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ABSTRACT
Robust sequence prediction is an essential component of an intel-
ligent agent acting in a dynamic world. We consider the case of
near-future event prediction by an online learning agent operating
in a non-stationary environment. The challenge for a learning agent
under these conditions is to exploit the relevant experience from a
limited environmental event history while preserving flexibility.

We propose a novel time/space efficient method for learning tem-
poral sequences and making short-term predictions. Our method
operates on-line, requires few exemplars, and adapts easily and
quickly to changes in the underlying stochastic world model. Using
a short-term memory of recent observations, the method maintains
a dynamic space of candidate hypotheses in which the growth of
the space is systematically and dynamically pruned using anen-
tropy measure over the observed predictive quality of each candi-
date hypothesis.

The method compares well against Markov-chain predictions,
and adapts faster than learned Markov-chain models to changes in
the underlying distribution of events. We demonstrate the method
using both synthetic data and empirical experience from a game-
playing scenario with human opponents.

Categories and Subject Descriptors
I.2 [Artificial Intelligence ]: Learning

General Terms
Algorithms

Keywords
Rapid Learning, sequence prediction, n-gram, Markov Decision
Process

1. INTRODUCTION
Robust sequence prediction is an essential capability for an in-

telligent agent interacting in a dynamic environment. By making
accurate predictions, the agent is able to reduce the space of fu-
ture events which, in turn, facilitates better decision making and
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reduced planning, and permits multi-agent coordination without
communication.

In this paper we consider the case of an agent that must learn to
make predictions on the fly while acting in a non-stationary envi-
ronment. Making predictions under these conditions is quite chal-
lenging. Agents mustlearn rapidly in order to adapt to changes in
event generating processes, limiting the amount of historical data
that can be considered. Because the agent is operating whilelearn-
ing, the learning process must also be online and time/spaceeffi-
cient.

Existing sequence prediction methods like HMMs are not de-
signed for this problem. Most methods require the process tobe sta-
tionary, with an abundance of data. Many learning methods (such
as the EM algorithm) are better suited to offline learning. Thus, the
challenge for a learning agent in a rapidly changing environment is
to exploit the relevant experience while preserving flexibility.

We propose a solution that employs short-term memory to rapidly
store regularly occurring patterns in sequences of observations. These
sub-sequences (representing candidate predictors) are filtered by
finding those that produce high and reliable prediction performance.
This solution is qualitatively similar to the human sequence pre-
diction strategy suggested by recent research [6], in that humans
appear to use a combination of short-term memory and the detec-
tion of apparentnon-randomness in sensory input torapidly learn
regularly occurring patterns in sequences of observations.

One of the key aspects of the proposed solution is to exploit ba-
sic, low-level predictability in temporal sequences. Low-level pre-
dictability can be modelled via a variable-length order-n Markov
chain, wheren is the number of consecutive observations needed
to predict the next observation. Recall that the joint probability dis-
tribution of a sequence of observationso1:n = o1, o2, . . . , on can
always be factored as

P (o1, o2, . . . , on) = P (o1)

nY
t=2

P (ot|o1:t−1) (1)

The full joint distribution becomes intractable as the sequence length
increases, however a fixed finite lengthn Markov model

P (oT−n+1, . . . , oT )

TY
t=T−n+1

P (ot|oT−n:T−1)

is poorly suited to capture regularities with variable lagsand mul-
tiple time scales. Our short-term memory approach extractssub-
sequences with variable lags, overcoming some of the problems
of fixed length Markov chains. The results of this paper suggest
that a machine learning approach that exploits basic, low-level pre-
dictability may overcome the problems introduced by onlinelearn-
ing in a non-stationary environment.
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2. A MOTIVATING EXAMPLE
Consider the following situation in which a learning agent en-

counters the following sequence of observations: (for simplicity
we denote an observation with a single upper case letter):

A B A C A B A C A ?

If an order-1 Markov assumption is made, then the model, when
presented with the given sequence up to the final eventA should
predict the subsequent occurrence of the event ‘B’ or ‘C’ with equal
probability. If we arbitrate with the flip of a coin, we can expect no
better than 50% success at predicting the succeeding event.How-
ever, this is clearly not what a human observer would immediately
induce from the same sequence.

A human observer recognizes that events ‘B’ and ‘C’ alternate
with regularity and are completely predictable. If we simply aug-
ment our definition of ‘state’ to include 2 consecutive events (order-
2 Markov chain), we have increased the number of possible states
from 3 (A, B, or C) to 9 (AA AB. . . CC), but now we have a model
that can accurately sort out the context and learn that (C, A)pre-
dicts ‘B’ with probability 1 and (B, A) predicts ‘C’ with probability
1.

Increasing the order of the Markov chain is a common method
for augmenting the definition of state in order to uncover predictable
relationships in temporal sequences, however the drawbackto this
approach lies in the combinatorial explosion in the state space and
in the large number of training samples needed for the agent to
learn. This is problematic for an agent operating in a highlydy-
namic environment that must learn quickly with limited experience.

3. ELPH: ENTROPY LEARNING PRUNED
HYPOTHESIS SPACE

We propose an alternate method, using the notion of an actively
pruned “hypothesis” space that is able to sort out highly predic-
tive patterns regardless of the Markov order and do so with rela-
tively few examples. The method avoids some of the pitfalls of
current methods such as the need for long training sequencesand
uncontrollable combinatorial explosion, and provides rapid, online
learning. Furthermore, it is capable of quickly adapting topattern
changes. We refer to the algorithm using the acronym ELPH (”En-
tropy Learning Pruned Hypothesis space”)

Unlike order-n Markov chain methods, in which learning occurs
over a space of uniformn-grams, this algorithm learns over a space
of hypotheses, referred to as theHypothesis Space(HSpace). Given
a short-term memoryconsisting of then most recent temporally-
ordered observations, an individualhypothesisconsists of a sub-
set of the ordered contents of the short-term memory of recent ob-
servations and an associated prediction-set of events thathave, in
the past, immediately followed the pattern contained in short-term
memory.

Consider some eventet occurring at timet which is immedi-
ately preceded by a finite series of temporally ordered observations
(ot−n, . . . , ot−1). Our task is to determine if some subset of those
observations consistently precedes the eventet. If such a subset ex-
ists, then it can be subsequently used to predict future occurrences
of et from a temporally ordered set of observations. The question
then becomes, “is this event consistently preceded by some specific
pattern of observations?”

In general, if the observed system takes the form of a Markov
chain of order-1, then the single observationot−1 will predict the
probability of the eventet. However, given an arbitrary series of
observations, it is not necessarily true that the sequence results from
a Markov process of order-1. For example, it may be that the single
observationot−4 accurately predicts the observed event while the

observationot−1 is irrelevant. Or perhaps the two specific observa-
tions{ot−6, ot−4} predict the observed event with high probability,
and so on.

Assuming, without loss of generality, that we fix the length of
the histories stored in the short-term memory ton = 7, we may ei-
ther select or ignore each of then = 7 observations in each history.
This leads to2n = 128 possible subsets of the recent event history
that can be used to form hypotheses, equivalent to the power-set
formed from the 7-gram short-term memory. If we disregard the
trivial hypothesis (consisting only of the empty-set{}), then for
any specific short-term memory configuration, we can form 127
individual hypotheses, each of which “may” have predicted the ob-
served event at timet. The choice ofn = 7 is arbitrary, and we
could have selected a different value. The inspiration camefrom
the work by Miller [7].

At each time step, the system attempts to learn which of the pos-
sible subsets is consistently good at predicting the current event
et. It does this by adding a potential hypothesis for each possi-
ble subset of the observation history corresponding to the currently
observed event,et:

{ot−1} ⇒ et

{ot−2} ⇒ et

...
{ot−6, ot−4} ⇒ et

...
{ot−7, ot−6, . . . , ot−1} ⇒ et

whereet is the observation at timet that this rule is trying to pre-
dict. The exact process by which the HSpace is filled with these
hypotheses is thelearning processoutlined next.

By forming these hypotheses in real-time, we are able to learn
those that, over time, predict specific events with high-probability
and utilize them to make predictions of future events.

3.1 Learning
The HSpace is used to store the hypotheses encountered and gen-

erated from previous time steps. Associated with each hypothesis
is its set of predictions together with counts for each prediction in-
dicating how many times it has been encountered in the past.

As each observation (or percept),o, is sensed, it is entered into
a n-element short-term memory containing the recently observed
history. The short-term memory is implemented as a fifo queueand
is organized in a fixed temporal sequence:(ot−7, ot−6, ..., ot−1).
At each discrete time step,t, a new set of 127 hypotheses is formed
from the stored observations in the short-term memory, along with
the currently observed event at timet. Each of the 127 individual
hypotheses are then inserted into the hypothesis space subject to
the following rules:

1. If the hypothesis is not in the HSpace, it is added with an
associated prediction-set containing only the current event
(prediction) and an event count set to 1.

2. If the hypothesis already resides in the HSpace, then the ob-
served event is matched with the stored predictions in the
associated prediction-set. If found, the proposed hypothesis
is consistentwith past observations and the event count cor-
responding toet is simply incremented.

3. If the hypothesis already resides in the HSpace but the ob-
served eventet is not found in the associated prediction-set,
the novel prediction is added to the prediction-set with an
event count of 1.
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3.2 Pruning the hypothesis space
The combinatorial explosion in the growth of the HSpace is con-

trolled through a process of active pruning. Since we are only in-
terested in those hypotheses that providehigh-qualityprediction,
inconsistent hypotheses or those lacking predictive quality can be
removed.

Note that, for any given hypothesis, the prediction-set represents
a histogram of the probability distribution over those events that
have followed the specified pattern of observations. The entropy of
this distribution is a measure of the prediction uncertainty and can
be considered an inverse qualitative measure of the prediction.

The prediction-setPS for each hypothesis in the HSpace con-
sists of a set ofν tuples(ei, ci), one for each of theν events pre-
dicted by the hypothesis,

PS = {(e1, c1), (e2, c2), . . . , (eν , cν)}

whereci is the count of the number of times thatei followed this
hypothesis’s list of observations in the data sequence. Using the
individual event counts, the entropy of the prediction set can be
computed as,

H = −

νX
i=1

ci

ctot

log2

�
ci

ctot

�
wherectot is simply the sum of all the individual event counts,

ctot =

νX
i=1

ci

If a specific hypothesis is associated with a single, consistent pre-
diction, the entropy measure for that prediction-set will be zero.

If a specific hypothesis is associated with a number of conflict-
ing predictions, then the associated entropy will be high. In this
sense, the “quality” of the prediction represented by the specific
hypothesis is inversely related to the entropy measure. High en-
tropy indicates poor predictive quality, and low entropy indicates
consistently accurate prediction.

As hypotheses are added to the HSpace, inconsistent hypothe-
ses are removed. Aninconsistenthypothesis is one in which the
entropy measure over the prediction-set exceeds a predetermined
thresholdHthresh. In other words, when the entropy measure of
the predictions associated with a specific hypothesis is high, it fails
the “predict with high probability” test and is no longer considered
to be a reliable predictor of future events, so it is removed from the
HSpace.

It is this pruning behavior which bounds the growth in the hy-
pothesis space. Over time, only those hypotheses deemed accurate
predictors with high probability are retained. All others are even-
tually removed. Entropy threshold pruning also facilitates rapid
adaptation in non-stationary environments. When the underlying
process statistics change, the resultant increase in prediction-set
entropy causes existing hypotheses to be removed and replaced by
low-entropy hypotheses learned following the change.

3.3 Making predictions
The hypotheses which are retained in the HSpace are generally

high-quality predictors of future events and can be used to perform
serial prediction tasks. These predictions are made by considering
all hypotheses consistent with the current contents of the short-term
memory and choosing the “most likely” hypothesis.

Again, an entropy measure over the prediction-set can be used
as a qualitative prediction measure: The lower the entropy,the
“better” the prediction. To make a prediction, we simply locate
the hypotheses in the HSpace which are represented by the current

contents of the short-term memory, and rank them according to en-
tropy measure. The maximum number of matching hypotheses is
bounded by the length of the short-term memory. With our choice
of keeping the lastn = 7 observations in the short-term memory,
there are at most 127 such matching hypotheses. The most fre-
quently occurring prediction (maximum likelihood) from the hy-
pothesis with the lowest-entropy is the best prediction that can be
made, given the current experience.

For making predictions, a simple entropy computation is notsuf-
ficient because it is biased toward selecting those hypotheses with
a small number of occurrences. For example, a hypothesis that has
only occurred once will have a single prediction-set element, pro-
ducing a computed entropy value of zero. A more robust entropy
measure must be used that takes into account the number of occur-
rences and gives greater weight to those with higher frequency.

A more reliable entropy measure is obtained by re-computingthe
prediction-set entropy with a single, false positive addedto the set.

We add a single, hypothetical false-positive element whichrep-
resents an implicit prediction of ”something else”. This yields a
reliableentropy measure,

Hrel = −

"
νX

i=1

ci

ctot + 1
log2

�
ci

ctot + 1

�#
−

1

ctot + 1
log2

�
1

ctot + 1

�
If a specific hypothesis in the HSpace has only occurred once,
its associated prediction-set will contain a single element with an
event count of 1. This yields a computed prediction-set entropy of
log2(1) = 0.0. However, using the reliable entropy measureHrel

yields an adjusted entropy of− 1

2
log2(

1

2
) − 1

2
log2(

1

2
) = 1.

Note that a prediction-set with a single element but a high event
count will yield a reliable entropy considerably less than 1. In this
case, the reliable entropy measure is consistent with the intuitive
notion of “predictability” implied by frequent occurrence.

3.4 Brief analysis
For an alphabet of sizem, an order-n Markov chain approach

requires a transition matrix of dimensionmn. The proposed ELPH
algorithm spans apotentialspace of order(m + 1)n which is sig-
nificantly larger. However, two attributes of the problem domain
restrict the effective size of the HSpace:

1. Limited experience yields a sparse space: Only those hy-
potheses that both have been experienced and have high pre-
dictive quality are kept in the HSpace.

2. Statistical structure in the observation space leads to effi-
cient pruning: If the temporal stream of observations is truly
random, leading to no ability to predict future events, then
the HSpace method will indeed explode, or in the presence
of pruning, will continually prune and add new hypotheses
(i.e. thrash). However, most interesting “real-world” behav-
ior has regularities our algorithm should efficiently exploit.

3.5 An example
We show step by step how the HSpace is constructed in Table 1.

The hypotheses are shown in the row of the corresponding obser-
vation. For this example, we restrict the amount of history in the
short-term memory ton = 2 for illustration simplicity.

Given the following input:

. . . A B A C A B A D . . .

69



observ-
ation hypotheses added

A . . . . . . . . .

B . . . . . . . . .

A AB ⇒ {(A, 1)} ∗B ⇒ {(A, 1)} A∗ ⇒ {(A, 1)}
C BA ⇒ {(C, 1)} ∗A ⇒ {(C, 1)} B∗ ⇒ {(C, 1)}
A AC ⇒ {(A, 1)} ∗C ⇒ {(A, 1)} A∗ ⇒ {(A, 2)}
B CA ⇒ {(B, 1)} ∗A ⇒ {(B, 1), (C, 1)} C∗ ⇒ {(B, 1)}
A AB ⇒ {(A, 2)} ∗B ⇒ {(A, 2)} A∗ ⇒ {(A, 3)}
D BA ⇒ {(D, 1), (C, 1)} ∗A ⇒ {(D, 1), (B, 1), (C, 1)} B∗ ⇒ {(D, 1), (C, 1)}

Table 1: Operation of the ELPH algorithm on a short sample stream. The ‘*’ denotes an observation that is ignored.

at the second occurrence of observation ‘A’ three hypotheses will
be inserted in the HSpace:

A B ⇒ A A * ⇒ A * B ⇒ A,

where ‘*’ stands for an observation that is ignored. Following the
subsequent observations ‘C’ and ‘A’, six additional hypotheses will
be inserted, namely

B A ⇒ C B * ⇒ C * A ⇒ C
A C ⇒ A A * ⇒ A * C ⇒ A.

At the second occurrence of observation ‘B’, ‘*A’ predicts not only
‘C’, as before, but also ‘B’. We now have an ambiguous prediction,
with ‘B’ being predicted with probability1

2
and ‘C’ also being pre-

dicted with probability1

2
. The entropy of the ‘*A’ prediction goes

to 1. In the next time step, we observe ‘A’ and since ‘A*’ has pre-
dicted ‘A’ consistently three times its reliable entropy decreases. In
the next time step, we observe ‘D’ and now the ambiguity of ‘*A’
includes ‘D’, ‘B’, and ‘C’. The entropy of the prediction setof ‘*A’
has now increased to approximatively 1.5 and has become a good
candidate for pruning.

4. EXPERIMENTAL RESULTS
We tested the ELPH algorithm on a series of synthetically gener-

ated strings derived from both stationary and non-stationary dis-
crete stochastic processes. The performance was measured and
compared to that of various Markov agents on prediction tasks in
which each agent observed the input string one element at a time
and predicted the subsequent element. The performance measure
for all agents was the proportion of the number of correct predic-
tions to the total number of elements in the input string.

4.1 Performance in stationary environments
We constructed an order-1 Markov process to generate test data

strings by taking the convex combination of two underlying Markov
transition matrices,S1 andU , to form a new transition matrix

A = (1 − λ)(S1) + (λ)(U), 0 ≤ λ ≤ 1

The matrixS1 is representative of a nearly deterministic process
in which the state transitions are set to a value approaching1, but
slightly less than unity to maintain the acyclic property (e.g. 0.9999).
The second matrix,U , has state transition probabilities uniformly
distributed throughout and is representative of a completely ran-
dom process with maximal entropy rate.λ is used to control the
entropy rate of the resulting Markov process. The dimensionof the
generating transition matrix was fixed at 5 throughout all trials re-
ported. This Markov process was then used to generate strings of
1,000 elements each.
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Figure 1: ELPH performance on strings from increasingly
stochastic processes. Prediction accuracy is compared to both
an ideal Markov predictor and a maximum likelihood Markov
learner on identical strings.

In Figure 1, ELPH performance is compared to both an ideal
Markov predictor and a maximum likelihood Markov learner. Each
sample point represents the prediction accuracy achieved on a syn-
thetically generated string. We repeated the experiment 100 times,
each time generating a 1000 length string from a stationary stochas-
tic process and then systematically increasing the entropyrate of
the generating process.

The ideal Markov predictor is an agent that makes maximum
likelihood estimates of the successor state directly from the gen-
erating transition matrix. The performance of the ideal predictor
provides a baseline representative of the best prediction that can
be made for any given discrete stochastic process. The maximum
likelihood (ML) Markov learner is an agent that has no knowledge
of the size of the state-space or generating transition matrix and
must estimate these values from observations obtained on the fly.
Given an observation history, the ML Markov learner observes a
state and constructs the maximum likelihood of the successor state
by accumulating observed state transitions over time.

Figure 2 illustrates the performance of the ELPH algorithm when
the length of context history is limited to 1 and the entropy thresh-
old is set to a value which eliminates all pruning behavior. With no
pruning and a history of length 1, the ELPH algorithm should be
equivalent to a maximum likelihood Markov learner of order-1.

As expected, the ideal Markov predictor performs better than all
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other methods tested and serves as a benchmark for optimal perfor-
mance. Due to the fact that these are stationary strings of sufficient
length to provide an adequate sample of the state space, the ML
Markov learner also does very well. The ML Markov learner is not
quite as good as the ideal predictor owing to the fact that it must
guess the state transitions for novel observations.

ELPH performance equals that of the ML learner when the pro-
cess entropy rate is near zero (highly deterministic processes) and
when entropy rate is high (random processes). This is largely due
to the pruning behavior of ELPH. When the observation stringis
highly deterministic, no pruning occurs and the predictions are equiv-
alent to the ML learner. When the string is random, all predictions
are effectively “guesses” and the performance approaches the blind
guess rate. In the intermediate cases, ELPH hypotheses are be-
ing pruned due to poor predictive quality and information isbeing
discarded. The ELPH performance in these examples, however,
remains relatively good.

ELPH continually constructs multi-order hypotheses from obser-
vations and attempts to find those with high predictive value. If we
restrict ELPH to a history of length 1, then at each time step,it will
formulate21 − 1 = 1 hypotheses, corresponding to the immediate
predecessor state. If we further restrict ELPH by increasing the en-
tropy thresholdHthresh to a point at which no hypotheses will be
pruned from the space, then we expect that the behavior should be
equivalent to the ML Markov learner. Figure 2 shows this to bethe
case.

4.2 Performance in non-stationary environments
The series of tests illustrated in Figures 1 and 2 describe per-

formance on strings generated from stationary processes. In these
cases, adaptability is not an issue.

To measure the adaptability of the ELPH algorithm compared to
other methods, we created non-stationary processes by alternating
between two mixture models with independentλ values. The first
process (A) was created as described earlier, the second process
(B) utilized a separate mixture coefficientλB and a different tran-
sition matrixS2, formed by rotating the columns ofS1 by 1. The
time between model switches was specified by a duration parame-
terd, measured in samples. Non-stationary strings were createdby
alternating sampling from processA for a duration ofd samples,
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Figure 2: Equivalence of ELPH to order-1 ML Markov learner
when history is limited to 1 and entropy threshold is set to a
high value disabling pruning.

and from processB for a duration ofd samples.
This method yielded strings in which the non-stationarity of the

process could be altered by changing the rate at which generating
process alternation occurred, or by altering the degree of random-
ness of either of the generating processes (or both).

We performed two sets of experiments. For the first set, we sys-
tematically changed the rate of alternation of two highly determin-
istic generating processes and we measured the effect of thelength
of the history used by ELPH. For the second set of experiments,
one of the generating processes was highly deterministic and the
second was increasingly stochastic. We compared ELPH with a
Markov learning process which used the same history length.All
trials used transition matrices of dimension 5 withHthresh set to
1.0.
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Figure 3: Performance of ELPH on a set of non-stationary se-
quences in which the sample duration between process alter-
nations is increased from 1 to 100. Test sequences consistedof
length 1000 strings formed by alternately sampling from 2 pro-
cessesA = (1−λA)(S1)+λAU , andB = (1−λB)(S2)+λBU

in which λA = λB = 0 . This method yielded non-stationary
strings in which highly deterministic sections from one process
were followed by highly deterministic sections from a different
process.

In Figure 3, ELPH and the ML Markov learner were applied
to non-stationary strings of varying frequency. Three versions of
the ELPH algorithm are shown in which the length of short-term
history was restricted to 1, 3 and 7 observations, respectively. Each
were tested with identical strings produced by the preceding mixture-
model method in which theλA andλB values were set to 0, yield-
ing highly determined outputs. The independent variable inthis
test was the sampling durationd of each process which was sys-
tematically varied from 1 to 100.

Non-stationary environments are more typical of “real-world”
situations in which rules change, other agents in the environment
alter their behaviors, etc. In the non-stationary environments pre-
sented here, the ELPH algorithm performed substantially better
than the Markov chain learners tested.

The ML Markov learner and the ELPH algorithm with a his-
tory length of 1 both perform poorly (Fig. 2). In these cases,the
transition history over single states is unable to sort out the un-
derlying (temporary) changes in transition probabilities. However,
when ELPH is provided with increasing history, the performance
improves dramatically. Due to the pruning behavior, ELPH dis-
cards previously acquired hypotheses following the process change
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and quickly re-learns the “new” state transitions. As the duration
between process transitions increases beyond approximately 15,
the predictive performance on a non-stationary deterministic pro-
cess exceeds 90% correct predictions.
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Figure 4: Performance of ELPH vs. an Order-7 Markov ML-
learning agent on a set of non-stationary test sequences with
varying predictability. Test sequences consisted of length 1000
strings formed by alternating between 2 processesA and B ev-
ery 10 samples, whereA = (1 − λA)(S1) + λAU and B =
(1− λB)(S2) + λBU . In this test , λA = 0 and λB varied from
0 to 1. This produced non-stationary strings in which highlyde-
termined sections were followed by increasingly stochastic sec-
tions.

Another experiment was performed in which the non-stationary
mixture-model process used to generate strings alternatedbetween
a highly determined process (A) and an increasingly random pro-
cess (B). In addition, this trial increased the observation history
available to the ML Markov agent to 7 which was equal to the short-
term history of the ELPH agent. Figure 4 summarizes the results
for a trial in which the sampling durationd was held constant at 10.

Providing increasing history to the ML Markov learner does not
improve the performance versus ELPH. Again, the pruning pro-
cess employed by ELPH is able to discard accumulated hypotheses
when process changes occur, providing rapid adaptation to the new
process statistics. AsλB increases, the second process becomes
less random and performance increases accordingly. Both agents
do well when the second process is highly deterministic.

4.3 An Application
We applied our method to the game of rock-paper-scissors where

we pitted a program using ELPH against human opponents. The
rock-paper-scissors game is a well-known simple two-player game
that proceeds with each person simultaneously making a “play”
from a set of three choices{rock, paper, scissors}. The winner
is decided as follows: “rock” wins over scissors, “scissors” wins
over paper and “paper” wins over rock. Ties are not counted.

This simple game is an example of a game with no optimal strat-
egy [4]. Theoretically, the best strategy is to play randomly, leading
to a tie. However, if an opponent exhibits a bias in play selection,
that bias can be exploited to provide a winning advantage over time.
Humans exhibit a general bias against purely random action which
should lead to predictable play at some level. This predictability
can be exploited by an agent that is able to rapidly learn and adapt
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Figure 5: Rock-Paper-Scissors wins vs. losses over time against
a human opponent.

to the bias in human play.
The rock-paper-scissors game provides an excellent domainin

which to test an online, adaptive temporal sequence prediction agent.
The overall strategy is to ascertain predictabilitybias in the oppo-
nent’s play, predict what the opponent is most likely to do next, and
choose a play that is superior to that predicted for the opponent. If
the opponent exhibits predictable behavior, the learning agent can
exploit that bias and achieve a statistical edge. The game isplayed
in real time and requires an online learning strategy. The agent
must also be highly adaptive to changes in the opponent’s strategy
which can occur at any time during the game, and are not made
known to the agent.

A multiple ELPH approach was used to learn two separate tem-
poral observation streams in parallel. The first stream consisted of
the consecutive plays of the opponent and was used to predictthe
opponent’s subsequent play. The second stream was used to predict
the opponent’s next play based on the sequence of themachine’s
plays. In this way, if the opponent falls into biased patterns related
to his/her own play, the first stream provides predictors, whereas if
the opponent attempts to exploit perceived patterns related to the
machine’s play, that bias will be detected and exploited. The ap-
proach is simple. Observe, make two predictions of the opponent’s
next play based on the separate input streams, and select theplay
that has the lowest reliable entropy measure.

A number of matches were played against human opponents with
surprising success. A typical example of the results of one such
game are shown in Figure 5.

As shown in this example, an advantage was gained following
approximately35 − 40 plays. The program exhibits the key char-
acteristics of a dynamic, adaptive, on-line agent. It adapts to the
changing play of the opponent and quickly exploits predictive pat-
terns of play. Early results suggest that human players exhibit pre-
dictable patterns (even when explicitly tryingnot to), and demon-
strate the ELPH algorithm as an effective, efficient tool forlearning
and predicting these temporal patterns in real-time.

5. RELATED WORK
The problem of determining predictive sequences in time-ordered

databases has been addressed by a significant body of data mining
literature, starting with the seminal work of Agrawal and Srikant [1].
However, these approaches (including [1]) generally utilize a num-
ber of passes (forward and/or backward) through the data anddo
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not meet the “on-line” or “real-time” criteria essential for dynamic
agent performance. In addition, the prevalent data mining tech-
niques generally do not handle changes in the underlying stochastic
model.

The ELPH algorithm can be viewed as a method to learn a sparse
representation of an order-n Markov process via pruning and pa-
rameter tying. Because sub-patterns occur more frequentlythan the
whole, our reliability measure preferentially prunes larger patterns.
Because prediction is then performed via the best sub-pattern, we
are effectively tying probability estimates of all the pruned patterns
to their dominant sub-pattern.

Previous approaches to learning sparse representations ofMarkov
processes include variable memory length Markov models (VLMMs)
[5, 8, 10, 2] and mixture models that approximaten-gram probabil-
ities with sums of lower order probabilities [9]. VLMMs are most
similar to our approach in that they use a variable length segment of
the previous input stream to make predictions. However, VLMMs
differ in that they use a tree-structure on the inputs, predictions are
made via mixtures of trees, and learning is based on agglomeration
rather than pruning.

In the mixture approach,n-gram probabilitiesp(ot|ot−1 . . . ot−n)
are formed via additive combinations of 2-gram components.Learn-
ing in mixture models is complicated by using EM to solve a credit
assignment problem between the 2-gram probabilities and the mix-
ture parameters. We believe the relative merits of our algorithm to
be its extreme simplicity and flexibility.

Rock-paper-scissors is one of the stochastic games used by Bowl-
ing and Veloso [3] as a demonstration of their WoLF algorithm.
WoLF (Win Or Learn Fast) applies a variable learning rate to gradi-
ent ascent over the space of policies, adapting the learningrate de-
pending on when a specific policy is winning or losing. The WoLF
principle is to learn quickly when losing and more cautiously when
winning.

In contrast to this work, ELPH makes no effort to directly learn
a policy based on reward, and, in fact, makes no determination as
to whether it is winning or losing. ELPH simply makes predictions
based on past observations and discards past knowledge if itfails to
predict future play. ELPH makes no assumption on the rationality
of the opponent’s policy. If the opponent exhibitsanypredictability
in play, ELPH will exploit that predictability and choose anaction
that will better the opponent with a frequency matching the statis-
tical bias. If the opponent’s policy is to play purely randomly, then
ELPH should play to a draw.

Since WoLF starts playing at the Nash equilibrium, when ELPH
plays against it, they consistently play to a draw. WOLF doesnot
perform well against ELPH in the non-stationary environments pre-
sented here. WOLF requires playing millions of games beforecon-
verging on the policy and so it does not perform well given the
rapid non-stationary policy switches we used (approximately every
20 plays) and the (relatively) short games of 1000 plays.

6. CONCLUSION AND FUTURE WORK
We have demonstrated a novel algorithm that utilizes “predictive

quality” as a basis for learning temporal sequences. The ability to
discard historical information with limited predictive value yields
a space-efficient method, and by using limited context history, a
time-efficient method suitable for use in realtime environments is
achieved.

The ELPH algorithm is capable of learning complex temporal
sequences in non-stationary environments in real-time using lim-
ited memory resources while adapting rapidly to changes in the un-
derlying stochastic process. We demonstrated its potential for use
in domains where rapid adaptability is of paramount importance.

Straightforward extensions of the algorithm include variable length
windows instead of the fixed length windows we presented, and
multiple input streams. The algorithm can be extended to longer
time scales by treating embedded sequences with high predictabil-
ity as higher order temporal streams.
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