin{aligned}
& \Phi(w)=\frac{1}{2} w^{T} w \\
& L(w, b, \alpha)=\frac{1}{2} w^{T} w-\sum_{i=1}^{N} \alpha_{i}\left[y_{i}\left(w^{T} x_{i}+b\right)-1\right] \\
& Q(\alpha)=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \varphi\left(x_{i}\right)^{T} \varphi\left(x_{j}\right) \\
& Q(\alpha)=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(x_{i}, x_{j}\right) \\
& \varphi(x)=\left[1, x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}\right]^{T}
\end{aligned}
$$

\boldsymbol{K} evaluated for all pairs of inputs:

$$
K=\left[\begin{array}{llll}
9 & 1 & 1 & 1 \\
1 & 9 & 1 & 1 \\
1 & 1 & 9 & 1 \\
1 & 1 & 1 & 9
\end{array}\right]
$$

Simple example(cont.)

Dual formulation

$$
\begin{aligned}
& Q(\alpha)=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4} \\
& \quad-\frac{1}{2}\left(9 \alpha_{1}^{2}-2 \alpha_{1} \alpha_{2}-2 \alpha_{1} \alpha_{3}+2 \alpha_{1}+9 \alpha_{2}^{2}\right. \\
& \left.\quad+2 \alpha_{2} \alpha_{3}-2 \alpha_{2} \alpha_{4}+9 \alpha_{3}^{2}-2 \alpha_{3} \alpha_{4}+9 \alpha_{2}^{4}\right)
\end{aligned}
$$

$$
\alpha_{o, 1}=\alpha_{o, 2}=\alpha_{o, 3}=\alpha_{o, 4}=\frac{1}{8}
$$

$$
\begin{aligned}
& 9 \alpha_{1}-\alpha_{2}-\alpha_{3}+\alpha_{4}=1 \\
& -\alpha_{1}+9 \alpha_{2}+\alpha_{3}-\alpha_{4}=1 \\
& -\alpha_{1}+\alpha_{2}+9 \alpha_{3}-\alpha_{4}=1 \\
& \alpha_{1}-\alpha_{2}-\alpha_{3}+9 \alpha_{4}=1
\end{aligned}
$$

$$
Q_{o}(\alpha)=\frac{1}{4} \text { Four Input vectors are }
$$

All support vectors

$$
\begin{gathered}
\frac{1}{2}\left\|\mathcal{W}_{o}\right\|^{2}=\frac{1}{4},\left\|w_{o}\right\|=\frac{1}{\sqrt{2}} \\
w_{o}=\sum_{i=1}^{N} \alpha_{i} y_{i} \varphi\left(x_{i}\right)
\end{gathered}
$$

Nonseparable Problems

If $y_{i} \cdot\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right) \geq 1$ cannot be satisfied, then $\alpha_{i} \rightarrow \infty$.
Modify the constraint to

$$
y_{i} \cdot\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right) \geq 1-\xi_{i}
$$

with

$$
\xi_{i} \geq 0
$$

("soft margin") and add

$$
C \cdot \sum_{i=1}^{m} \xi_{i}
$$

in the objective function.

