Nomenclature

- Given $x_1, x_2, ..., x_n$ sample points, with true category labels: $y_1, y_2, ..., y_n$ $y_i = 1$ if point x_i is from class ω_1 $y_i = -1$ if point x_i is from class ω_2
- Decision are made according to:

if $\mathbf{w}^{t} x_{i}^{'} = w^{t} x_{i} + b > 0$ class ω_{1} is chosen *if* $\mathbf{w}^{t} x_{i}^{'} = w^{t} x_{i} + b < 0$ class ω_{2} is chosen

• Now these decisions are wrong when $\mathbf{w}^t \mathbf{x}_i$ is negative and belongs to class ω_1 .

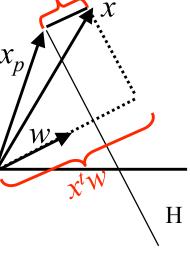
Let $z_i = \alpha_i x_i$ Then $z_i > 0$ when correctly labelled, negative otherwise.

Support Vector Machines

- Support vector machines differ from standard linear machines in three ways.
- Discriminant function flexibility
 - Linear
 - But with nonlinear preprocessing possible
 - efficient evaluation via kernel trick
- Error function
 - Max margin, constrained by misclassification errors
- Optimization
 - Choice of error function allows global solution
 - Nature of solution focuses on points on points on margin (the support vectors)

$$\mathbf{x} = \mathbf{x}_{\mathbf{p}} + \frac{r\mathbf{W}}{\|\mathbf{w}\|}$$

since $g(\mathbf{x}_{\mathbf{p}}) = 0$ and $\mathbf{w}^{\mathsf{t}}\mathbf{w} = \|w\|^{2}$
 $g(\mathbf{x}) = \mathbf{w}^{\mathsf{t}}\mathbf{x} + w_{0} \Rightarrow \mathbf{w}^{\mathsf{t}}\left(\mathbf{x}_{\mathbf{p}} + \frac{r\mathbf{W}}{\|\mathbf{w}\|}\right) + w_{0}$
 $= g(\mathbf{x}_{\mathbf{p}}) + \mathbf{w}^{\mathsf{t}}\mathbf{w}\frac{r}{\|\mathbf{w}\|}$
 $\Rightarrow \mathbf{r} = \frac{g(x)}{\|w\|}$



in particular d([0,0],H) = $\frac{W_0}{\|W\|}$

- In conclusion, a linear discriminant function divides the feature space by a hyperplane decision surface
- The orientation of the surface is determined by the normal vector w and the location of the surface is determined by the bias

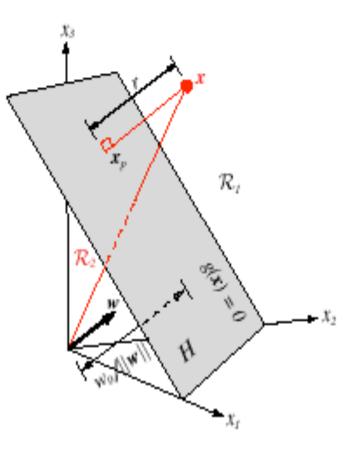


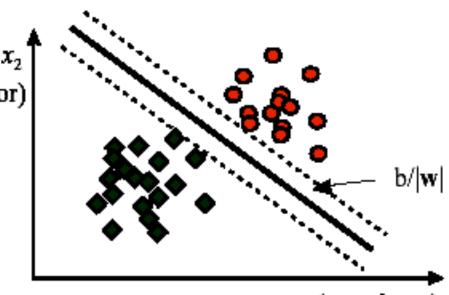
FIGURE 5.2. The linear decision boundary H, where $g(\mathbf{x}) = \mathbf{w}^t \mathbf{x} + w_0 = 0$, separates the feature space into two half-spaces \mathcal{R}_1 (where $g(\mathbf{x}) > 0$) and \mathcal{R}_2 (where $g(\mathbf{x}) < 0$). From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Support vector machines

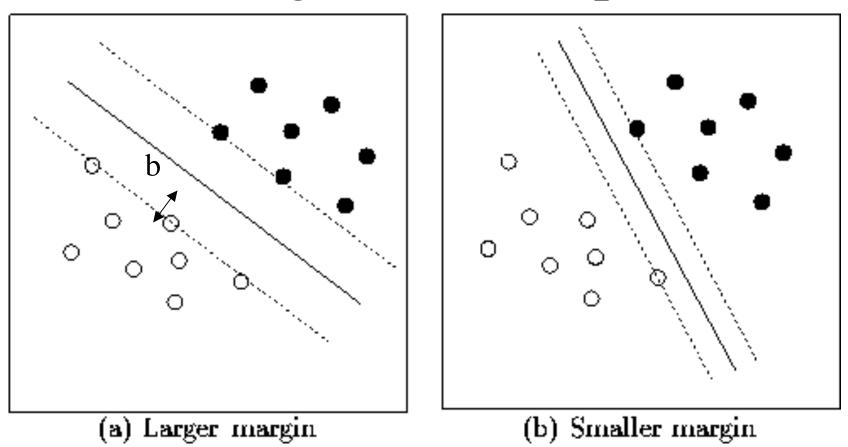
We assign a value $y \in \{+1, -1\}$ to each point in the training set and seek a w for which $y_i(\mathbf{w}^T \mathbf{x} + w_0) > 0$ for all *i*.

We want to have a margin, so : $y_i (\mathbf{w}^T \mathbf{x} + w_0) \ge b$. If we scale $|\mathbf{w}|, w_0$ and b, nothing changes, so we set b = 1.

We get two hyperplanes : $H_1: \mathbf{w}^T \mathbf{x} + w_0 = +1$ $H_2: \mathbf{w}^T \mathbf{x} + w_0 = -1.$ The size of the margin is $1/|\mathbf{w}|$ The points that lie on the hyperplanes are called support vectors.



Margins in data space



Larger margins promote uniqueness for underconstrained problems

Therefore, the problem of maximizing the margin is equivalent to

minimize
$$J(w) = \frac{1}{2} ||w||^2$$

subject to $y_i(w^T x_i + b) \ge 1 \forall i$

- Notice that J(w) is a quadratic function, which means that there exists a single global minimum and no local minima
- To solve this problem, we will use classical Lagrangian optimization techniques
 - We first present the Kuhn-Tucker Theorem, which provides an essential result for the interpretation of Support Vector Machines

• Given an optimization problem with convex domain $\Omega \subseteq \mathbb{R}^{N}$

```
\begin{array}{ll} \text{minimize} & f(z) & z \in \Omega \\ \text{subject to} & g_i(z) \leq 0 & i = 1, \dots, k \\ & h_i(z) = 0 & i = 1, \dots, m \end{array}
```

 with f∈C¹ convex and g_i, h_i affine, necessary and sufficient conditions for a normal point z* to be an optimum are the existence of α*, β* such that

$$\begin{array}{l} \frac{\partial L(z^*,\alpha^*,\beta^*)}{\partial z} = 0\\ \frac{\partial L(z^*,\alpha^*,\beta^*)}{\partial \beta} = 0\\ \alpha_i^* g_i(z^*) = 0 & i = 1,...,k\\ g_i(z^*) \leq 0 & i = 1,...,k\\ \alpha_i^* \geq 0 & i = 1,...,k \end{array} \quad \text{where} \quad L(z,\alpha,\beta) = f(z) + \sum_{i=1}^k \alpha_i g_i(z) + \sum_{i=1}^m \beta_i h_i(z)$$

- $L(z,\alpha,\beta)$ is known as a generalized Lagrangian function
- The third condition is know as the Karush-Kuhn-Tucker (KKT) complementary condition. It implies that for active constraints α_i≥0; and for inactive constraints α_i=0
 - As we will see in a minute, the KKT condition allows us to identify the training examples that define the largest margin hyperplane. These examples will be known as Support Vectors.

Constrained Optimization Problems

Minimize enforcing Equality Constraints Find: $\vec{x}^* = \vec{x}_{\min}$ such that $h(\vec{x}^*)=0$

Lagrange Multiplier
min
$$f(x_1, x_2)$$
 s.t. $h(x_1, x_2) = 0$
 $L(x_1, x_2, v) = f(x_1, x_2) + v h(x_1, x_2) \leftarrow \begin{pmatrix} L : Lagrange func \\ v : Lagrange multiplier \end{pmatrix}$
 $\frac{\partial L(x_1^*, x_2^*)}{\partial x_1} = \frac{\partial f(x_1^*, x_2^*)}{\partial x_1} + v \frac{\partial f(x_1^*, x_2^*)}{\partial x_1} = 0$
 $\frac{\partial L(x_1^*, x_2^*)}{\partial x_2} = \frac{\partial f(x_1^*, x_2^*)}{\partial x_2} + v \frac{\partial f(x_1^*, x_2^*)}{\partial x_2} = 0$

$$\nabla L(x^*) = \nabla f(x^*) + \nu \nabla h(x^*) = 0$$

$$\nabla f(x^*) = -\nu \nabla h(x^*) \longrightarrow \text{ geometrical meaning}$$

At the candidate minimum point, gradients of the cost and
constraint func are along the same line.

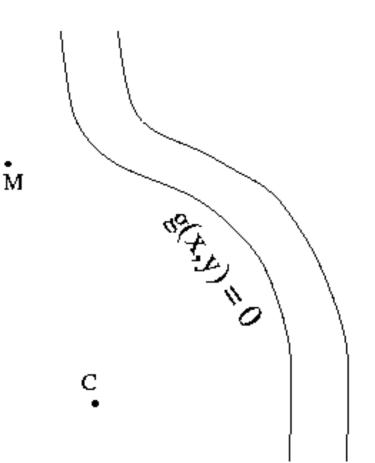
(In other words, ∇f is a linear combination of ∇h

$$L(x,v) = f(x) + v^T h(x)$$

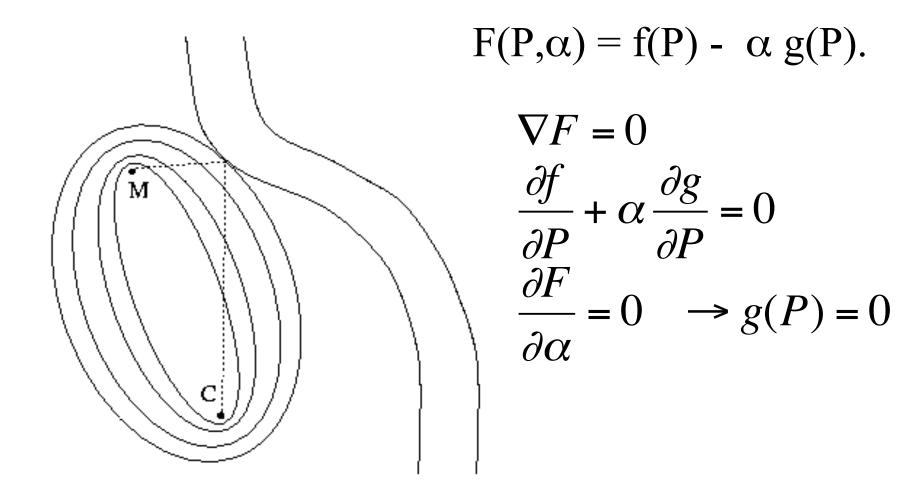
Therefore constrained optimization is converted to unconstrained optimization.

$$\nabla L(x^*, v^*) = 0$$

- The "Milkmaid problem"
- It's milking time at the farm, and the milkmaid has been sent to the field to get the day's milk. She is in quite a hurry, because she has a date, so she wants to finish her job as quickly as possible. However, before she gathers the milk, she has to rinse out her bucket in the nearby river.
- Just when she reaches point M, our heroine spots the cow, at point C. She is in a hurry, so she wants to take the shortest possible path from where she is to the river and then to the cow. If the near bank of the river is a curve satisfying the function g(x,y) = 0, what is the shortest path for the milkmaid to take? (Assume that the field is flat and uniform and that all points on the river bank are equally good.)



- Problem:
- Minimize f(P) = d(M,P) + d(P,C),
 such that g(P) = 0.



Constrained Optimization

Instead of solving

$$\left(\frac{\partial f(\mathbf{w})}{\partial w_1}, \frac{\partial f(\mathbf{w})}{\partial w_2}\right) = (0, 0)$$

deal with Lagrangian

$$L(\mathbf{w}, \alpha, \beta) = f(\mathbf{w}) + \alpha \cdot g(\mathbf{w}) + \beta \cdot h(\mathbf{w})$$

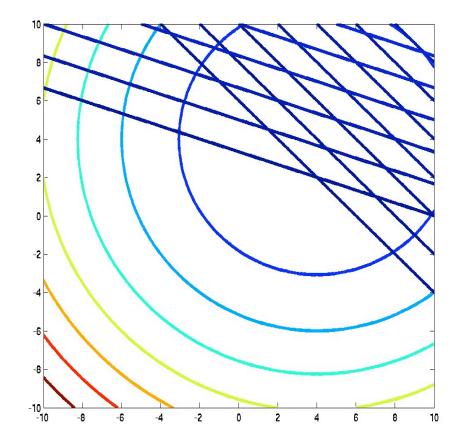
and solve the dual problem by reasoning about the dual variables α, β .

Primal problem: <u>minimize</u> $f(\mathbf{w})$ <u>subject to</u> $g(\mathbf{w}) \leq 0$, $h(\mathbf{w}) = 0$

Dual problem: $\theta(\alpha, \beta)$ is minimal value of $L(\mathbf{w}, \alpha, \beta) = f(\mathbf{w}) + \alpha \cdot g(\mathbf{w}) + \beta \cdot h(\mathbf{w})$ w.r.t. \mathbf{w}

 $\frac{\text{maximize}}{\text{subject to}} \quad \frac{\theta(\alpha,\beta)}{\alpha \ge 0}$

Kuhn-Tucker Example Consider the problem $\min\{f(\vec{x}) = (x_1 - 4)^2 + (x_2 - 4)^2\},\$ such that $g_1(\vec{x}) = x_1 + x_2 \le 6$ and $g_2(\vec{x}) = x_1 + 3x_2 \le 4$



We form a new function for minimization:

$$\begin{split} L(\vec{x}) &= f(\vec{x}) + v_1 g_1(\vec{x}) + v_2 g_2(\vec{x}) \\ L(\vec{x}) &= (x_1 - 4)^2 + (x_2 - 4)^2 + v_1 (x_1 + x_2 - 6) + v_2 (x_1 + 3x_2 - 4)) \\ & \text{The Kuhn - Tucker conditions are :} \\ \nabla L(\vec{x}) &= 0, \quad v_i \ge 0, \quad v_i g_i(\vec{x}) = 0 \end{split}$$

What do the multipliers do?

Adding constraint shifts L(x)in direction of constraint normal

Circles: L(x) = c

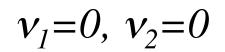
300 250

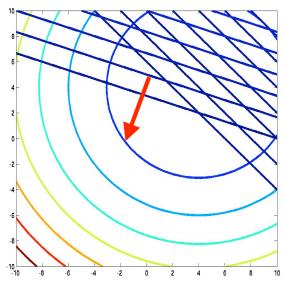
-50

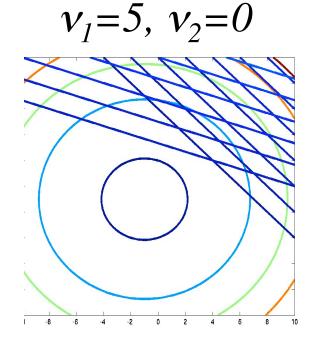
$$v_1 = 10, v_2 = 0$$

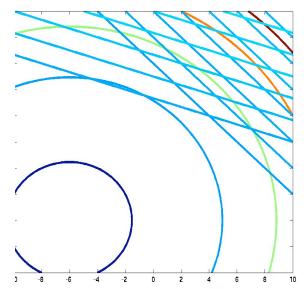
-5

-10 -10









Kuhn-Tucker conditions:

$$\begin{aligned}
\frac{\partial L(\vec{x})}{\partial x_{1}} &= 2(x_{1} - 4) + v_{1} + v_{2} = 0 \\
\frac{\partial L(\vec{x})}{\partial x_{2}} &= 2(x_{2} - 4) + v_{1} + 3v_{2} = 0 \\
\frac{\partial L(\vec{x})}{\partial v_{2}} &= (x_{1} + x_{2} - 6) \le 0 \\
\frac{\partial L(\vec{x})}{\partial v_{2}} &= (x_{1} + 3x_{2} - 4) \le 0
\end{aligned}$$

$$v_{1} \ge 0 \\
v_{2} \ge 0 \\
v_{1}(x_{1} + x_{2} - 6) &= 0 \\
v_{2}(x_{1} + 3x_{2} - 4) &= 0
\end{aligned}$$

Solve for x in terms of V_1 , V_2 Then substitute and solve for V_1 , V_2 $x_1 = -(v_1 + v_2)/2 + 4$ $x_2 = -(v_1 + 3v_2)/2 + 4$

Plugging in:

$$v_1(-(v_1 + v_2)/2 + 4 + (v_1 + 3v_2)/2 + 4 - 6) = 0$$

 $\Rightarrow v_1 = 0$ or $v_1 = 2 - 2v_2$

$$v_{2}(-(v_{1} + v_{2})/2 + 4 + 3(-(v_{1} + 3v_{2})/2 + 4) - 4) = 0$$

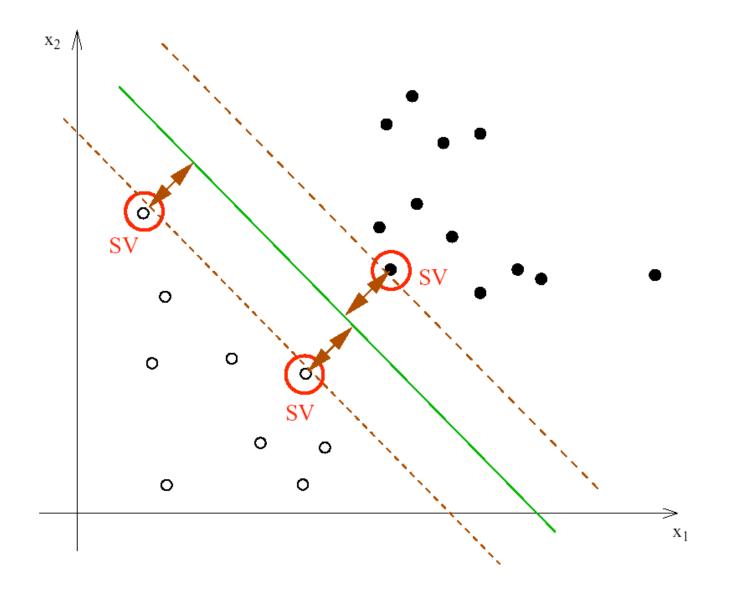
$$v_{2} = 0, \quad v_{1} = (12 - 5v_{2})/2$$
if $v_{1} = 0$

$$v_{2} = 12/5$$
if $v_{1} = 2 - 2v_{2}$

$$v_{2} = 8$$
but if $v_{2} = 0$

$$\Rightarrow v_{1} = 2$$

Support Vectors



Now solve SVM problem

Maximizing the margin means minimizing w. But, subject to the inequality constraints :

$$C1: \quad y_i \left(\mathbf{w}^T \mathbf{x}_i + w_0 \right) \ge 1 \quad i = 1, \dots, n.$$

This is constrained optimization and Khun - Tucker gives $L_p(\mathbf{w}, \mathbf{c}) = \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^{n} \alpha_i (y_i (\mathbf{w}^T \mathbf{x}_i + w_0) - 1).$

Taking the derivatives with respect to w_0, w_1, \ldots, w_p and set to zero:

Now solve SVM problem

$$\frac{\partial L_{p}}{\partial w_{j}} = \frac{\partial}{\partial w_{j}} \left[\frac{1}{2} \mathbf{w}^{T} \mathbf{w} - \sum_{t=1}^{n} \alpha_{i} \left(y_{t} \left(\mathbf{w}^{T} \mathbf{x}_{t} + w_{0} \right) - 1 \right) \right] = 0 \quad \text{gives}$$

$$\sum_{t=1}^{n} \alpha_{i} y_{t} = 0, \quad \underbrace{\left(\frac{\partial L}{\partial w_{0}} \right)}_{w_{1}} = \sum_{t=1}^{n} \alpha_{i} y_{t} x_{1,t} = 0$$

$$w_{2} - \sum_{t=1}^{n} \alpha_{i} y_{t} x_{2,t} = 0$$

$$w_{2} - \sum_{t=1}^{n} \alpha_{i} y_{t} x_{2,t} = 0$$

$$w_{2} - \sum_{t=1}^{n} \alpha_{i} y_{t} x_{2,t} = 0$$

$$W = \sum_{t=1}^{n} \alpha_{i} y_{t} x_{t}$$

$$Kernel trick$$

Substitute this in the Lagrangian, to get the *dual form* :

 $L_{D} = \sum_{t=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{t=1}^{n} \sum_{t=1}^{n} \alpha_{i} \alpha_{j} y_{t} y_{f} \mathbf{x}_{t}^{T} \mathbf{x}_{f}$

All we need is inner products!

this quadratic function of
$$\alpha$$
 has to be maximized subject to : $\alpha_i \ge 0$ $\sum_{t=1}^{n} \alpha_i y_t = 0$.

Actual optimization is done by standard general purpose quadratic programmning package.

A point is not allowed to lie within the margin : $y_i (\mathbf{w}^T \mathbf{x}_i + w_0) - 1 \ge 0$ i = 1, ..., n.

In the optimal situation we have: $\alpha_i (y_i (\mathbf{w}^T \mathbf{x}_i + w_0) - 1) = 0 \quad i = 1, ..., n..$

The Lagrange multipliers α_i are non - negative, so : if

 $y_t (\mathbf{w}^T \mathbf{x}_i + w_0) - 1 = 0$ (point on the margin) then $\alpha_i \ge 0$, (active constraint) otherwise $\alpha_i = 0$ (inactive constraint). Points with $\alpha_i \ge 0$ are called support vectors

Classification with support vector machines

Once the α_i 's have been determined the value of w can be determined

$$\mathbf{w} = \sum_{t=1}^{n} \alpha_{i} y_{t} \mathbf{x}_{t} = \sum_{t \in SV} \alpha_{i} y_{t} \mathbf{x}_{t}$$

and the value of w_0 can be determined from $\alpha_i y_i (\mathbf{w}^T \mathbf{x}_i + w_0) - 1 = 0$ for any *i* as support vector or as the average :

$$n_{sw}w_0 + \mathbf{w}^T \sum_{t \in SV} \mathbf{x}_t = \sum_{t \in SV} y_t$$

A new pattern is classified according to the sign of $\mathbf{w}^T \mathbf{x} + w_0$.

Substituting w and w_0 gives : assign x to class ω_1 if

$$\sum_{t \in SV} \alpha_{i} y_{t} \mathbf{x}_{t}^{T} \mathbf{x} - \frac{1}{n_{sv}} \sum_{t \in SV} \sum_{j \in SV} \alpha_{i} y_{t} \mathbf{x}_{t}^{T} \mathbf{x}_{j} + \frac{1}{n_{sv}} \sum_{t \in SV} y_{t} > 0$$

note : only first term depends on new data pattern x!

Why it is Good to Have Few SVs

Leave out an example that does not become SV \longrightarrow same solution.

Theorem [66]: Denote #SV(m) the number of SVs obtained by training on m examples randomly drawn from P(\mathbf{x}, y), and \mathbf{E} the expectation. Then

$$\mathbf{E}[\text{Prob}(\text{test error})] \le \frac{E[\#\text{SV}(m)]}{m}$$

Here, Prob(test error) refers to the expected value of the risk, where the expectation is taken over training the SVM on samples of size m - 1.

Nonlinear support vector machines

We seek a discriminant function

$$g(\mathbf{x}) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}) + w_0$$

with decision rule:
$$\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}) + w \int^{>0} \quad \mathbf{x} \in \int^{\omega_1} \text{ with corresponding value } y_i = +1$$

 $\psi(\mathbf{x}) + w_0 < 0 \implies \mathbf{x} \in \left\{ \omega_2 \text{ with corresponding value } y_i = -1 \right\}$

The dual form of the Lagrangian now becomes:

$$L_D = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j \boldsymbol{\phi}^T(\mathbf{x}_i) \boldsymbol{\phi}(\mathbf{x}_j)$$

solution (expressed in support vectors):

$$\mathbf{w} = \sum_{t \in SV} \alpha_i y_t \boldsymbol{\phi}(\mathbf{x}_t)$$

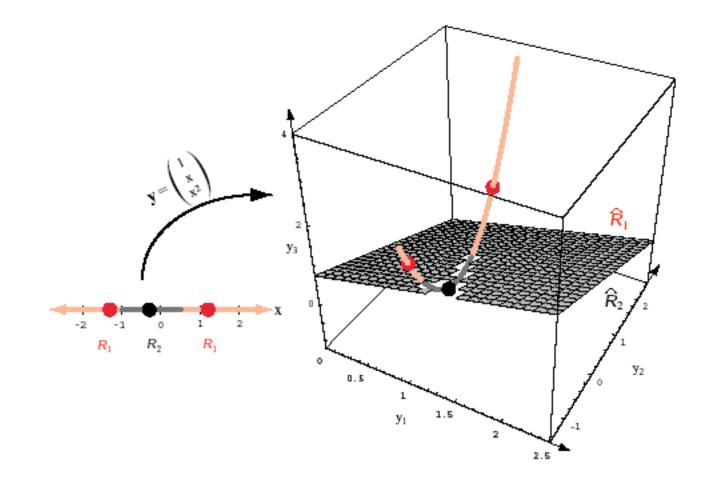


Figure 5.5: The mapping $\mathbf{y} = (1, x, x^2)^t$ takes a line and transforms it to a parabola in three dimensions. A plane splits the resulting \mathbf{y} space into regions corresponding to two categories, and this in turn gives a non-simply connected decision region in the one-dimensional x space.

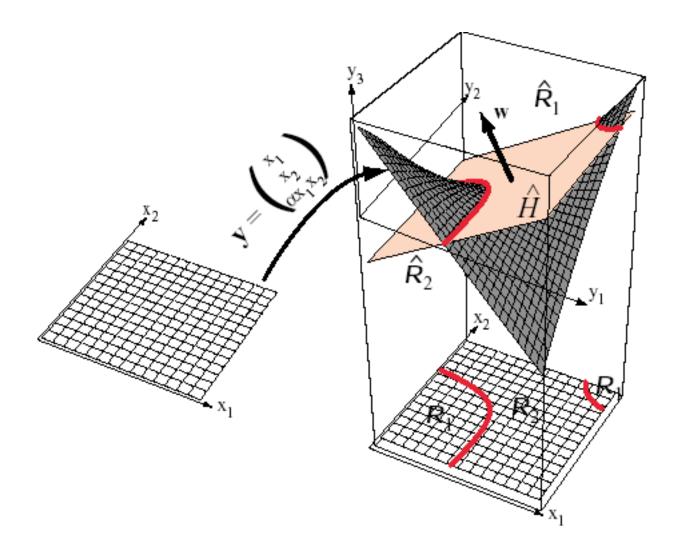


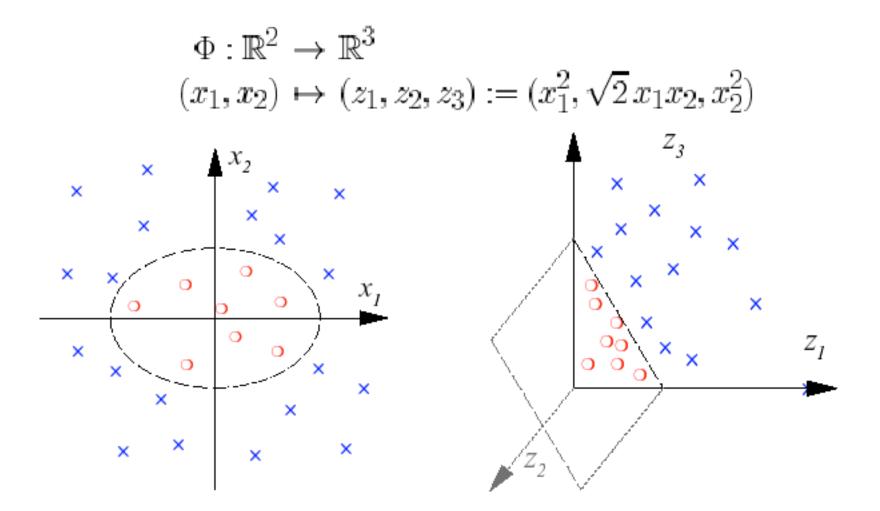
Figure 5.6: The two-dimensional input space \mathbf{x} is mapped through a polynomial function f to \mathbf{y} . Here the mapping is $y_1 = x_1$, $y_2 = x_2$ and $y_3 \propto x_1x_2$. A linear discriminant in this transformed space is a hyperplane, which cuts the surface. Points to the positive side of the hyperplane \hat{H} correspond to category ω_1 , and those beneath it ω_2 . Here, in terms of the \mathbf{x} space, \mathcal{R}_1 is a not simply connected.

Preprocess the data with

$$\Phi: \mathcal{X} \to \mathcal{H} \\
x \mapsto \Phi(x),$$

where \mathcal{H} is a dot product space, and learn the mapping from $\Phi(x)$ to y.

- \bullet usually, $\dim(\mathcal{X}) \ll \dim(\mathcal{H})$
- "Curse of Dimensionality"?
- crucial issue: *capacity*, not *dimensionality*



General Product Feature Space

How about patterns $x \in \mathbb{R}^N$ and product features of order d? Here, dim(\mathcal{H}) grows like N^d .

E.g. $N = 16 \times 16$, and $d = 5 \longrightarrow \text{dimension } 10^{10}$

The Kernel Trick, N=2, d=2

$$\Phi(\vec{x}) = \left[x_{1}^{2}, \sqrt{2}x_{1}x_{2}, x_{2}^{2}\right]$$

$$\begin{aligned} \langle \langle x, z \rangle \rangle^2 &= (x_1 z_1 + x_2 z_2)^2 \\ &= (x_1^2 z_1^2 + 2x_1 z_1 x_2 z_2 + x_2^2 z_2^2) \\ &= \left\langle [x_1^2, \sqrt{2} x_1 x_2, x_2^2], [z_1^2, \sqrt{2} z_1 z_2, z_2^2] \right\rangle \\ &= \left\langle \Phi(\vec{x}), \Phi(\vec{z}) \right\rangle \\ &= K(\vec{x}, \vec{z}) \end{aligned}$$

• Thus the dot product in the non-linear feature space can be computed in \Re^2 via the kernel function.

The Kernel Trick, II

More generally: $x, x' \in \mathbb{R}^N, d \in \mathbb{N}$: $\langle x, x' \rangle^d = \left(\sum_{j=1}^N x_j \cdot x'_j \right)^d$ $= \sum_{j_1, \dots, j_d = 1}^N x_{j_1} \cdots x_{j_d} \cdot x'_{j_1} \cdots x'_{j_d} = \langle \Phi(x), \Phi(x') \rangle,$

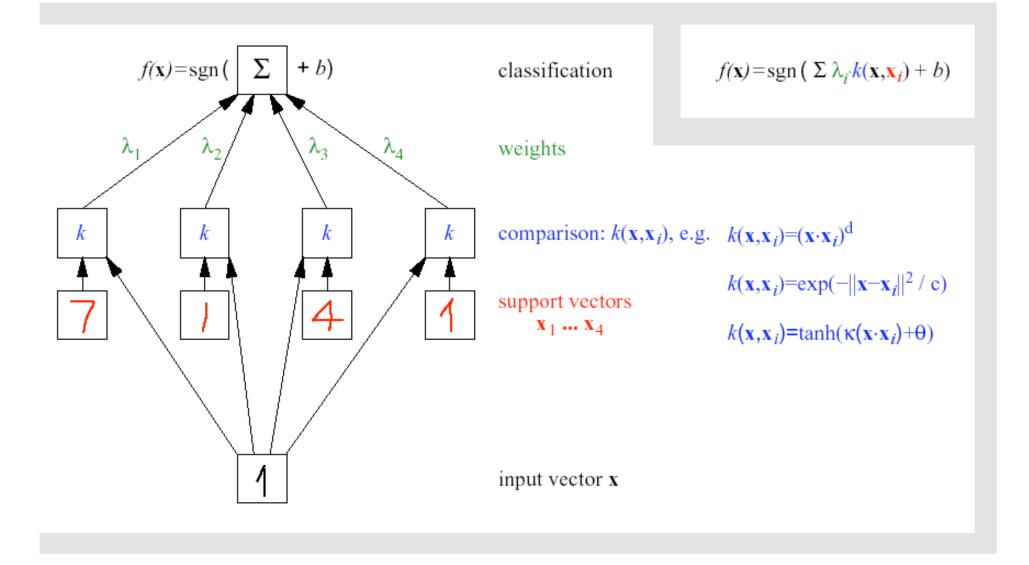
where Φ maps into the space spanned by all ordered products of d input directions

- $\bullet \ any$ algorithm that only depends on dot products can be nefit from the kernel trick
- \bullet this way, we can apply linear methods to vectorial as well as non-vectorial data
- \bullet think of the kernel as a nonlinear $similarity\ measure$
- examples of common kernels:

Polynomial
$$k(x, x') = (\langle x, x' \rangle + c)^d$$

Sigmoid $k(x, x') = \tanh(\kappa \langle x, x' \rangle + \Theta)$
Gaussian $k(x, x') = \exp(-||x - x'||^2/(2\sigma^2))$

Kernel are studied also in the Gaussian Process prediction community (covariance functions) [71, 68, 72, 40] — course



Classification

A new pattern is classified according to the sign of $\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}) + w_0$.

Substituting w gives:

$$g(\mathbf{x}) = \sum_{i \in SV} \alpha_i y_i \boldsymbol{\phi}^T(\mathbf{x}_i) \boldsymbol{\phi}(\mathbf{x}) + w_0, \text{ in which}$$
$$w_0 = \frac{1}{N_{\tilde{S}V}} \left\{ \sum_{i \in SV} y_i - \sum_{i \in SV, j \in SV} \alpha_i y_i \boldsymbol{\phi}^T(\mathbf{x}_i) \boldsymbol{\phi}(\mathbf{x}_j) \right\}.$$

Note that classification depends only on inner products of transformed feature vectors $\phi(\mathbf{x})$.

Some feature spaces come with a kernel **K** (or vice versa) such that : $K(\mathbf{x}, \mathbf{y}) = \boldsymbol{\phi}^T(\mathbf{x})\boldsymbol{\phi}(\mathbf{y}).$

$$k(x,x') = \exp\left(-||x-x'||^2\right)$$

Simple example (XOR problem)

$$\Phi(w) = \frac{1}{2} w^{T} w$$

$$L(w,b,\alpha) = \frac{1}{2} w^{T} w - \sum_{i=1}^{N} \alpha_{i} [y_{i}(w^{T} x_{i} + b) - 1]$$

$$Q(\alpha) = \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \varphi(x_{i})^{T} \varphi(x_{j})$$

$$Q(\alpha) = \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} K(x_{i}, x_{j})$$

$$\varphi(x) = [1, x_{1}^{2}, \sqrt{2}x_{1} x_{2}, x_{2}^{2}, \sqrt{2}x_{1}, \sqrt{2}x_{2}]^{T}$$
Input vec. y
$$I = Input vec. y$$

$$I = Input vec. y
$$I = Input vec. y$$

$$I = Input vec.$$$$$$$$$$$$$$

$$K(x, x_i) = (1 + x^T x_i)^2$$

= 1 + x₁²x_{i1}² + 2x₁x_{i1}x₂x_{i2} + x₂²x_{i2}² + 2x₁x_{i1} + 2x₂x_{i2}

$$K = \begin{bmatrix} 9 & 1 & 1 & 1 \\ 1 & 9 & 1 & 1 \\ 1 & 1 & 9 & 1 \\ 1 & 1 & 1 & 9 \end{bmatrix}$$

Simple example(cont.)

Dual formulation

$$Q(\alpha) = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 - \frac{1}{2}(9\alpha_1^2 - 2\alpha_1\alpha_2 - 2\alpha_1\alpha_3 + 2\alpha_1 + 9\alpha_2^2 + 2\alpha_2\alpha_3 - 2\alpha_2\alpha_4 + 9\alpha_3^2 - 2\alpha_3\alpha_4 + 9\alpha_2^4)$$

 $\alpha - \alpha$

$$9\alpha_{1} - \alpha_{2} - \alpha_{3} + \alpha_{4} = 1$$

$$-\alpha_{1} + 9\alpha_{2} + \alpha_{3} - \alpha_{4} = 1$$

$$-\alpha_{1} + \alpha_{2} + 9\alpha_{3} - \alpha_{4} = 1$$

$$\alpha_{1} - \alpha_{2} - \alpha_{3} + 9\alpha_{4} = 1$$

$$\alpha_{0,1} = \alpha_{0,2} = \alpha_{0,3} = \alpha_{0,4} = \frac{1}{8}$$

$$Q_{o}(\alpha) = \frac{1}{4}$$

Four Input vectors are
All support vectors

$$\frac{1}{2} \|W_{o}\|^{2} = \frac{1}{4}, \|W_{o}\| = \frac{1}{\sqrt{2}}$$

$$w_{o} = \sum_{i=1}^{N} \alpha_{i} y_{i} \varphi(x_{i})$$

If $y_i \cdot (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1$ cannot be satisfied, then $\alpha_i \to \infty$. Modify the constraint to

$$y_i \cdot (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1 - \xi_i$$

with

 $\xi_i \ge 0$

("soft margin") and add

$$C \cdot \sum_{i=1}^{m} \xi_i$$

in the objective function.