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Bayesian Linear Regression
• Bayesian treatment: avoids the over-fit and leads to an automatic way of
determining the model complexity using only the training data.
• We start by defining a simple likelihood conjugate prior,
• For example, a zero-mean Gaussian prior governed by a precision

parameter:

This prior, when combines with the “least squares” likelihood via Bayes rule,
yields the posterior distribution:
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For example, we will show that for the prior above, and for a
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In other words:
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RECALL-Probabilistic interpretation
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Bayesian Linear Regression
• Given target values, modeled as a sum of basis functions plus Gaussian

noise

• Then the likelihood is Gaussian

• Assuming a Gaussian prior makes the posterior tractable
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Bayesian Regression

Given that β is the noise in the measurements

• The posterior is straightforward to derive.  The
computations follow the classification case:

Where the posterior mean and variance are given by:
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Basic Results for Gaussians
• The results stem from the fact that multiplying two Gaussians

is Gaussian (although no longer normalized). In particular,
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Special Cases

• Prior on w

• Ridge Regression Posterior on w
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From Ridge to Lasso etc

• A family of priors for regularized regression:
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Visualizing Bayesian Regression

Sequential Bayesian Learning:  As each data point comes
in,the posterior on w is updated.  Lines show samples from
the posterior distribution.

1 No Data
2 One data point
3 Two data points
4 Twenty data points

1

2

3

4
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Predictive Distribution

• To predict new datapoints, we need to marginalize the
basic regression model across our uncertainty in the
regression coefficients (model averaging
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More Results
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Predictive Distribution
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Bayes does model averaging:
with the average across set of w

Samples

from the

Posterior

Distribution

on w
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Posterior mean on w and the equivalent kernel
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Another Meaning for the Kernel

• In the Bayesian framework, it is easy to show that the
equivalent kernel is the covariance matrix of the
predictive distribution.

What these results show is that Bayesian regression can be

Viewed as a kernel based algorithm.  Rather than choosing the

Weights on a fixed set of kernels (SVR), the kernels are
constructed from the data modeling assumptions.
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Gaussian Processes in Machine
Learning
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Outline of the talk
• Gaussian Processes (GP) [ma05, rs03]

– Bayesian Inference
– GP for regression
– Optimizing the hyperparameters

• Applications
– GP Latent Variable Models [la04]
– GP Dynamical Models [wa05]
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• Gaussian Processes:
– Definition: A GP is a collection of random variables, any finite number

of which have joint Gaussian Distribution
• Distribution over functions:

–
• Gaussian Distribution: over vectors

–

• Nonlinear Regression:
– XN … Data Points
– tN … Target Vector

• Infer Nonlinear parameterized function, y(x;w), predict values
tN+1 for new data points xN+1

• E.g. Fixed Basis Functions

–

GP: Introduction
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• Posterior propability of the parameters:

–          Probability that the observed data points have been generated by
y(x;w)

• Often separable Gaussian distribution is used
– Each data point ti differing from y(xi;w) by additive noise

–       priors on the weights
• Prediction is made by marginalizing over the parameters

–
– Integral is hard to calculate

• Sample parameters w from the distribution           with Markov
chain Monte Carlo techniques

• Or Approximate            with a Gaussian Distribution

Bayesian Inference of the parameters
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Bayesian Inference: Simple Example

• GP: is a Gaussian distribution
• Example: H Fixed Basis functions, N input points

–

– Prior on w:
– Calculate prior for y(x) :

• Prior for the target values
– generated from y(x;w) + noise:

• Covariance Matrix:
• Covariance Function 22 )()(),( vijjhihwji xxxxk !"##! +=
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Predicting Data
• Infer tN+1 given tN :

– Simple, because conditional distribution is also a Gaussian

–

– Use incremental form of

)],(),...,,([ 111 NNN

T
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• We can rewrite this equation
– Use partitioned inverse equations to get 

from

–

–

– Predictive mean:
• Usually used for the interpolation

– Uncertainty in the result :

Predicting Data
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Bayesian Inference: Simple Example

• How does the covariance matrix look like?
–
–

– Usually N >> H: Q has not full rank, but C has
(due to the addition of I)

– Simple Example: 10 RBF functions, uniformly
distributed over the input space
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Bayesian Inference: Simple Example

• Assume uniformly spaced basis functions,  

• Solution of the integral
– Limits of integration to

– More general form
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Gaussian Processes

– Only CN needs to be inverted (O(N³))

– Prediction depend entirely on C and the known targets tN
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Gaussian Processes: Covariance functions

• Must generate a non-negative definite covariance matrix for any set of
points
–
–       Hyperparameters of C

•  Some Examples:
– RBF:
– Linear:

•  Some Rules:
– Sum:
– Product:
– Product Spaces:        ,
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Adaption of the GP models

• Hyperparameters:
– Typically :

• =>

•

• Log marginal Likelihood (first term)
–

– Optimize via gradient descent (LM algorithm)
– First term: complexity penalty term

• => Occams Razor ! Simple models are prefered
– Second term: Data-fit measure

• Priors on hyperparameters (second term)
– Typically used:
– Prefer small parameters:

• Small output scale (    )
• Large width for the RBF (    )
• Large noise variance (   )

– Additional mechanism to avoid overfitting

},,{ !"#=$

! !
"

#=$
1

)()(
ii

PP %%

!

!
!



CSCI 5521: Paul Schrater

GP: Conclusion/Summary
• Memory-Based linear-interpolation method
• y(x) is uniquely defined by the definition of the C-function
• Also Hyperparameters are optimized
• Defined just for one output variable

– Individual GP for each output variable
– Use the same Hyperparameters

• Avoids overfitting
– Tries to use simple models
– We can also define priors

• No Methods for input data selection
• Difficult for a large input data set (Matrix inversion O(N³))

– CN can also be approximated, up to a few thousand input points possible
• Interpolation : No global generalization possible
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Applications of GP
• Gaussian Process Latent Variable Models (GPLVM) [la04]

– Style Based Inverse Kinematics [gr04]

– Gaussian Process Dynamic Model (GPDM) [wa05]

• Other applications:
– GP in Reinforcement Learning [ra04]

– GP Model Based Predictive Control [ko04]
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Propabilistic PCA: Short Overview

• Latent Variable Model:
– Project high dimensional data (Y, d-dimensional) onto a low dimensional latent

space (X, q-dimensional, q << d)

• Propabilistic PCA
– Likelihood of a datapoint:

– Likelihood of the dataset:

– Marginalize W:
• Prior on W:

• Marginalized likelihood of Y:

» Where                  and
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PPCA: Short Overview

• Optimize X:
– Log-likelihood:

– Optimize X:

– Solution: Uq…N x q matrix of q eigenvectors of

L … diagonal matrix containing the eigen 
values of

V… arbitrary orthogonal matrix

• It can be shown that this solution is equivalent to that solved in PCA

• Kernel PCA: Replace        with a kernel



CSCI 5521: Paul Schrater

GPLVM

• PCA can be interpreted as GP mapping from X to Y with linearisation of the covariance
matrix

• Non-linearisation of the mapping from the latent space to the data space
– Non-linear covariance function

• Use Standard RBF Kernel instead of

– Calculate gradient of the log-likelihood with chain rule
•

•          = …

– Optimise jointly X and hyperparamters of the kernel (e.g. with scaled conjugate gradients)

– Initialize X with PCA

– Each Gradient calculation requires inverse of the kernel matrix => O(N³)
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GPLVM: illustrative Result

• Oil data set
– 3 classes coresponding to the phase flow in a pipeline: stratified, annular, homogenous
– 12 input dimensions

PCA GPLVM
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Style based Inverse Kinematics

• Use GPLVM to represent Human motion data
– Pose: 42-D vector q (joints, position, orientation)
– Always use one specific motion style (e.g. walking)
– Feature Vectors: y

• Joint Angles
• Vertical Orientation
• Velocity and Acceleration for each feature
• > 100 dimensions

– Latent Space: usually 2-D or 3-D

• Scaled Version of GPLVM

– Minimize negative log-posterior likelihood
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Style-based Inverse Kinematics
• Generating new Poses (Predicting) :

– We do not know the location in latent space
– Negative Log Likelihood for a new pose (x,y)

• Standard GP equations:

– Variance        indicates uncertainty in the prediction
» Certainty is greatest near the training data

•  => keep y close to prediction f(x) while keep x close to the training data

• Synthesis: Optimize q given some constraints C
– Specified by the user, e.g. positions of the hands, feets
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SBIK: Results
• Different Styles:

– Base-Ball Pitch

– Start running
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SBIK: Results
•  Posing characters

– Specify position in 2-D latent space

• Specify/Change trajectories
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GP Dynamic Model [wa05]
• SBIK does not consider the dynamics of the poses (sequential order of the poses)

– Model the dynamics in latent Space X

• 2 Mappings:
– Dynamics in Low dimensional latent space X (q dimensional), markov property

– Mapping from latent space to data space Y (d dimensional) (GPLVM)

– Model both mappings with GP
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GPDM: Learn Mappings

• Fit parameters: Weights, number of basis functions +
shape
– difficult

• From GP view: parameters should be marginalized out
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GPDM: Learn Mapping g
• Learning Mapping g:

– Mapping from latent space X to high dimensional output space Y

• Prior on Y

– Independent Gaussian for every output dimension

– W = diag(w1,..,wD) … scaling matrix, to account for different variances in different data dimensions

• RBF Covariance Function

• Hyperparameters:
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GPDM: Learn dynamic Mapping f
• Mapping g:

– Mapping from latent space X to high dimensional output space Y

– Same as in Style based kinematics

• GP: marginalizing over weights A
–

• Markov property
–

• Again multivariate GP: Posterior distribution on X
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GPDM: Learn dynamic Mapping f

• Priors for X:

–
• Future xn+1 is target of the approximation

– x1 is assumed to have Gaussian prior

– KX …(N-1)x(N-1) kernel matrix

– Joint distribution of the latent Variables is not Gaussian
• xt does occur outside the covariance matrix

T

Nout
xxX ],...,[ 2=



CSCI 5521: Paul Schrater

GPDM: Algorithm
• Minimize negative log-posterior

–

– Minimize with respect to            and
– Data:

• 56 Euler angles for joints
• 3 global (torso) pose angles
• 3 global (torso) translational velocities
• Mean-subtracted
• X was initialized with PCA coordinates

– Numerical Minimization through Scaled Conjugate Gradient
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GPDM: Results

• (b) Style-based Inverse Kinematics

• (a) GPDM

• Smoother trajectory in latent space!
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GPDM: Visualization

• (a) Latent Coordinates during 3 walk cycles
• (c) 25 samples from the distribution

– Sampled with the hybrid Monte Carlo Method

• (d) Confidence with which the model reconstructs the pose from the latent position
– High probability tube around the data
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GPDM: Online generation of new motion

• Mean Prediction Sequences
– Standard GP equations

– Always take the predicted mean point
– The same for new poses (      )
– Long sequences generated by mean prediction can diverge from the data

• Optimization
– Prevent the Mean Prediction from drifting away from training data
– Optimize the likelihood    of the new sequence
–             is lower near the training data, consequently the likelihood of xt+1  can be

increased by moving xt closer to the training data
– Optimization process is initialized with mean prediction sequence
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GPDM: Mean Prediction and
Optimization

• (a) Mean prediction

• (b) Optimization

(a) (b)
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Summary/Conclusion
• GPLVM

– GPs are used to model high dimensional data in a low
dimensional latent space

– Extension of the linear PCA formulation
• Human Motion

– Generalizes well from small datasets
– Can be used to generate new motion sequences
– Very flexible and naturally looking solutions

• GPDM
– additionally learn the dynamics in latent space
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